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Foreword

The Sixth European Conference on Constitutive Models for Rubber (ECCMR VI) is hosted in 2009 at 
the Technische Universität Dresden in Germany and is organized by Gert Heinrich (Dresden), Michael 
Kaliske (Dresden), Alexander Lion (München) and Stefanie Reese (Braunschweig). In order to reach 
a high scientific quality and to consider academic as well as industrial aspects, the International Scien-
tific Committee consists of distinguished personalities from universities and industry. Accordingly, the 
organizing committee would like to thank Herbert Baaser, Paul Buckley, James Busfield, Luis Dorfmann, 
Sanjay Govindjee, Gerhard Holzapfel, Jörn Ihlemann, Mikhail Itskhov, Manfred Klüppel, Will Mars, 
Alan Muhr, Ray Ogden, Peter Wriggers and Erwan Verron for their valuable cooperation. We also express 
our gratitude to the organizers of ECCMR V for their useful support: Adnane Boukamel, Lucien Laiari-
nandrasana, Stephane Lejeunes, Stephane Meo and Erwan Verron. Since such a conference cannot be 
realized without external sponsoring, the organizing committee takes this opportunity to thank the spon-
sors for their massive financial support, in particular with regard to the economical difficult year 2009. 
Finally, we express our gratitude to Manfred Mahlig and Axel Mittendorf for their exemplary assistance 
concerning the support of the internet platform and the organisation of the conference proceedings.

In many applications, constitutive models are needed to represent the material properties of filler-
reinforced elastomers under quasistatic or dynamic, infinitesimal or finite thermomechanical defor-
mations. Filled rubbers are a typical example, in which multiscale science plays the major role in the 
structure—property relationship. Elastomers are used for many products like tires, shoes, suspension and 
engine mounts, seals or shock absorbers, to name a few. In industrial development processes, it is profitable 
to simulate the behaviour of these parts under realistic operating conditions. This challenge necessitates 
detailed experimental investigations, the development of constitutive models representing the material 
behaviour in combination with techniques to identify the material parameters and the development of 
efficient numerical methods. In the past, great interest was in modelling the quasistatic stress-strain-
behaviour of rubber but nowadays, the interests also include the influence of environmental conditions 
on the material behaviour and estimations of the product lifetime. The latest developments to describe the 
material behaviour of rubber are presented during this conference.

Thus, the invited keynote lectures come from international universities and industry and are presented 
by James Busfield (Queen Mary University of London, UK), Will Mars (Cooper Tire & Rubber Com-
pany, USA) and Christian Miehe (University of Stuttgart, Germany). Their contributions cover the most 
challenging fields in the context of constitutive modelling: friction and abrasion, damaging under multi-
axial loadings and micromechanical approaches in continuum mechanics. 

Besides continuum mechanical modelling approaches and industrial applications, other focal points 
of the conference are finite element simulations and methods, dynamic material properties, experimen-
tal characterization, lifetime prediction, friction, multiphysics and biomechanics, reinforcement, ageing, 
fracture and fatigue as well as micro- and macromechanical approaches. In these areas, we have about 
80 outstanding oral and poster presentations from universities, research institutes, rubber industries and 
software developers. Although the ECCMR was originally a European conference, the organizers are 
very delighted since the participants come from all over the world. ECCMR VI is a comprehensive plat-
form, where specialists in constitutive modelling, finite element simulation and experimental testing come 
together to discuss the state-of-the-art in material modelling of elastomers, to develop new ideas or to 
create new research networks and projects.

Gert Heinrich
Michael Kaliske
Alexander Lion

Stefanie Reese
September 2009
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Foreword (Volume 1)

The extraordinary stress-strain behavior of rubber has presented an opportunity for inventive engineers 
and a challenge for scientists since the mid-nineteenth century, and continues to do so today. Major 
branches of theory, such as the statistical theory of rubber elasticity and finite strain elasticity theory, 
have been spawned by the properties of rubber. Until recently, however, the theoretical framework for 
large deformations found little application among rubber engineers because the mathematics rapidly 
becomes intractable for all but the simplest components. The advent of affordable and powerful comput-
ers has changed all this, and brought the challenge of rubber to new sets of people—software engineers 
and desk-top, as opposed to empirical, designers.

The development of the statistical theory of rubber elasticity in the 1940s, of finite strain elasticity 
theory in the 1950s, and of convenient forms for the strain energy function in the 1970s, all focused on 
modelling the elastic characteristics of rubber. Although much literature has appeared in recent years 
following this theme, the Physics of Rubber Elasticity by L.R.G. Treloar (3rd Edition, Clarendon Press, 
Oxford, 1975) and the proceedings of a Discussion on Rubber Elasticity (Proc.Roy.Soc.London, 1976, 
A351, No. 1666, 295–406) remain very valuable reviews.

The treatment of rubber as a ‘hyperelastic’ material—that is, a material modelled by a strain-energy 
function for finite strain—was implemented into finite strain element analysis in the 1980s and is now 
widely available in commercial software packages.

However, only a few engineering elastomers—such as unfilled natural rubber and some grades of 
polyurethane—really conform to the “hyperelastic” ideal. Most other engineering elastomers incorporate 
“reinforcing” fillers, needed to confer adequate strength properties and also to improve processing charac-
teristics and to enable adjustment of hardness over a wide range. The stress-strain characteristics of such 
filled elastomers depart significantly from elasticity. Whileways of thinking about these departures—such 
as “dynamicto-static ratio” of rubber springs—may have satisfied a previous generation of design engi-
neers, there is now an opportunity to apply more sophisticated models.

One major current challenge is thus to model those aspects of the inelastic behaviour that are relevant 
to engineers, and to do this in such a way that the models are implementable in finite element analysis.

Although potentially the involvement of representatives of several disciplines should facilitate progress, 
this is only the case if  they talk to each other. In practice, software engineers might rely on the literature 
and on desktop designers as sources of information about rubber, and fail to achieve as good a balance of 
understanding as they could if  they listened also to experimental rubber scientists and empirical design-
ers. Applied mathematicians might develop phenomenological models which address issues of secondary 
interest to designers, or which misrepresent important aspects of the experimentally observed behav-
iour. Experimentalists might develop models without reference to the existing framework of continuum 
mechanics, resulting in internal inconsistencies and difficulty in implementation in software packages. The 
First European Conference on Constitutive Models for Rubber sprang from the idea of providing a forum 
for multi-disciplinary discussion, seeking to bring the fragmented strands of recent research together.

Within the UK a start has been made in this direction—through a workshop on Deformation Mod-
elling for Solid Polymers (Oxford University, 1997) and a seminar on Finite Element Analysis of Elas-
tomers (Institution of Mechanical Engineers, London, 1997). The proceedings of the latter are available 
as a publication of the same name (Professional Engineering Publications, London, 1999). Similarly, 
in Germany a workshop of Finite Element Analysis—Basics and FutureTrends was organised by the 
Deutsche Institute für KautschukTechnology (Hannover, 1998). The interest in these essentially national 
meetings suggested that further cross-fertilisation should be stimulated by providing a European forum 
for discussion.

The contributions to this Proceedings cover a wide range of subjects. Consistent with the analysis given 
above, relatively few authors chose to present hyperelastic models for rubber; however, readers interested 
in this topic will find ample references to earlier work. Several contributions address inelastic effects 
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associated with filled elastomers—such as Mullins’ effect and quasi-static hysteresis. For others—most 
obviously in processing uncured rubber—the interest is in modelling viscoelasticity. In addition to stress-
strain behaviour, work is presented on frictional contact and on mechanical failure. Looking at the appli-
cations side, computational techniques are addressed and applied to a diverse range of components, 
including tyres, earthquake isolation bearings and intervertebral discs. Overall, the authors have achieved 
progress in a wide range of areas—including experimental results, theory and practical utility. They raise 
many questions as well, as one might expect from the first forum of this kind.

We would like to thank our colleagues on the Scientific Committee (R.W. Ogden, Chairman; D. Besdo, 
R.de Borst, K.N.G. Futler, H.A. Mang, H. Menderez, G. Meschke and H. Rothert) and all the authors 
who have worked with us to produce this book.

A. Dorfmann 
A.H. Muhr 

Vienna/Hertford, June 1999
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Accelerated ageing of polychloroprene for marine applications

V. Le Saux, Y. Marco & S. Calloch
Laboratoire Brestois de Mécanique et des Systèmes (EA4325), Brest, France

P.Y. Le Gac
Ifremer—Service Matériaux et Structures, Plouzané, France

N. Ait Hocine
Laboratoire d’Ingénierie des MATériaux de Bretagne (EA4250), Brest, France

ABSTRACT: The accurate evaluation of the lifetime and mechanical properties of rubber-like materials 
is of particular interest for designers in order to ensure the reliability of such materials and the safety of 
structures. This is especially true for sensible applications, like offshore pipelines or dry dock seals, need-
ing frequent maintenance operations. The frequency of these operations, and thus their cost, could be 
reduced by a better understanding of rubber-like materials ageing. To reduce the time cost of this evalu-
ation, accelerated ageing tests using temperature, acid or humid environments as acceleration factors are 
usually carried out. However, these tests convey unavoidably some artificial phenomena like diffusion 
limited oxygen, which makes difficult the use of the results. In this study, we focused on a polychloro-
prene rubber, aged under several accelerated conditions (renewed natural seawater and air ageing both 
for temperature ranging from 20°C to 80°C). Physical measurements (IR and Raman analysis) are carried 
out to understand the mechanisms involved in the material degradation. Several mechanical tests are also 
achieved (uniaxial tension and instrumented micro-hardness tests) in order to observe the consequences 
of the degradation of the material on its mechanical behaviour.

1 INTRODUCTION

Polychloroprene rubbers are used in various fields 
thanks to their good constitutive mechanical 
behaviour, their ability to be effective towards age-
ing effects and their good resistance to hydrocar-
bons or aggressive environments such as seawater. 
For example, they can be found in dry dock seals 
and offshore applications (pipelines). These struc-
tures can spend several years underwater, either 
continuously or intermittently, and the material 
selected must be shown to retain its mechanical 
properties.

Ageing is a complex phenomenon that covers 
a broad spectrum of multidisciplinary domains 
from the description of physico-chemistry to the 
structural analysis with properties gradients (Ofta 
2003). To evaluate the durability of a structure, 
three main requirements are needed:

• the development of experimental techniques 
that allow the identification of the ageing mech-
anisms and the main factors controling their 
kinetics;

• the reduction of studies duration using acceler-
ated ageing experiments whose reliability must 
be controlled;

• the identification of models for the indicator 
evolutions identified on samples aged in real or 
accelerated conditions.

Ageing was for a long time, and still remains 
nowadays, chemist business. However, lifespan pre-
diction models and relevant end-of-life criteria are 
based on mechanical concepts. Any ageing study 
would thus have to contain two aspects. The first 
one is dedicated to the description of the material 
microstructure modifications related to the deg-
radation mechanisms occurring at a microscopic 
scale and to the development of kinetic models 
in order to predict the microstructure evolution 
(Gillen et al. 1995) or (Colin et al. 2004). The other 
one relied on the consequences of these micro-
structure changes on the macroscopic mechanical 
properties (Woo and Kim 2006). For both aspects, 
accelerated ageing experiments to reduce the time 
characterization are required. An extrapolation 
to service condition can be realized under certain 
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conditions using for example Arrhenius approach 
(or any method based on time-temperature super-
position principle). The literature shows that most 
of the studies focus on only one aspect, few studies 
tried to link these aspects (Celina et al. 2000). This 
observation can be explained by the gap between 
the chemical and mechanical scales.

The aim of this study is to reduce the gap between 
these aspects in order to be more confident in 
ageing prediction. To reach this goal, the first 
requierement is to use relevant accelerated ageing 
conditions. Mechanical and physical experiments 
are then performed on aged samples. The aim of 
the first ones is to observe the influence of ageing 
on classical mechanical macroscopic properties, 
whereas the aim of the second ones is to identify 
the ageing mechanisms as a step towards a kinetic 
model. To make the link between macroscopic 
and microscopic scales easier, an intermediate 
scale is added, representative of both approaches. 
Figure 1 summarizes the method we would like to 
set-up to predict the evolution of the mechanical 
behaviour.

2 ACCELERATED AGEING PROTOCOLS

2.1 Materials

The samples studied are polychloroprene rubbers 
afforded by Trelleborg Offshore. For each ageing 
conditions, a batch of samples is taken from the 
vessels for several durations. Each batch is com-
posed of one 2 mm-thickness sheet of dimen-
sions 150 × 150 mm2, one 8 mm-thickness sheet of 
dimensions 100 × 150 mm2, one compression plot, 
four AE2 samples and two pure shear specimens.

2.2 Accelerated ageing conditions

One key aspect of any ageing studies is the develop-
ment of relevant accelerated ageing protocols. The 
aim of these tests is to reduce the characterization 
time. This is achieved using acceleration factors 
such as temperature, acid or humid environments. 

The fundamental aspect of these tests is that they 
must be representative of natural ageing, i.e. only 
the kinetics of the ageing mechanisms are modi-
fied, not the mechanisms themselves. Therefore, the 
environment in which ageing is realized have to be 
the same than the natural ageing one. Laboratory 
ageing was performed in sealed vessels containing 
renewed natural seawater maintained at different 
temperatures (20°C, 40°C, 60°C and 80°C) and 
realized at the Ifremer (center of Brest). A thermo-
oxydative ageing in air-circulating oven at 40°C, 
60°C, 80°C is also realized in order to compare the 
effect of the ageing mecha nisms on the constitu-
tive mechanical behaviour (these results will not be 
discussed in this paper).

2.3 Reference state

During the ageing, seawater is absorbed into the 
polymer by a diffusion mechanism. As water is 
acting as a plasticizer, the mechanical behaviour 
depends on the ageing degree but also on the 
amount of absorbed water. In order to be able 
to compare results and to analyse only the con-
sequence of ageing effects (and not the effect of 
water), all the experiments were carried out after 
water loss, i.e. after mass stabilization, reached at 
room temperature.

3 MECHANICAL OBSERVATIONS

3.1 Uniaxial tension results

Normalized tensile samples, commonly named H2 
samples, were cut from 2 mm sheets. Experiments 
were realized on a Lloyd Instruments LR5k+ 
equipped with a 1 kN loading cell at a displace-
ment speed of 10 mm/min. Deflection was meas-
ured using a laser extensometer. Figure 2 shows 
some experimental curves. The effects of ageing 
are especially visible for low to mid deformation 
range (up to 150%), which is the work deformation 
range, where an important rise fo the initial stiff-
ness is observed. The behaviour afterwhile remains 
almost unchanged. We can also note a drop of the 
ultimate properties (elongation and stress at break). 
Under cyclic loading, we observe an increase of the 
hysteresis loop (Figure 3), which is also observed 
for cyclic sollications on massive specimens (AE2). 
The increase of the hysteresis loop is also related 
to a higher heat build-up under fatigue sollicitation 
on AE2 specimen (see the paper of Marco et al. in 
the present proceedings for more details). Under 
fatigue sollicitation with a loading ratio equal 
to zero and a maximum loading corresponding 
to a maximum principal strain equal to 50%, we 
observe a decrease of the fatigue life.

Time

R
epresentation

Figure 1. Ideal method for the study of a material 
ageing.
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3.2 DMA results

Dynamic Mechanical Analysis (DMA) were per-
formed on a 01dB-Metravib DMTA equiped 
with a loading cell of 150 N. Dynamic strain con-
trol tests were realized at 1 Hz. Some results are 
illustrated on Figure 4. A significant evolution 
of the conservative modulus E’ can be observed, 
which can be correlated to the initial stiffness rise 
observed during uniaxial tension test. On the other 
hand, no significant evolution of the dumping 
factor tan δ is observed within the dynamic strain 
rate studied whereas we observed hysteresis loop 
augmentation during the uniaxial tension tests for 
larger deformations.

3.3 Modulus profiling

Accelerated ageing tests often convey some artificial 
phenomena. One example is the phenomenom 

of  diffusion limited oxygen observed during 
thermo-oxydative ageing for high temperatures 
(Wise et al. 1997). These phenomena make the 
interpretation of the experimental results difficult 
because materials are heterogeneous. One appro-
priate and simple method to mechanically quantify 
these heterogeneities is to use modulus profiling 
(Celina et al. 1998). The micro-hardness tester used 
is developped by CSM, with a Vickers tip. The rub-
ber specimens were cut in cross-section from the 
2 mm thickness sheet and encapsulated in epoxy 
resin to improve sample handling and to insure rep-
etability. The surface was smoothly polished and 
the modulus profile was obtained by measuring 
individual modulus data across the cross-sectioned 
surface of the sample. Each point correspond to 
the mean of five measurements. One example of 
modulus profiles is given in Figure 5. The results 
shows a mean augmentation of the modulus with 

Figure 2. Stress-elongation curves obtained for an age-
ing temperature of 80°C on H2 samples.
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Figure 3. Comparison of  cyclic stress-elongation 
curves for the initial material and an aged one on H2 
samples.
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Figure 4. Evolution of the conservative modulus and 
dumping factor for various ageing conditions at 80°C.
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increasing ageing duration. This observation can 
be correlated to the augmentation of the initial 
modulus observed during uniaxial tension experi-
ments, and to the evolution of the conservative 
modulus in DMA. Figure 5 also highlights het-
erogeneities (difference between the surface and 
the bulk) which are, for the moment, observable 
only for high temperatures (40°C, 60°C and 80°C) 
and indicates that accelerated ageing could convey 
artificial phenomena which are not likely to occur 
in real ageing conditions. This hypothesis has to 
be checked by further analysis. One direct conse-
quence of these heterogeneities is that the classical 
use of mechanical results is false.

4 PHYSICAL OBSERVATIONS

From a mechanical point of view, we have enough 
informations to set up an Arrhenius-type method 
to predict the lifetime of the material. But this 
method can exhibit weaknesses and is to avoid 
when there is a lack of experimental datas (Celina 
et al. 2005). For a better understanding of the 
mechanical behaviour modification and in order to 
be more predictive, the identification of the ageing 
mechanisms is needed. We present in this section 
the analysis achieved and the first conclusions that 
can be drawn.

4.1 Gravimetric analysis

As the ageing is operated in renewed natural seawa-
ter, it is important to carry out gravimetric analysis 
(loss of components, water sorption). They consist 
in weighting regularly some specimens (here sheets: 
dimensions 5 cm × 5 cm) during time, the amount 
of water that have been absorbed by the material 
is considered equal to the increase in mass of the 
specimen. Figure 6 gives the results of gravimet-
ric experiments for the four temperatures studied. 
Weight change is shown as a function of the square 
root of time of immersion divided by the thickness 
of the sheet, t1/2e–1. This scale is conventional for 
diffusion data, in order to see if  a Fickian model 
of diffusion can be applied (which is not the case 
here). From these results, we can observe two main 
phenomena: an initial weight rise and a weight loss. 
The weight rise can be attributed to water sorp-
tion, whilst the weight loss can be explained by the 
leaching of low molecular weight components.

4.2 IR and Raman spectrum

In order to go further in the investigation of degra-
dation mechanisms, IR spectroscopy have been 
used. Infra red spectroscopy of organic materials is 
a widely used technique which provides information 

on chemical structure. For example, degradation 
may lead to the formation of additional bands or 
to the consumption of others. According to some 
authors (Mott and Roland 2001), ageing of rubber 
is primarly due to oxydation, even in seawater. To 
check the validity of this assumption, one sample 
have been oxydized in an air circulating oven at a 
temperature of 120°C for 7 days. The comparaison 
between IR spectrum of this sample and another 
that has been aged for 130 days at 60°C in seawater 
is proposed on Figure 7. The C–Cl band at 825 cm−1 
is used for all the spectrum as internal referencing. 
During the thermal oxidation of rubbers, a general 
broad increase in the hydroxyl (∼3400 cm−1), carbonyl 
(∼1720 cm−1) and ester (∼1175 cm−1) regions of the 
spectrum is observed. As these regions are not modi-
fied for the marine environment aged sample, we can 

Figure 6. Evolution of the weight change for the differ-
ent ageing conditions. All these measurements are per-
formed on 2 mm thickness sheets.
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say that oxydation of the material is observed. This 
observation can also be made for all the other ageing 
conditions, which goes against Mott and Rolland 
assumption. We have also carried out Raman spec-
troscopy, which is a technique that complements IR 
spectroscopy. All Raman spectrum are realized in 
a water droplet in order to avoid the degradation 
of the material with the laser during the experi-
ment. One advantage of the Raman spectroscopy 
is that it is possible to realize a mapping spectrum 
without cutting the specimens with a microtome. 
Figure 8 shows some representative results. We can 
observe different spectrum, which means that the 
degradation is not homogeneous along the thick-
ness and has also been noticed on the modulus pro-
files. We note the apparition of a band at 1014 cm−1 
which can be assigned to a C–O or a C–C band, 
a reduction of the 1660 cm−1 band, attributed to 
the C=C band, and the apparition of a band at 
3500 cm−1, assigned to a O–H band. The degrada-
tion could be explained by the degradation of the 
polychloroprene matrix (deshydrochlorination for 
example) and a degradation or consumption of the 
antioxydants. Further testing are running to check 
theses hypothesis and the firsts results are presented 
in the next subsections.

4.3 OIT determination

Oxydative induction time (OIT) have also been 
performed on the 8 mm thickness sheets accord-
ing to ISO 11357-6. OIT is a relative measure of 
a material’s resistance to oxidative decomposition 
and is determined by the onset of exothermic oxi-
dation in a material at a specified temperature in an 
oxygen atmosphere (Ginic-Markovic et al. 1998). 
Therefore, OIT is a global measurement and is not 
intended to provide the concentration of specific 

antioxydants. Results are shown on Figure 9. OIT 
differences are observed along the thickness, which 
means that the resistance of the material to oxyda-
tive decomposition is heterogeneous. We also note 
a reduction of the resistance to oxydation with 
the severity of the ageing. This evolution could 

Figure 8. Raman spectrum along the thickness of a 
2 mm sheet for the 50 days @ 40°C ageing condition.
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be explained by the antioxydants consumption, 
the antioxydants migration or a polychloroprene 
matrix modification. Further analysis need to be 
carried out to check these hypothesis.

4.4 Thermogravimetric analysis

Thermogravimetric Analysis (TGA) measures the 
amount and rate of  change in the weight of  a 
material as a function of temperature or time in 
a controlled atmosphere (air or nitrogen). Meas-
urements are used primarily to determine the com-
position of materials and to predict their thermal 
stability at temperatures up to 1000°C. This techni-
que can characterize materials that exhibit weight 
loss or gain due to decomposition, oxidation, or 
deshydratation. Experiments have been carried 
out according to NFT46-047 (B procedure). Some 
results are presented on Figure 10. No components 
seem to be lost during ageing and only the degrada-
tion kinetic of polychloroprene matrix are affected 
(evolution at 260–275°C), which seems to indicate 
that the ageing is primarly due to the degradation 
of the polychloroprene matrix.

5 CONCLUSIONS

In this study, we focused on the ageing of a poly-
chloroprene rubber in a marine environment and 
presents the first results of a large experimental 
campaign. Relevant accelerated ageing conditions 
have been performed in sealed vessels containing 
renewed natural seawater maintained at different 
temperatures. Classical mechanical tests have been 
carried out on aged materials. We have noticed a 
significant rise of the initial stiffness during uniaxial 
tests. This observation can also be drawn from DMA 
and microhardness measurements. Under cyclic 
sollicitations, a significant rise of the hysteresis loop 
have been noticed, and correlated to an augmenta-
tion of the heat buildup during fatigue test on AE2 
specimen. Physical measurements, whose goal was 
to determine the ageing mechanisms, have been car-
ried out. The first results indicate an heterogeneous 
degradation along the thickness. The ageing mecha-
nisms could be attributed to the degradation of the 
polychloroprene matrix, but also to the degradation 
or consumption of the antioxydants. Some further 
analyses would let us know whether or not, one phe-
nomenom is dominating. The identification of the 
ageing mechanisms is the first step leading to the 
developement of a kinetic model. Finally, modulus 

profiling seems to be the good tool to extrapolate 
the observations made at a microscopic scale (age-
ing mechanisms) to the macroscopic scale (constitu-
tive mechanical behaviour). To validate the method 
proposed here, some measurements on structures 
aged in service up to 20 years are planned.
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Consideration of environmental influences on fatigue tests 
of elastomer components
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Technische Universität Hamburg, Harburg, Germany
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ABSTRACT: This paper proposes a method, which allows a systematical consideration of environmental 
influences on test-time-reduced fatigue tests of elastomer components. So the damage of the elastomer 
component caused by the combination of these influences and mechanical loads is nearly equivalent to 
the damage occurring during the service lifetime of the elastomer component. By means of test results it 
is shown that due to the consideration of temperature- and ozone-influences, a significant improvement 
of the consistence of damage effects between tested components and components taken out of practical 
service can be achieved. Thus, tests based on this method allow an improved judgement of the long-time 
behaviour and the expected lifetime in service of the tested components.

1 INTRODUCTION

In service, elastomer components used for example 
as mounts in vehicle engineering, often undergo 
mechanical loads as well as applicational or envi-
ronmental influences like temperature or ground-
level ozone. These influences may affect the 
damage occurring in service life and additionally 
the expected lifetime.

Fatigue tests to predict the expected lifetime 
normally do not consider environmental influences. 
Additionally, these tests in most cases are performed 
with the use of  methods for test-time-reduction, 
which also decreases possible environmental effects 
caused by the laboratory atmosphere.

To close this gap, a testing method is developed, 
which allows a systematical consideration of the 
mentioned environmental influences on test-time-
reduced fatigue tests of elastomer components to 
improve the prediction of lifetime and long-time 
behaviour of the component in service and also 
allows an advanced comparison of different com-
ponents or rubber mixtures.

2 OPERATIONAL AND ENVIRONMENTAL 
INFLUENCES IN SERVICE 
AND THEIR EFFECTS

For a reliable prediction of the lifetime of an elas-
tomer component it is necessary to get to know the 
influences which affect the lifetime in service and 

their interdependencies to each other. The most 
important influences for engineering rubber com-
ponents are described below.

2.1 Mechanical loads

Mechanical loadings are of significant importance 
for the lifetime of an elastomer component. These 
loads often have a stochastical shape and affect 
multiaxially.

After sufficient repetitions of load cycles with 
sufficient levels, mechanical loadings cause—often 
enhanced by further factors—the development and 
growth of fatigue cracks which start from flaws 

Figure 1. Left: fatigue cracks on an elastomer buffer 
(made of NR), right: cross-section (computer-tomography 
scan) with cracks/cavities in material bulk (earlier stage 
than left).
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(Flamm 2005). When the cracks reach a certain 
size, the elastomer part is no longer able to fulfill its 
desired function completely, so the lifetime is ended.

Statical loads additionally lead to creep or 
relaxation processes. Creep describes a progressive 
increasing of the deformation while stress relaxa-
tion means the progressive decrease in stresses 
(e.g. Gent 2001).

2.2 Temperature

A further important factor for the lifetime is the 
temperature of the elastomer component. This 
component-temperature is mainly defined by the 
ambient temperature of the application. Higher 
temperatures may occur because of the damping 
of the material due to dynamic loads or may be 
generated by heat sources near the elastomer part.

In many cases, the temperature varies over time 
quite a lot due to different service conditions and 
different ambient temperatures.

Temperature has a great effect on many proper-
ties and processes of an elastomer component.

At very low temperatures (typically below −60°C 
for NR) the material shows a “glassy” behaviour 
with a relatively high stiffness. The stiffness sig-
nificantly decreases with increasing temperature 
(typically up to −30°C for NR), in this region the 
behaviour seems to be leather-like. In the region 
above these temperatures (typically −30°C to 
100°C for NR) the behaviour is rubber-like, which 
is desired for most applications. In this region the 
stiffness is also (but much lower) dependent of the 
temperature. The amount and direction of this 
dependency differs due to different applications 
and materials (Flamm 2003).

Elevated temperatures increase the reaction rates 
of  chemical reactions. Mathematically this can be 
described with the help of  the Arrhenius-equation.
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In this equation V1 and V2 stand for the reaction 
rates at the absolute temperatures T1 and T2 
(in Kelvin) respectively. EA is the activation energy 
of the process, k is the Boltzmann constant.

For the rubber material, this means that ageing 
processes like oxidation and post-curing are sig-
nificantly accelerated by high temperatures. The 
chemical part of creep or relaxation processes is 
also accelerated.

Internal stresses of rubber-metal parts also 
depend on temperature caused by the distinction 
of the thermal expansion coefficient of rubber and 
metal.

Very high temperatures cause effects like chemi-
cal degradation which lead to a destruction of the 
material and so of the component.

The effectivity of the anti-ageing-system of elas-
tomers protected by waxes and chemical ingredi-
ents also depends on the temperature (Bhowmick 
1991). The wax migrates to the surface to build a 
protecting film (see next paragraph). The migra-
tion rate of  the wax undergoes a temperature 
dependence. At low temperatures, the blooming of 
the wax only takes places slowly, while at high tem-
peratures the solubility of the wax increases which 
leads to less thicknesses of the wax layer. Thus, the 
selection of a wax or wax blend suitable for the 
occurred temperatures in service is very impor-
tant for an effective protection. The migration of 
the wax also supports the migration of additional 
chemical anti-ageing ingredients, so the tempera-
ture dependency also involves the effectivity of the 
complete anti-ageing-system.

2.3 Weathering, especially ground-level-ozone

Weathering is a complex action of different envi-
ronmental influences.

Of these, a very important influence on elastom-
ers with unsaturated main chains like NR has the 
ground-level ozone. Ground-level ozone (tri-atomic 
oxygen O3) normally only occurs in very low con-
centrations in low pphm-scale (parts per hundred 
million), but even these low concentrations often 
cause damages on elastomer components.

Elastomers with unsaturated main chains are 
highly susceptible for ozone attack, because ozone 
reacts with the double bondings of the main chain 
which results in formation of ozone cracks when 
the elastomer is strained during ozone attack. 
Ozone cracks start on the rubber surface and grow 
perpendicular to the direction of the strain. Below 
a threshold value for the strain (so called “criti-
cal strain”), ozone cracking does not take place. 
Strains slightly above the critical strain lead to only 
a few but deep ozone cracks, while with increas-
ing strain the number of cracks increases but the 
length and depth decreases (e.g. Gent 2001).

Figure 3 shows ozone cracks on a section of 
a specimen. In the left, there is no cracking com-
pared to the right, possibly because of decreasing 
strain due to the geometry.Figure 2. Temperature-time-history (measurement data).
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Ozone cracks may grow deep into the mate-
rial and may act initiating for mechanical crack 
growth.

To avoid ozone damages, like mentioned before, 
protecting ingredients are incorporated into the 
rubber mixture. These are physically working pro-
tectors like waxes which only protect at static loads. 
For protection under dynamic loads chemical 
antiozonants are used. The most effective chemi-
cal antiozonants lead to a staining of the elastomer 
when acting.

2.4 Tests to judge the long-time behaviour

2.4.1 Fatigue tests
State of the art is a multiaxial fatigue test which 
can be used to judge the expected lifetime due to 
mechanical initiation and propagation of cracks 
in the elastomer component. As load signal rep-
resentative load-time histories can be used which 
can be obtained from service measurements or 
simulations.

Omission tools like the Rainflow-filtering are 
used to reduce the usually long time for testing. 
This method omits load cycles of small ampli-
tudes out of the signal which only have very low 
influences on the elastomer component’s damage 
(Steinweger 2003).

Beside these tests on components, there are 
standards for fatigue tests on specimens (overviews 
e.g. in Brown 2006 and Nagdi 2004).

These tests can be performed to compare differ-
ent rubber mixtures, to generate fatigue diagrams 

like Haigh-Diagrams (e.g. for damage calcula-
tions) or for fundamental research. In many cases 
synthetically generated (block) signals are used. 
Specimens are standarded tensile bars or buffers, 
for example.

2.4.2 Temperature tests
The long-time influence of temperature is often 
investigated with specimens who are exposed to a 
high-temperature load over a certain period of time.

Due to the high temperatures, the influence of 
the temperature is accelerated. After certain time 
intervals properties (e.g. elongation at break or 
hardness) of the specimens are investigated and 
compared to the properties of a non-aged specimen 
(overviews e.g. in Brown 2006 and Nagdi 2004).

So, different rubber mixtures can be compared 
to each other. The suitabilty for service has then to 
be judged with experience and know-how.

2.4.3 Ozone tests
The durability against ozone attack is also in many 
cases investigated via specimen tests.

Figure 4. Ozone and fatigue phenomena on a rubber 
bushing (left) and on a rubber spring (right) respectively.

Figure 3. Ozone damage on a section of a tension 
bar made of NR after 24 h in ozone, strain direction to 
left/right.

Figure 5. Three-axis test rig.

Figure 6. Rainflow-filtering (schematic).
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Therefore specimens get in most cases a static 
strain and are exposed to an ozoniferous atmos-
phere. After a certain time the specimens are to be 
inspected to find out if  and to which extend crack-
ings occurred (overviews e.g. in Brown 2006 and 
Nagdi 2004).

The time reduction compared to the exposition 
to the real atmosphere is accomplished with a sig-
nificantly higher ozone concentration.

Like the formerly described methods, this 
method is mainly suitable to compare different 
rubber mixtures.

3 SUGGESTED TEST METHOD

The test method described below considers the 
effects of the former described influences.

The influences appearing in service are to be 
applied to the test-time-reduced fatigue test so 
they act in an equivalent amount and cause nearly 
equivalent damage effects.

3.1 Test method

The test method is based on a (if  necessary multi-
axial) fatigue test. In this test, the elastomer com-
ponent is exposed to a sequence of loads, which 
is representative of the loads occurring in service. 
Test-time can be reduced with the use of omission 
methods, like described above.

To adjust the ozone attack occurring in service, 
the elastomer part is additionally exposed to an ozo-
niferous atmosphere during the fatigue test. It seems 
necessary to apply the ozone exposition during the 
test because the mechanical load situation has a sig-
nificant interdependency to the ozone attack. So, it 
is assumed that ozone attacks only in the same way 
as in service, when the service loads are applied. A 
static exposition could only adjust one strain situa-
tion and additionally static ozone protections like 
waxes would decrease the ozone attack.

As one result of the test time reduction the age-
ing of the rubber material is reduced compared to 
the exposition in service. To compensate this, the 
thermo-oxidative ageing of the material is per-
formed via an exposition of the component to a 
(relatively) high temperature before the fatigue test 
(pre-ageing) and/or during certain breaks in the 
fatigue test which have been arranged for this age-
ing time (in-between ageing).

3.2 Test rig

To validate the proposed method, a test rig has 
been developed and built up to test elastomer 
components in the described way. The mechani-
cal loadings (in this application) are applied 
multiaxially. The temperature of the component 

can be adjusted with a heating system. To obtain 
the increased ozone concentration the test rig is 
equipped with a testing chamber with an external 
ozone generator and annihilator.

3.3 Approaches to determine test parameters

As parameters of the test, there are mechanical 
loads, the component’s temperature during the 
test, the ozone concentration during the test and 
the temperature, time and (if  needed) intervals for 
the pre- or in-between ageing, respectively.

3.3.1 Mechanical loads
The mechanical test loads are obtained from rep-
resentative service loads which can be measured or 
simulated with a multi-body-simulation (MBS) for 
example. Then a rainflow-filtering follows. With 
this method, the testing time is reduced due to 
omission of load cycles with small amplitudes. The 
remaining damage content of the test signal can 
be estimated with a numerical damage calculation 
(Flamm et al. 2003).

3.3.2 Temperature
During the testing, the elastomer part should 
be exposed to the most frequently temperature 
occurring in service. So it is assured that the most 
frequently temperature situation out of service is 
used during the test. To determine the temperature, 
the most frequently temperature is calculated from 
the representative measurement data.

If  it is not expected that the simplification of the 
temperature-time history of the measurements in 
this way does provide suitable results (for example 
due to very large variations, no distinctive average 
temperature or frequently non-neglectable periods 
with high temperatures), the usage of temperature 
collectives is recommended.

3.3.3 Ozone concentration
As a first approach for a calculational estimation 
of the increased ozone concentration it is used that 
the ozone crack growth rate is nearly proportional 

Figure 7. Test rig & chamber.
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to the ozone concentration like mentioned in the 
literature (e.g. Gent 2001, Doležel 1978).

Thus, to get an ozone concentration for the 
test, an average service concentration is obtained 
and increased linearly with the factor of test time 
reduction.

3.3.4 Accelerated ageing
For a calculational estimation of the ageing time, 
a time-temperature-shifting with the use of the 
Arrhenius equation is used combined with the the-
ory of ageing proceeding (Blaese 2000, Ehrenstein 
et al. 2007). At this, a span of time at certain tem-
perature is calculated to a (mostly) shorter span 
of time at the selected ageing temperature of the 
accelerated exposition.

On the one hand, the exposition temperature 
should be selected high enough to accelerate the 
ageing and reduce exposition time, on the other 
hand, the exposition temperature is limited due to 
changings in ageing mechanisms and so the valid-
ity of the Arrhenius-equation.

The theory of ageing proceeding is used, because 
the temperature varies while the component is in 
service. Each temperature causes—according to the 
time span in which it occurs—a part of the whole 
material ageing. The whole ageing is obtained in 
analogy to damage accumulation as the sum of all 
ageing parts.

So, the temperaure-time-shifting is applied to all 
of the temperatures that occur in the representa-
tive temperature-time history. With the summa-
tion, you get an exposition time, during which the 
material undergoes an equivalent thermo-oxidative 
ageing like from the temperature-time history.
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The so calculated ageing time tAA is then 
multiplied by the expected repetitions of the 
temperature-time-history in service or in the part 
for in-between-ageing.

The application of this approach demands the 
determination of the activation energy for the 
Arrhenius-equation or the usage of published val-
ues (e.g. Mott 2003).

4 TEST RESULTS

Tests with elastomer components were performed 
using the described test rig. Afterwards these com-
ponents are compared to components taken out of 
real service.

As a result the consideration of all mentioned 
influences causes significant similarities between 

service and test parts regarding damage effects and 
the lifetime.

Cracks are caused by ozone and mechanical 
loads, a distinct differentiation between these two 
factors seems not always possible.

In many cases, ozone cracks are only or better 
visible after straining the surface.

Pre-ageing generally decreases the lifetime of 
the component compared to the lifetime of unaged 
components. The amount of decrease depends on 
the exposition time, exposition temperature and the 

Figure 8. Comparison of component’s surface after 
testing/service: service part (upper picture), tested part 
with ozone (middle picture) and tested part without 
ozone (lower picture).
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Figure 9. Normalized lifetime as function of ageing time.

Figure 10. Normalized lifetime as function of ozone 
concentration.

pre-ageing before the test, has to be determined in 
each case.

Ozone has a significant influence on the damage 
effects. Ozone attack causes cracking that also may 
decrease the lifetime. To which extent the ozone 
contributes to a reduction in lifetime depends on 
the mixture’s durability against ozone (also after 
thermal ageing) and the component itself.

Summing up, a pragmatical method is presented 
which allows considering ozone and temperature 
ageing effects on a test-time-reduced fatigue test of 
elastomer components. The selected approaches 
to determine testing parameters only need a mini-
mum of material parameters.

The method allows an advanced comparison of 
different components or rubber materials regard-
ing the long-time behaviour and furthermore 
allows improved conclusions regarding the service 
lifetime.
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used rubber mixture. The durability against ozone 
cracking also decreases with increasing ageing. In 
the investigated case, the pre-ageing has a more 
important influence on the lifetime than ozone.

The linear approach to determine an equivalent 
ozone concentration leads to test concentrations 
that seem to be of suitable regions. Experiments 
with different concentrations provide that a slight 
reduction of the calculated concentration seems to 
improve this approach and so leads to an increased 
similarity of the damage symptoms of tested com-
ponents and service components.

5 CONCLUSIONS

The results clarify that with the consideration of 
environmental and thermal influences for the test, 
a significant improvement regarding the compo-
nent’s lifetime and the consistence of the damage 
effects in service and in the test can be achieved, 
compared to when these effects are neglected.

The observed damages and long-time phenom-
ena are assumed to be caused by a combination 
of the mentioned mechanical, thermal and ozone 
influences.

The lifetime is highly dependent on the mechani-
cal loadings and the strength of the material. Ther-
mal ageing decreases this strength and therefore 
the lifetime.

The approach for a calculational estimation of 
the ageing time leads to suitable results, compa-
rable to service parts. Whether the effort for an 
in-between-ageing is endurable and necessary, or 
the whole ageing can be fulfilled conservatively as 
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Fatigue life prediction of aged natural rubber material
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ABSTRACT: Aging temperatures play important role in changing the mechanical behavior of rubber, so 
thermal aging test under different temperatures was carried out to investigate the effect of aging tempera-
tures on the tension, elongation, hardness and fatigue properties of natural rubber. Fatigue life prediction 
methodology of natural rubber material was proposed by incorporating the finite element analysis and 
fatigue damage parameter determined from fatigue test. Fatigue life prediction equation effectively repre-
sented by a single function using the Green-Lagrange strain and elongation at break. Predicted fatigue lives 
of the rubber component were in fairly good agreements with the experimental lives within factors of two.

1 INTRODUCTION

The interest of fatigue life evaluation for rubber 
component such as engine mount was increasing 
according to the extension of warranty period of 
the automotive components. A design of rubber 
components against fatigue failure is one of the 
critical issues to prevent the failures during the 
operation. Therefore, fatigue life prediction and 
evaluation are the key technologies to assure the 
safety and reliability of mechanical rubber compo-
nents (Frederick, 1982).

Automotive engine mounts get damaged due to 
thermal and mechanical loadings. Rubber material 
was aged during its useful life and the aging phe-
nomena depended upon thermal conditions. Ther-
mal aging under engine room temperature and 
fluctuating mechanical loading by vehicle dynamic 
motion have affected the fatigue life of engine 
mount. When rubber is used for a long period of 
time, rubber becomes thermal aging, it usually 
becomes hardened and loses its damping capabil-
ity. This aging process results mainly from heat due 
to hysteric loss, and is affects not only the material 
property but also the fatigue life of rubber.

In this paper, the heat-aging effects on the mate-
rial properties and fatigue life prediction of natural 
rubber were experimentally investigated. In order 
to investigate heat-aging effects on the material 
properties, the stress-strain curves were obtained 
from the results of tensile test. The rubber speci-
mens were heat-aged in an oven at the temperature 
ranging from 50°C to 100°C for a period ranging 
from 1 to 90 days.

Predictions of fatigue properties of rubber 
materials and components are currently partly an 
empiric nature. Fatigue life evaluation of rubber 
components has hitherto relied mainly on a real 
load test, road simulator test or bench fatigue test. 
Although above methods have advantages in accu-
racy of fatigue life, but cannot be used before the 
first prototype is made and the fatigue test should 
be always conducted whenever material or geome-
try changes are made (Lake, 1997). Fatigue life pre-
diction methodology of vulcanized natural rubber 
was proposed by incorporating the finite element 
analysis and fatigue damage parameter determined 
from fatigue test. Fatigue life tests were performed 
using the three dimensional dumbbell specimens, 
which were aged in different amounts. The Green-
Lagrange strain at the critical location determined 
from the FEM was used for evaluating the fatigue 
damage parameter. Fatigue life prediction equa-
tion effectively represented by a single function 
using the Green-Lagrange.

2 EXPERIMENT

2.1 Specimen

Rubber material used in this study is a carbon-filled 
vulcanized natural rubber, which have the hard-
ness of the International Rubber Hardness Degree 
45, 50, 55, 60, 65 (NR45, NR50, NR55, NR60, 
NR65). Compound recipes, including applied cure 
conditions, are summarized in Table 1.

Vulcanized rubber sheet about 2 mm thick were 
pressed and vulcanized with an electrically heated 
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press at 150°C for a given period of time. Dumbbell 
shaped specimen in Figure 1(a) were cut from 
vulcanized rubber sheet for the measurement of 
stress and strain (Brown, 1996). Three-dimensional 
dumbbell specimen in Figure 1(b) is used for the 
fatigue damage evaluation of the natural rubber. 
Three-dimensional dumbbell specimen has an 
elliptical cross-section and parting lines are located 
on the minor axis of specimen to avoid undesirable 
failure at the surface discontinuities (Takeuchi & 
Nakagawa, 1993).

2.2 Physical and fatigue test

To study the ageing property of the rubber materi-
als, samples were aged in an air oven from 50°C to 
100°C for 90 day. Then samples were conditioned at 
ambient temperature for at least 24 h before testing.

Axial tension test was loaded by UTM at a speed 
of 100 mm/min, and the deflection was measured 
using a laser extensometer in Figure 2(a). In order 
to evaluate a fatigue damage parameter of the nat-
ural rubber material and the experimental fatigue 
life, fatigue tests of three-dimensional dumbbell 
specimen were performed using the fatigue testing 

Table 1. Compound recipes of rubber material.

Ingredient NR45 NR50 NR55 NR60 NR65

SMR CV60 100 100 100 100 100
C/B FEF  13  22  27  40  40
C/B SRF –  15  18  20  22
S/A  1  1  1  1  1
ZnO  5  5  5  5  5

Figure 1. Geometry of test specimen.

(a) Physical test specimen                         (b) Fatigue specimen

(a) Axial tension tester         (b) Fatigue tester 

Figure 2. Physical and fatigue tester.

Figure 3. Change of hardness after heat-aging.

(a) 50°C                 (b) 70°C

(c) 85°C                 (d) 100°C

system as shown in Figure 2(b). Fatigue tests were 
conducted in an ambient temperature and heat-
aging (70°C) under the stroke-controlled condition 
with a sine waveform of 5 Hz and the mean dis-
placement is 0, 3, 5, 8, 10 mm at the displacement 
range is –11 ∼ 21 mm.

The fatigue failure was defined as a number 
of cycles at which the maximum load dropped 
by 20 percent. As increasing the cycles in initial 
phase, the maximum load decreased little by lit-
tle. When the crack grew over the critical size, the 
maximum load decreased suddenly and the final 
failure reached.

3 RESULT AND DISCUSSION

3.1 Physical properties

The test data of hardness change for specimens 
heat-aged at different temperatures are shown as 
symbols in Figure 3 as functions of period. The 
hardness increases as the heat-aging temperature 
and/or the heat-aging period increase.

In Figure 4, the stress-strain curves obtained 
from the tensile test are shown for various tem-
perature and heat aging days. The stiffness 
increases as the heat-aging temperature and/or the 
heat-aging period increase. Also, the modulus at 
100% increases as hardness increase.

Elongation at break(EB) is very important fac-
tor in material properties and fatigue life predic-
tion of rubber components. Test data of elongation 
change for specimen heat-aged at different tem-
perature are shown as in Figure 5 as functions of 
period. The elongation decrease as the heat-aging 
temperature and/or period increase, we known that 
variation of elongation is a function of period as 
well as temperature.
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3.2 Fatigue life prediction

Figure 6 shows the relationship between the dis-
placement amplitude and the fatigue life at ambient 
temperature and 70°C. The fatigue lives decreased 
according to increasing the mean displacements 
and hardness. Fatigue life decreased as the ten-
sion displacement amplitude and heat aging days 
increased. It is possible to express the fatigue life 
with maximum displacement fairly good.

Figure 7(a) shows the Green-Lagrange strain 
distribution of the three-dimensional dumbbell 
specimen. The maximum Green-Lagrange strain 
was found at the surface of the major axis in the 

dumbbell specimen. The Green-Lagrange strain at 
the critical location determined from the finite ele-
ment analysis was used for evaluating the fatigue 
damage parameter of the natural rubber. The dis-
placement and maximum Green-Lagrange strain 
curve was used for generating a fatigue life equation 
of the natural rubber expressed by the maximum 
Green-Lagrange strain as a damage parameter. 
The maximum Green-Lagrange strain distribution 
of the three-dimensional dumbbell specimen under 
displacement was shown in Figure 7(b).

By using the result of the fatigue test and finite 
element analysis, fatigue life can express the maxi-
mum Green-Lagrange strain instead of maximum 
displacement. Figure 8(a) shows the relation of max-
imum G-L strain with fatigue life. Fatigue life was 
effectively represented by the maximum G-L strain, 
where the G-L strain for each three-dimensional 
dumbbell specimen is calculated from the displace-
ment versus G-L strain curve in Figure 7(b).

Elongation at break is very important factor in 
material properties and fatigue life prediction of 
rubber materials. The test data of elongation at 
break according to aging days at 70°C are shown 
as in Figure 8(b). Elongation at break was decrease 
as the hardness and heat aging day increase.

Figure 4. Stress-strain curves and modulus at 85°C.

(a) NR45                 (b) NR50 

(c) NR55                 (d) NR60 

(e) NR65                        (f ) 100% modulus 

Figure 5. Change of elongation after heat-aging.

(a) 50°C                 (b) 70°C

(c) 85°C                 (d) 100°C

(a) Ambient temperature

(c) NR60 at 70°C         (d) NR65 at 70ºC

(b) NR55 at 70ºC

Figure 6. Fatigue life versus maximum displacement.

Figure 7. Finite element analysis of three-dimensional 
specimen.

(a) Finite element analysis      (b) Strain-displacement 



18

Also, normalized strain was defined as dividing 
by maximum Green-Lagrange strain (EBG-L) at 
break for the maximum Green-Lagrange strain (εG-L). 
Figure 9(a) and (b) shows relation of normalized 
strain and fatigue life. Fatigue life prediction 
equation effectively represented by a single func-
tion using the normalized strain. Fatigue life pre-
diction equation (Nf) of natural rubber material 
was shown in Table 2.

It was observed that the maximum Green-
Lagrange strain and normalized strain was a 
good fatigue damage parameter to account for 

(a) Max. G-L strain-fatigue life    (b) Elongation at break 

Figure 8. Maximum Green-Lagrange strain and 
elongation.

hardness, amplitude effects. According to fatigue 
life prediction equation, fatigue life of ambient 
temperature was longer than at 70°C. Correlation 
between experimental and predicted fatigue life are 
shown in Figure 10(a) and (b). Predicted fatigue 
lives are in a good agreement with experimental 
lives within a factor of two.

4 CONCLUSION

Fatigue life prediction and evaluation are the key 
technologies to assure the safety and reliability 
of automotive rubber components. In this paper, 
fatigue life prediction methodology of vulcanized 
natural rubber was proposed by incorporating the 
finite element analysis and fatigue damage param-
eter determined from fatigue test. Heat-aging 
effects on the fatigue life prediction of natural rub-
ber were experimentally investigated.

The Green-Lagrange strain at the critical loca-
tion determined from the finite element method 
used for evaluating the fatigue damage param-
eter. Fatigue life prediction equation effectively 
represented by a single function using the Green-
Lagrange strain. Predicted fatigue lives of the rub-
ber component were in fairly good agreements 
with the experimental fatigue lives within factors 
of two. Therefore, fatigue life estimation procedure 
employed in this study could be used approximately 
for the fatigue design of the rubber components at 
the early design stage.
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(a) Ambient temperature            (b) 70°C

Figure 9. Fatigue life prediction using the normalized 
strain.

Figure 10. Correlation between experimental and 
predicted.

(a) Ambient temperature           (b) 70°C

Table 2. Fatigue life prediction of natural rubber.

Condition Fatigue life prediction equation

Ambient temp. Nf = 1,096 ⋅ [ εG-L /EBG-L ]–2.22

Heat-aging (70°C) Nf = 6,516 ⋅ [ εG-L /EBG-L ]–1.55
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ABSTRACT: The concept of  representative directions is intended to generalize one-dimensional 
material models for uniaxial tension to fully three-dimensional constitutive models for the finite element 
method. The concept is applicable to each model, which is able to simulate uniaxial loadings, even to those 
for inelastic material behaviour without knowing the free energy. Material characteristics like nonlinearity, 
hysteresis and stress softening are generalized in a remarkable similarity to the input model. The concept 
has been implemented into the finite element programs ABAQUS and MSC. MARC. The implemen-
tation requires the computation of the material tangent of the generalized constitutive model. This is 
achieved by differentiating the stress tensor with respect to the strain tensor almost analytically, which 
provides a considerable reduction of the simulation runtime. Furthermore there will be shown several 
methods to increase the numerical efficiency of the algorithm. The FE-implementation enables finite ele-
ment simulations of inhomogeneous stress conditions, which is finally proved by comparing the original 
MORPH constitutive model with the uniaxial MORPH model in representative directions.

1 INTRODUCTION

The simulation of industrial components with regard 
to their mechanical behaviour is basically achieved 
by means of the finite element method. Thus, for 
any particular material class a constitutive model 
is needed, that is able to predict the complete cor-
relation between the given strain condition and the 
corresponding stress condition, while also consider-
ing the loading history. In general, this is equivalent 
to the input of six independent coefficients of the 
strain tensor to the user subroutine and the output 
of six stress values of the corresponding stress ten-
sor. The development of such a three-dimensional 
constitutive model usually takes a lot of time but 
often leads to an intermediate stage, that at least 
enables the prediction of the material behaviour for 
uniaxial tension. In such a situation it would be a 
great advantage to find a sufficient approximation 
of the prospective general behaviour of a constitu-
tive model by describing the uniaxial material behav-
iour only. This is the idea of the so-called concept of 
representative directions (Ihlemann 2007).

2 THEORY OF THE CONCEPT

During the deformation of  a component there 
exists an individual strain condition at each 

material point, that is fully described by the right 
Cauchy-Green tensor C  (within the framework of 
idealization of  continuum mechanics). By using 
this symmetrical strain tensor the local elongation 
λ
α  of  any assumed material line along the associ-
ated direction in space e

α  for each material point 
can be calculated.

λ
α α α

= ⋅ ⋅e C e  (1)

For each of those directions the correspond-
ing uniaxial stress response �Τ

α (2. Piola-Kirchhoff 
stresses) is identified by the one-dimensional mate-
rial model, that is to be generalized to a fully three-
dimensional constitutive model.

� � …T T
α α α α

λ λ= ⎛
⎝⎜

⎞
⎠⎟

⋅

, ,  (2)

The demand, that all the uniaxial stress responses 
achieve the same stress power as the overall stress 
tensor concerning the actual deformation, finally 
leads to an equation for calculating the unknown 
second Piola-Kirchhoff stress tensor �T *.

� � �T wT e e
n

* =
=

∑ α

α

α α α

1
 (3)
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From a mathematical point of view this equation 
describes a type of numerical integration on the 
surface of a sphere. For an efficient integration the 
so-called representative directions e

α (unit vectors) 
are selected in such a way, that they are evenly dis-
tributed in space. If the distribution is not perfectly 
even, the uniaxial stress responses are balanced with 
appropriate weighting factors w

α , that depend on the 
individual orientation of the associated representa-
tive direction.

By generalizing one-dimensional material mod-
els according to equation (3) the resulting three-
dimensional constitutive model is characterized by 
a compressible material behaviour with a Poisson’s 
ratio of ν = 1/4. To consider the nearly incompress-
ible behaviour of elastomers concerning hydrostatic 
loads the algorithm is restricted to the deviatoric 
stress tensor ′σ . This requires, that the elonga-
tions are merely calculated with the isochoric right 

Cauchy-Green tensor C C J C
G G

( )with =
−

3

2
3 , which 

leads to the following relation between �T * and the 
final stress tensor �T .

σ σ= ( )′ − ⇒ = ⋅⎛
⎝⎜

⎞
⎠⎟

′
⋅ −− −* *pE T T C C pJ C

G
� � 1

3
1  (4)

The concept of representative directions can 
be tested by using well-known constitutive mod-
els. In this case the described algorithm is applied 
to the inelastic MORPH model (Ihlemann 2003), 
which has been developed to describe the mechani-
cal behaviour of elastomers under large deforma-
tions. To identify the eight corresponding material 
parameters the original MORPH model has been 
simultaneously adapted to a uniaxial tension and a 
simple shear measurement of a carbon black filled 
chloroprene rubber used in air springs while con-
sidering the stationary loading cycles only. Figure 1 
shows the result of this adaptation for the uniaxial 
tension test.

Using the same set of material parameters the sim-
ulation of a simple shear deformation is still show-
ing a very good agreement with the measurement.

The described parameter optimization was 
also done with the new concept using the one-
dimensional stress-strain behaviour of the original 
MORPH model within the representative direc-
tions. As shown in figures 3 and 4 the resulting gen-
eralized constitutive model leads to a very similar 
material behaviour, which can be adapted to the 
experiments still very well.

It is to be mentioned, that the adaptation to the 
same measurements effects a slight difference of 
the eight optimized material parameters referring 
to each representative direction compared to the 
parameters of the original MORPH model. This is 
caused by the simplified interactions between the 

Figure 1. Comparison between uniaxial tension meas-
urements and corresponding simulations with the original 
MORPH model.

Figure 2. Comparison between simple shear measure-
ments and corresponding simulations with the original 
MORPH model.

Figure 3. Comparison between uniaxial tension 
measurements and corresponding simulations with the 
MORPH model in representative directions.

representative directions, because in a real material 
all those material lines are not purely elongated in 
their own direction but loaded in a more complex 
manner. But anyway the material characteristics 
like nonlinearity, hysteresis and stress softening are 
completeley retained during the process of gener-
alization and are not being lost or falsified.
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3 NUMERICAL INTEGRATION

The numerical integration of the uniaxial stress 
responses causes a dependence of the generalized 
material behaviour on the orientation of the rep-
resentative directions. This kind of anisotropy is 
highly influenced by the number and distribution 
of those directions. A perfect uniform distribution 
in space in combination with appropriate weight-
ing factors maximizes the efficiency of the numeri-
cal integration for a specific number of directions. 
An analytical solution for this distribution prob-
lem is only given by the five Platonic solids, wheras 
the icosahedron with its 20 triangles provides the 
largest number (n = 10) of evenly distributed direc-
tions in space (s. figure 5).

For n > 10 there only exist numerical solutions 
for this problem, so that the directions are no longer 
perfectly distributed in space. There are several 
algorithms for distributing points on the surface of 
a sphere and calculating the corresponding weight-
ing factors (Sloan & Womersley 2004, Fliege & 
Maier 1999, Saff & Kuijlaars 1997). Some of the 
approaches are based on rather mathematical crite-
rions for this optimization problem. In this paper we 
suggest an algorithm related to the Thomsons prob-
lem (Thomson 1904). The idea is to place a given 
number of points on the surface of a unit sphere, 
which are modelled as electric charges repelling each 
other according to Coulombs law while still bonded 
to the surface of the sphere. The equilibrium of all 
electric forces finally leads to an almost uniform 
point distribution, whereas the unit vectors to these 
points can be used as representative directions (s. 
figure 6). As corresponding weighting factors for the 
representative directions it seems to be appropriate 
to use the surface areas of Voronoi cells constructed 
around the points on the surface of the sphere.

w
A
A

w
nα α

α
= =

=

Δ Voronoi

Sphere 1

!
with 1∑  (5)

The motivation for using Voronoi cells as weight-
ing factors results from the fact, that any point within 
a single Voronoi cell is closer to the associated central 
point than to the central point of any other Voro-
noi cell, so that a characteristic region is assigned to 
each position on the sphere. The construction of the 
Voronoi diagram shown in figure 6 is based on an 
algorithm of Sugihara (Sugihara 2002).

For an efficient numerical integration the 
described algorithm has to be modified in such 
a way, that two opposite electric charges are per-
manently coupled during the process of iteration, 
so that a symmetrical distribution relative to the 
center of the sphere is secured. This is necessary, 
because the uniaxial stresses along the representa-
tive directions e

α  always relate to the opposite direc-
tions −e

α  too.
Another possibility to reduce the anisotropy 

caused by the error of the numerical integration 
for a specific number of representative directions is 
to calculate the uniaxial stresses �T

α  with those elon-
gations λ

α
m , that are averaged over several elonga-

tions λ
αβ  within a Voronoi cell.

λ λ λ
α αβ αβ

β

αβ αβ αβ
m

i G
w e C e= = ⋅ ⋅

=
∑

1
with:  (6)

Figure 4. Comparison between simple shear measure-
ments and corresponding simulations with the MORPH 
model in representative directions.

Figure 5. Ten evenly distributed directions in space 
given by the normals of the surface areas of an icosahe-
dron, respectively by the vertices of a dodecahedron.

Figure 6. Distribution of 50 points on the surface of a 
unit sphere with Voronoi cells as corresponding weight-
ing factors.
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For this purpose each Voronoi cell α is divided 
into a certain number of subcells β, whereas the 
surface areas of these subcells are used as weight-
ing factors for the individually chosen directions of 
the additional elongations (s. figure 7).

The effect of using averaged elongations is quite 
similar to the increase of the number of repre-
sentative directions (respectively the number of 
calculated stress responses), but the amount of 
computational cost is much less, because it is com-
paratively easy to compute elongations than to 
solve the whole one-dimensional material model 
for the given number of directions.

The advantage of this method can be proved by 
simulating a homogeneous uniaxial tension test with 
a simple Neo-Hooke model in the ten representative 
directions of the icosahedron. For this purpose the 
FE-implementation of the concept is used to simu-
late the deformation of a single finite element. Fig-
ure 8a shows the cross-sectional area of the deformed 
element for an external elongation of λx = 3.

In this case the representative directions of 
the icosahedron are rotated relative to the direc-
tion of the external deformation in order to dem-
onstrate the anisotropy represented by the large 
shear deformation of the element. For the usage 
of averaged elongations each triangle of the icosa-
hedron is subdivided into four additional trian-
gles. Figure 8b illustrates the immense effect of 
this method since the cross-sectional area is nearly 
quadratic like in case of full isotropy. The shape of 
the cross-sectional area is highly dependent on the 

orientation of the system of representative direc-
tions. Finally, numerous simulations have shown, 
that the averaging of elongations results in a reduc-
tion of anisotropy in any case.

4 FE-IMPLEMENTATION 
AND SIMULATIONS

The concept of representative directions has 
been implemented into the finite element pro-
grams ABAQUS and MSC. MARC. The user 
subroutine HYPELA2 of  MSC. MARC relates 
to the Lagrangian method, while the subroutine 
UMAT of  ABAQUS requires the conversion into 
the Eulerian formulation. In both cases the input 
of the deformation gradient F  is used to compute 
the resulting stress tensor.

In the Lagrangian formulation the material 
tangent is computed by differentiating the second 
Piola-Kirchhoff stress tensor with respect to the 
right Cauchy-Green tensor. Because of the sym-
metry of these tensors, the stiffness matrix can be 
reduced to 21 independent coefficients KAB .
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∂
∂

2 2
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The second part of the stress tensor (compare 
equation (4)) is differentiated completely analyti-
cally while using the nonlinear function of MSC. 
MARC for the hydrostatic pressure p.
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The expression ( )C C S− −1 1 24�  is defined by Ihle-
mann (Ihlemann 2006) and means the 1, 2- and 
3, 4-symmetrical part of  ( )C C T− −1 1 24� , which is 
a tensor, whose second and fourth dyades are 
changed.

The development of a complete tensorial for-
mulation for differentiating the first part of �T  is 
still in progress, but at least there can be shown the 
tensorial differentiation of �T* as a part of it.
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Figure 7. Subdivision of a Voronoi cell for calculating 
an averaged elongation.

Figure 8. Reduction of the anisotropy by using aver-
aged elongations.
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For the FE-implementation the differentiation 
of  the uniaxial stress responses �T

α  with respect to 
the elongations λ

α
 (stiffness of  the one-dimen-

sional material model) is the only part of  the 
generalized constitutive model, that is computed 
numerically. This enables an efficient exten-
sion of  the concept with additional one-dimen-
sional material models. For the implementation 
in ABAQUS the material tangent requires to be 
calculated according to the Eulerian formulation. 
This is done by converting the Lagrangian tan-
gent by means of  a special matrix developed by 
Ihlemann (Ihlemann 2006).

The advantage of this almost analytical differ-
entiation over a complete numerical differentiation 
of the first part of the stress tensor is a consider-
able reduction of the simulation runtime and of 
course a certain gain of computational stability. 
The increase of the efficiency in respect of com-
putational cost is proportional to the number of 
representative directions. For example a simula-
tion based on an FE-model with 1000 elements 
including the Ogden material model within 75 rep-
resentative directions the simulation runtime with 
the almost analytical material tangent is nearly 3, 
5 times less than in case of a complete numerical 
calculation.

The FE-implementation has been tested by 
simulating a rubber wheel, which is used by Gro-
sch (Grosch 1996) to measure the friction of 
elastomers (s. figure 9). In the first loading step 
a constant force Fy is applied to the axis of  the 
wheel to create a contact with the ground. For this 
purpose the complete inner area of  the wheel is 
coupled with the axis as if  the wheel was mount 
on a rigid rim. In the next step the axis is moved 
in x-direction so that the wheel starts to rotate 
because of  the Coulomb friction modelled in the 
contact area.

In the following there will be shown the results 
of the original MORPH constitutive model (com-
pare Hohl 2007) as well as the uniaxial MORPH 

model in representative directions while still using 
the same optimized material parameters for both 
models resulting from the adaptations to the meas-
urements (s. figures 1–4). The first result of this 
simulation can be seen in figure 10, where the ver-
tical displacement of the axis is displayed against 
the rotation angle.

The similarity of the characteristic of both 
material models concerning this measurable quan-
tity is quite remarkable, though there remains a 
certain quantitative difference. During the first 
revolution the wheel pushes itself  back vertically, 
an effect which cannot explained yet. But at the 
end of the revolution (φ = 360°) the displacement 
of the axis increases rapidly, because the current 
material in the contact area has already been sof-
tened at the beginning of the loading process. It 
can be clearly seen how the stress softening is still 
continuing after the first revolution until a steady 
state is reached.

The effect of stress softening during the load-
ing process can be visualized in form of the quan-
tity C

T,max in case of the original MORPH model 
(s. figure 11). This scalar is defined as the maximum 
value of the Tresca invariant of the right Cauchy-
Green-Tensor C  occurred during the whole load-
ing history at each integration point.

Obviously the distribution of the stress soften-
ing is not axissymmetric during the first revolu-
tion. This results from the fact, that the wheel 
pushes itself  back, so that the material becomes 
less softened for increasing rotation angles. In case 
of the original MORPH constitutive model there 
exists one scalar value CT,max for each integration 
point of the finite element model. But within the 
concept of representative directions this inter-
nal variable is defined for each single direction e

α
, 

so that a comparison between these two material 
models requires an averaging of C T

α

,max
 over the 

Figure 9. Boundary conditions of the Grosch wheel.
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representative directions for each integration point 
(s. figure 12).

Obviously the averaging of C T

α

,max
 enables the 

visualization of the stress softening in a very simi-
lar way as the original MORPH constitutive model. 
Considering the dependence of the quantity C T

α

,max
 

on the orientation of the representative directions 
it becomes obvious, that this generalized MORPH 
material model is characterized by an aniso-
tropic stress softening (in contrast to the original 
MORPH constitutive model). In this context it 
should be mentioned, that the effect of anisotropic 
stress softening in elastomers has already been 
experimentally proven (Besdo, Ihlemann, King-
ston, Muhr 2003).

5 CONCLUSIONS

The concept of representative directions is able to 
generalize one-dimensional material models for uni-
axial tension to fully three-dimensional constitutive 
models for the finite element method. The algo-
rithm has been implemented into the FE-programs 
ABAQUS and MSC. MARC. This enables simu-
lations of inhomogeneous stress conditions in 

complex technical components, though the input 
models predicts uniaxial material behaviour only.

The computation of the material tangent is based 
on an almost analytical differentiation of the stress 
tensor, which results in a remarkable reduction of 
the simulation runtime compared to a fully numeri-
cal differentiation. To increase the efficiancy of the 
numerical integration for calculating the stress ten-
sor it is necessary to use evenly distributed direc-
tions in space which can be generated by simulating 
repelling charges on the surface of the sphere. Fur-
thermore the anisotropy caused by the discreti-
zation can be reduced by calculating the uniaxial 
stress responses with averaged elongations.
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ABSTRACT: The excellent properties of carbon nanotubes have generated technological interests in 
the development of nanotube/rubber composites. This paper describes a finite element formulation that 
is appropriate for the numerical prediction of the mechanical behavior of rubber-like materials which are 
reinforced with single walled carbon nanotubes. The considered composite material consists of continu-
ous aligned carbon nanotubes which are uniformly distributed within the rubber material. It is assumed 
that the carbon nanutubes are perfectly bonded with the matrix. Based on the micromechanical theory, 
the mechanical behavior of the composite may be predicted by utilizing a representative volume ele-
ment. Within the representative volume element, the reinforcement is modeled according to its atomistic 
microstructure. Therefore, non-linear spring-based line elements are employed to simulate the discrete 
geometrical structure and behavior of the single-walled carbon nanotube. On the other hand, the matrix is 
modeled as a continuum medium by utilizing solid elements. In order to describe its behavior an appropri-
ate constitutive material model is adopted. Finally, the interfacial region is simulated via the use of special 
joint elements of infinite stiffness which interconnect the two materials. Using the proposed model, the 
stress-strain behavior for various reinforcement volume fractions is extracted. The influence of the single 
walled carbon nanotube addition within the rubber is clearly illustrated and discussed.

1 INTRODUCTION

Rubber composites can be classified as particulate, 
laminated, or fibrous depending on their construc-
tion. The most commonly available elastomeric 
composites are reinforced with carbon black parti-
cles (Yeo 1990) which range in size from a few hun-
dred to thousand of angstroms. Fillers are added to 
rubber products as car tires and shock mounts to 
enhance their stiffness and toughness properties. 
The unique behavior of carbon black-filled elastom-
ers results due to a rigid, particulate phase and the 
interaction of the elastomer chains with this phase 
(Bauer & Crossland 1990). It is well known that 
such composites usually exhibit highly anisotropic 
response due to directionality in material properties. 
Unfortunately, among the existing strain energy 
functions, both the polynomial as well as Ogden 
models are unable to capture the sharp decrease in 
stiffness for filled rubbers at small strains.

As there is a demand in modern technological 
applications for superior elastomeric composites, 
innovative reinforcements having superior prop-
erties should be introduced. Such reinforcements 

could be found in the field of nanotechnology. 
Single walled carbon nanotubes (SWCNTs) are the 
stiffest and strongest known fibbers, having also 
remarkable electronic and conductive properties 
and many other unique characteristics (Thostenson 
et al. 2001). However, these properties are obviously 
of limited value in individual tubes. The develop-
ment of SWCNT based elastomeric composites 
(Mamedv et al. 2002) could demonstrate both the 
excellent energy absorption characteristics of the 
rubber component as well as the advanced struc-
tural properties of the nanotubes.

Since it is complicated to introduce appropriate 
strain energy functions which can effectively repre-
sent the complex behavior of SWCNT filled rub-
bers, the development of an effective numerical tool 
capable of simulating accurately the behavior of 
such composites is essential. This study presents a 
nonlinear, micromechanical, finite element formula-
tion for the evaluation of mechanical behavior of 
rubber uniformly filled with continuous SWCNTs. 
Concerning the nanotube modeling (Giannopoulos 
et al. 2008), the method utilizes the three dimensional 
atomistic microstructure of the nanotube defining 
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nodes at the  corresponding atomic  positions of 
carbon atoms. Appropriate spring elements, which 
interconnect the atoms, include directly the poten-
tial energies provided by molecular theory and 
therefore simulate accurately the interatomic inter-
actions (Rappe et al. 1992). In addition, the inter-
actions between the nanotubes and the rubber are 
simulated via the use of special spring elements of 
infinite stiffness to model a rigid interface. Various 
results concerning the stress-strain behavior of the 
composites are presented and discussed.

2 COMPUTATIONAL MODEL

2.1 Micromechanical analysis

Assuming a uniformly reinforced rubber with con-
tinuous in length SWCNTs all the computations may 
be preformed in an appropriate cylindrical represent-
ative volume element (RVE). As Figure 1 depicts, the 
RVE consists of two phases, i.e. a SWCNT and the 
rubber material.

It is assumed that the two phases are attached 
via a rigid interface. The radius of the RVE is 
equal to radius of the matrix material rm, while rn 
is the mean radius of the nanotube around which 
its nanostructure is assembled. The thickness of 
nanotube is tn. Finally, the RVE length is the same 
with the matrix length and nanotube length �n. The 
volume fraction of the SWCNT in the composite 
with respect to the proposed RVE can be expressed 
by the following equation

V
r t

r r tn
n n

m n n
=

− −
8

4 22 2( )
 (1)

Small volume fractions are investigated, so that 
a negligible interaction between adjacent nano-
tubes could be assumed. The reinforcement used in 
the analysis is the zigzag armchair (20,0) SWCNT 
which has a diameter equal to 0.783 nm. Its thick-
ness tn is typically taken equal to 0.34 nm.

2.2 Rubber modeling

The rubber matrix could be modeled discretely by 
taking into consideration a network of polymeric 
chains surrounding the reinforcement. However, 
this would increase significantly the computational 
cost as well as the complexity of the whole model. 
Therefore, the matrix is regarded as a continuum 
medium. This consideration seems valid since the 
matrix volume is much greater than the SWNT one 
for the volume fractions considered here. Linear 
three-dimensional hexahedral isoparametric ele-
ments are used for the discretization of the matrix. 
In order to describe their mechanical behavior the 
following Mooney Rivlin strain energy density 
function is utilized (Ogden 1984): 
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where I1, I2, I3 define the invariants of the strain tensor, 
v is the Poisson’s ratio and c1, c2 are material param-
eters. These parameters are typically estimated by fit-
ting the stress-strain theoretical equation derived from 
Equation (2) with corresponding experimental data. 
In the above equation, parameter κ defines the bulk 
modulus of the material and is equal to κ  = 2(c1 + c2)/
(1 − 2v). The rubber chosen in the present analy-
sis has the material parameters c1 = 0.16 Mpa and 
c2 = 0.035 Mpa (Kakavas et al. 2007). The bulk mod-
ulus is chosen to be κ = 19.5 Mpa in order to produce 
a nearly incompressible rubber material (v = 0.49). 
The stress-strain curve that arises for simple ten-
sion by using these material parameters is shown in 
Figure 2 (Kakavas et al. 2007).

Since Equation (2), for small deformations, 
reduces to Hooke’s law, the Young’s modulus of the 
rubber is equal to E = 6(c1 + c2) = 1.17 Mpa. A two 
parameter Mooney Rivlin model fails to fit all the 
experimental data up to break, however, it is suit-
able for the small strains up to 70% which are tested 
in the present work.

2.3 SWCNT modeling

In contrast with a traditional carbon fiber, the 
mechanical performance of a SWCNT is strongly 
dependent on its atomistic nanostructure and 
therefore it is essential to be implemented into the 
computational model (Giannopoulos et al. 2008). 

Figure 1. The representative volume element of the 
SWCNT reinforced rubber.
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According to the method adopted the SWCNT is 
developed around its mean radius rn. Specifically, the 
nanotube is considered as a space frame structure in 
which the carbon atoms are represented by nodes. 
Their position in three-dimensional space for a par-
ticular (n, m) SWCNT is established via the follow-
ing transformation equation (Kołoczek et al. 2001):
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where (x′, y′) represents the original coordinate sys-
tem of a graphene sheet and (x, y, z) represents the 
new coordinate system of the tube. The nodes that arise 
by using the above equation are properly connected 
with nonlinear spring elements in order to represent 
the potential energy of the interatomic interactions. 
It is assumed that the specific interactions obey the 
modified Morse potential (Belytschko et al. 2002):
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where Ustretch represents the energy due to bond stretch-
ing, Uangle represents the energy due to bond angle 
bending, Δr = r − r0 represents the bond length 
variation and Δθ  = θ  − θ0 represents the bond 
angle variation. The initial bond length and 
angle are r0 = 1.421 × 10–10 m and θ0 = 2.094 rad, 
respectively. The force parameters of the modi-
fied Morse potential are De = 6.03105 × 10–19 Nm, 
β = 2.625 × 1010 m–1, kθ = 0.9 × 10–18 Nm/rad2 and 
ksextic = 0.754 rad–4 (Belytschko et al. 2002). In the 
present study, only the bond stretching potential 
is considered since the bond stretching dominates 

nanotube strength and the effect of angle-bending 
potential is small, especially for the uniaxial load 
investigated here. In order to represent the bond 
stretching interactions between carbon atoms, nonlin-
ear spring  elements are utilized. The force-stretching 
nonlinear behavior of these spring elements arises 
by differentiating Ustretch:

F(Δr) = 2βDe(e−βΔr − 1) (5)

The above variation is depicted in Figure 3.
The finite element mesh of the SWCNT which is 

used for the tests is illustrated in Figure 4. In order 
to ensure that the nanotube length has a negligible 
effect on the results, the length of the specific tube 
is chosen to be �n/rn > 10.

Figure 2. Stress-strain behavior predicted by the Mooney 
Rivlin model for pure tension.

Figure 3. Force-strain curve of  the modified Morse 
potential.

0 20 40 60 80 100
0

5

10

bond break

Δr/r
0 
× 100

F
(n

N
)

Figure 4. Finite element mesh of  the RVE and its 
components.

1 2 3 4 5 6
0.0

0.5

1.0

1.5

Mooney Rivlin (2 terms) 

E
ng

in
ee

ri
ng

 s
tr

es
s 

  (
M

Pa
)

True strain



30

2.4 Interface modeling

In general, an interface may be described as a region 
that separates two distinct bodies with different 
constitutive responses. Interfaces can be modeled 
either as continuum or as discrete systems, based 
on the problem of interest and the scale length. 
Due to the nanoscale dimensions as well as the 
atomistic modeling of SWCNTs, the discrete mod-
eling of the interfacial region is selected. To real-
ize this idea two-noded interfacial joint elements 
of infinite stiffness along the three directions of 
their local coordinate system are employed. These 
elements connect radially the atoms-nodes of the 
nanotube with corresponding nodes which belong 
to the inner cylindrical surface of the matrix which 
is simulated via the volume elements. As it was 
 previously mentioned, the nanostructure of carbon 
nanotube is developed around a mean diameter 
and its thickness is indirectly  considered. There-
fore, from physical point of view, the length of the 
joint elements is taken equal to tn/2. Their position 
inside the RVE can be clearly seen in Figure 4.

2.5 Solution procedures

In order to compute the stress-strain uniaxial behav-
ior of the SWCNT reinforced rubber appropriate 
boundary conditions have to be defined on the RVE. 
At the one end of the cylindrical RVE only the nodes 
of the matrix profile are fully restrained, i.e. the 
degrees of freedom of all nodes of this surface are 
restricted. In the other end of the RVE, a displace-
ment uz = Δ�m is applied uniformly at the nodes of 
the matrix profile. The corresponding profiles of 
the nanotube are not supported and loaded, respec-
tively, in order to allow the stiffness of nanotube to 
be transferred to the matrix exclusively through the 
interconnection joints, i.e. the interface. The stress σz 
at each strain level εz = Δ� �n n/  is computed via the 
following equation:
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where i zf  is the computed nodal force in the direction 
z of node i which belongs on the restrained plane of 
the matrix and qm is the total number of nodes which 
belong to the specific plane.

The problem of the present study is highly char-
acterized by a non-linear nature due to nonlinear 
behavior of the rubber material and the SWCNT. 
Thus, the uniform displacement loading Δ�n is applied 
according to an incremental manner in order to fol-
low an incremental-iterative procedure. According 
to this procedure the loading is applied in specified 

constant increments and an iterative algorithm is 
utilized to obtain convergence of the solution at 
each load level. The iterative process is based on 
the Newton-Raphson method and it is performed 
until a convergent solution is obtained at a specific 
step. The monitoring of the convergence is based 
on displacement and absolute residual norm. After 
the convergence of the last load increment, the final 
solution of the problem is achieved.

Table 1 contains analytical information about 
the number of elements and nodes used for the 
computations for all volume fraction cases. The 
final discretization of all RVE models has been 
made after convergence tests on mesh density.

The results were computed by using 20 con-
stant load increments. This number of increments 
was found sufficient to achieve relatively fast and 
enhanced convergence during Newton-Raphson 
iterative procedure between sequential increments. 
The computational cost for extracting the numerical 
solutions was relatively significant in all cases due 
to the exclusive usage of three dimensional finite 
elements. By using a personal computer equipped 
with a Pentium 4 CPU 3.73 GHz and a RAM 1 GB 
the computational times have reached 3 h.

3 RESULTS AND DISCUSSION

Using the previously presented numerical formu-
lation, the mechanical uniaxial behavior of the 
rubber composite for various values of volume 
fraction Vn may be computed.

Firstly, it is assumed that the carbon-carbon 
bonds of the SWCNT may be stretched up to 
100% without break.

Figure 5 depicts the computed stress-strain behavior 
of the nanocomposite for various volume fractions. 
The stress-strain behaviors of the rubber and SWCNT 
are included in the figure for comparative reasons. 
Secondly, it is assumed that the carbon-carbon 
bonds of the SWCNT break (zero spring stiffness) 
after a 20% strain (Figure 3). The extracted stress-
strain behaviors for this case are presented in Figure 6. 
In this case, the curves present a sharp drop after 
the SWCNT fracture.

Table 1. Information about the finite element grids utilized 
in the analysis.

Vn

Number of elements Number of nodes

Rubber Tube Joints Rubber Tube Joints

0.01 35840 2260 1520 40680 1520 3040
0.02 31360 2260 1520 36160 1520 3040
0.03 26880 2260 1520 31640 1520 3040
0.04 27120 2260 1520 22400 1520 3040
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micromechanical, non-linear, finite element approach 
and utilizes a Mooney Rivlin material model for 
the rubber and takes into account the atomistic 
nanostructure of the nanotubes. The computed 
composite strain-stress behaviors under pure ten-
sion show definite advantages that arise by the 
SWNT reinforcements. The SWNTs improve sig-
nificantly the composite strength and toughness 
especially for higher volume fractions. Simultane-
ously, the absorption energy characteristics of the 
rubber material are maintained in the composite.

Having as a basis the proposed method the 
mechanical response of rubber materials filled 
with SWNTs with more complicated arrangement 
and nanostructure i.e. nanotextiles and nanocords 
may be predicted in a future work. Moreover, the 
discrete nanostructure of the polymeric chains 
could be incorporated into the model.
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Figure 5. Stress-strain behavior of the composite for sev-
eral volume fractions without considering SWCNT fracture.

Figure 6. Stress-strain behavior of the composite for 
several volume fractions considering SWCNT fracture.

As a general conclusion the reinforcement addi-
tion in the rubber matrix leads to a very significant 
increase of its stiffness in all cases. Furthermore, for 
higher values of volume fraction Vn the toughness 
of the composite, which is a measure of its capabil-
ity to absorb energy, is radically improved. Finally, 
the computations showed that composite Young’s 
modulus seems to obey the rule of mixtures.

4 CONCLUSIONS

A numerical tool capable of predicting the mechan-
ical behavior of SWCNT reinforced rubber has 
been developed. The formulation is based in a 
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Ansys user defined material implementation of van der Waals model

Heramb Shashikant Pathak
CADFEM GmbH, Graffing b. München, Germany

ABSTRACT: The real chain network is described in terms of a phenomenological modifications of the 
Gaussian theory. It is shown that by introducing modified invariant ζ = βĪ1 + (1 – β )Ī2, van der Waals model 
describe the multiaxial deformation modes of the chain network. On the basis of van der Waals strain 
energy function W(C), resulting constitutive equations are derived. van der Waals model is implemented 
in finite element software like ANSYS. The utility of the approach is demonstrated by comparing the 
results of stress-strain experiments with numerical and analytical solutions.

Finally, it is shown that non-linear visco-elastic response in stress-strain cycles of natural rubber can be 
understood within the framework of the classical thermodynamics of irreversible processes.

Keywords: Rubber elasticity, deformation modes, hyperelasticity, van der Waals theory

1 INTRODUCTION

It might be reasonable to take into account the 
effect of mutual interaction of chain molecules 
and finite chain length in order to describe the 
complete physical behavior of the rubber elastic 
system.

Van der Waals theory of real gas is closely related 
to the thermomechanical description of the molec-
ular network. By considering mutual interaction 
between the chain molecules, we arrive at the van 
der Waals theory of the real conformational gas.

1.1 Preamble

The phenomenon of rubber elasticity is associated 
with micro Brownian motion of the individual ele-
ments of long chains in a molecular network. This 
type of motion is similar to the thermal motion of 
molecules of an ordinary liquid, with the single 
difference that the moving units, instead of being 
entirely independent, are connected together in 
the form of a macromolecular network. In certain 
respects, therefore we should expect to find on the 
local level a close similarity between the properties 
of rubbers and of liquids.

A rubber is distinguished from a liquid by the 
presence of long chain molecules, possessing freely 
rotating links.The molecules are interlocked at few 
places along their length to form a three dimen-
sional network.

The total number of configurations, hence the 
entropy of the ideal network, can be calculated by 
statistical methods. If  each junction point is taken 
to be fixed at its mean position and if  the chains 
have an infinite contour length and if  the volume 
is a strain invariant, the statistical treatment leads 
to the Gaussian network theory.

The Gaussian theory involves only a single phys-
ical parameter, the shear modulus G related to N, 
the number of chains per unit volume. The elastic 
properties of the Gaussian are universal because 
they are independent of the chemical nature of 
the molecules. The Gaussian network behaves like 
an ideal conformational gas network compris-
ing chains of  infinite contour length. Energy is 
equipartioned among these chains.

This is easily demonstrated that mechanical equa-
tions of state of the ideal gas or of the Gaussian 
network are analogous.

Ideal gas P Nk T
Vi B= ⎛

⎝⎜
⎞
⎠⎟

1

Ideal conformational gas network F Nk Ti B= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

Ψ
λ

where, for simple extension test

Ψ =
+ −⎛

⎝⎜
⎞
⎠⎟

λ
λ

2 2 3

2
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Another interference can be made from the 
fact that internal energy of the ideal gas or of the 
Gaussian network are identical.

U U Nk TB
gas network= = 3

2

The internal energy U of  an ideal gas is given 
by the kinetic energy of N mass points, equipar-
titioned amongst these particles. Because there is 
no interaction, U does not depend on the volume. 
This is characteristic of an ideal gas. A Gaussian 
network behaves analogously. Kinetic energy is 
equipartitioned among the N mass fiber chains. 
The internal energy does not depend on strain. For 
this reason we call the Gaussian network an ideal 
conformational gas network.

In comparing experimental stress-strain curves 
with formulae derived from the Gaussian theory, 
one observes serious deviations. It is therefore 
suggests itself  to try to describe real network in 
terms of  phenomenological modification of  the 
Gaussian theory so that fundamental features 
are preserved. In the van der Waals approach 
two modifications are put forward, namely, 
considerations of  finite extensibility and global 
interaction.

2 CONCEPTUAL MODEL

2.1 Van der Waals model

Consider incompressible isotropic mechanically 
stable systems deformed under equilibrium con-
ditions. Since the elastic system is characterized 
by its strain energy function, it is clear that we 
have to seek the most general formulation of  the 
elastic potential of  a van der Waals network. The 
system is believed to be represented as a quasi 
continuum comprised of  a defined number of 
energy equivalent subsystems of  deformation, in 
the case of  a perfectly homogeneous network rep-
resented by the chains themselves. For an incom-
pressible and isotropic elastic body of  this type we 
led for the principal of  material objectivity, to the 
simplest form of  the strain energy function com-
prising two of  the three strain invariants (Ī1, Ī2) 
of  the Cauchy-Green deformation tensor C

–
. Tak-

ing into account the the van der Waals correc-
tions, the universality in the formulation of  the 
strain energy function must necessarily become 
reduced.

W = W (Ī1, Ī2; y, a) (1)

whereby the strain invariants are written as

Ī1 = tr (C
–
) (2)

I tr C tr C2
2 21

2
= −{ }( ( )) ( )

 
(3)

The length parameter y is defined as the number 
of statistical segments per chain while a is the phe-
nomenological fluctuation parameter in the van 
der Waals version.

2.2 The van der Waals parameter

If  the chains themselves are not too short, the 
maximum extensibility of a single entity can be 
approximated by the use of the Gaussian measure

(λmax-chain)2 = y (4)

‘y’ is the number of Kuhn segments.
If  the totality of the crosslinks is now trans-

formed according to the law of affinity, we are led 
to the significant consequence

y = (λm1)2 + (λm2)2 + (λm3)2 (5)

The maximum strain parameters in the three 
directions of the coordinate frame, are assumed to 
be uniquely determined by the single chain struc-
ture parameter y. In the mode of simple elongation 
the maximum strain λm

1  is estimated to be roughly 
identical with

λm y1
1
2�  

(6)

In the equibiaxial mode the maximum macro-
scopic strain in both coordinate axes is reduced to 
the value

λ λ
m

m2
1

2
=

 
(7)

In swelling a dry network, this process corre-
sponds to the mode of equitriaxial extension, such 
that the maximum strain in all directions should 
now become equal to

λ λ
m

m3
1

3
=

 
(8)

2.3 Material modeling

In order to describe the behavior of deform-
able bodies, we need an additional set of equa-
tions in the form of appropriate constitutive laws. 
A constitutive equations determines the state of 
stress at any point x of  a continuum body at time t 



35

and is  necessarily different for different types of 
continuous bodies. These equations establish 
an axiomatic or empirical model as the basis for 
approximating the behavior of a real material. The 
process of obtaining these constitutive equations is 
called as material modelling.

van der Waals strain energy function W
It is necessary to find infinitely large energy densi-
ties when the rubber is strained to its maximum. 
This singularity has to be met irrespective of the 
shape the rubber is forced into.

The generalized form of the van der Waals strain 
energy function is given by

ˆ ( )

ln( )

( )W C G

y

a=
− − +{ }

− ⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1

2

3

3

2

3
2

η η

ζ  (9)

where the modified strain invariant ζ is defined 
by

ζ = βĪ1 + (1 – β )Ī2 (10)

η ζ β β
=

−⎛
⎝⎜

⎞
⎠⎟

=
+ − −⎛

⎝⎜
⎞
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( ) ( ( ) )3 1 3
1
2 1 2

1
2

y
I I

y  

(11)

The modulus is explicitly expressed as

G RT
M

RT
yM

RT
yMc s

=
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
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� �
�ξ ξ

0  
(12)

The molecular weight of the chain Mc can be 
written as

Mc = yMs (13)

with Ms as the molecular weight of the statistical 
Kuhn segment. But the statistical segment is by 
no means stretching invariant. To accept strain 
dependent changes of diffusive conformational 
freedoms per statistical segment, is equivalent to 
defining the actual stretching invariant unit with 
respect to the system’s entropy by

M
Ms

0 =
ξ  

(14)

As system is incompressible, isotropic, there is 
no change in volume. Hence we will consider only 
isochoric or volume preserving part of the strain 
energy. Near incompressibility is often a device by 
which incompressibility can more readily be enforced 
within the context of the finite element formulation. 
This is facilitated by adding a volumetric energy 

component U(J) to the isochoric (distortional) 
component Ŵ to give the total strain energy func-
tion W(C

–
) as follows.

W(C
–
) = Ŵ(C

–
) + U(J) (15)

where the simplest form of a volumetric function 
U(J  ) is

U J k J( ) ( )= −
1
2

1 2

 
(16)

where the penalty number k can represent a true 
material property, namely the bulk modulus for 
a compressible material. It will approximately 
enforce incompressibility. Typical values of k in the 
region of 103–104 μ are used for this purpose.

Second Piola-Kirchhoff stress tensor S
The second Piola-Kirchhoff stress tensor (S) is 
symmetric and parameterized by material coordi-
nates. Therefore, it often represents a very useful 
stress measure in computational mechanics.

The second Piola-Kirchhoff tensor for a mate-
rial is obtained in standard manner with the help 
of relation ∂ ∂ = −III C J Cc / .2 1

S J
W C

C
U J=

∂
∂

⎛
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⎠⎟
+− 2

3Dev 2
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Kirchhoff stress tensor τ
The Kirchhoff stress tensor is obtained by per-
forming push forward operation on each second 
order tensor present in the second Piola-Kirchhoff 
stress tensor equation.

τ = FSisochoricF T + FU(J)F T

Total stress σ
By using the relation τ = Jσ, we get the expression 
for total stress. But in order to get it in terms of 
nearly incompressible form, it is necessary to add 
isochoric and volumetric part.

Elasticity tensor
The formulation for the elasticity tensor composed 
of isochoric part � iso and volumetric part �vol.

C C C= iso + vol

The complete expression for the � takes the 
 following form.
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Equibiaxial extension
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In case of van der Waals material model ∂ ∂W I^ / 1 
and ∂ ∂W I^ / 2  are derived by using the following 
expressions

∂
∂

= ∂
∂

W

I

W
^ ^

1

β
ς  

(21)

∂
∂

= −
∂

∂
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I
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2
1( )β
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∂
∂

= − −
−⎧

⎨
⎩

⎫
⎬
⎭

−W
a

^

ς
η ς

( )
( )

1
3

2
1

1
2

 

(23)

∂
∂

= −
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

−⎡
⎣⎢

⎤
⎦⎥

−
W

y
a

^

ς
ς ς

1
3 3

2

1 1
2( ) ( )

 

(24)

∂
∂

= − − + − −⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− + −

W I I

y

a
I

^

ς
β β

β

1 1
1 3

1

1 2

1

( ( ) )

( ( ββ ) )I2

1
23

2

−⎡

⎣
⎢

⎤

⎦
⎥

 

(25)

3.3  Comparison with experimental 
and analytical solution

In examining the applicability of the stress-strain 
relations deduced above, it is desirable to work 
with samples under many types of strain.

Figure 1. Co-rotational approach.

Figure 2. Uniaxial extension test: A) Finite element 
model B) Deformed shape.

Uniaxial extension test

3 IMPLEMENTATION AND VALIDATION

3.1 Co-rotational approach flowchart

3.2 Validation

In order to validate the implementation material 
model in finite element software, it is necessary to 
compare the finite element results with the analyti-
cal and simple deformation tests results.

Standard analytical expressions to calculate true 
stress for different deformation tests are as follows

Uniaxial extension
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Pure shear
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The quality of the representation of experiments 
carried out by Treloar for natural rubber is clearly 
seen. van der Waals material model result for the 
uniaxial extension is obtained by using the follow-
ing formulation for the true stress.

f GD a=
−

−
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1
1

1
2

( )η
φ

 

(26)

Use of so called penalty number k will apprixi-
mately enforce incompressibility. Typical values 
of k in the region of 103–104 μ are used for this 
purpose. Furthermore, in practical terms, a finite 
element analysis rarely enforces J = 1 in a strict 
point wise manner, and hence its retention may be 
important for the evaluation of stresses. As shown 
in the above figure implementation of the van der 
Waals material model validate nearly incompress-
ibility condition. In case of simple extension and 
pure shear the difference between undeformed and 
deformed volume is nearly equal to one.

Figure 3. Engineering stress against stretch at T = 295 K 
for natural rubber according to Treloar. The van der 
Waals model parameters are G = 0.328, y = 161.29, 
a = 0.245, beta = 0.50.

Figure 4. Pure shear test: A) Finite element model 
B) Deformed shape.

Pure shear test

Figure 5. Engineering stress against stretch at T = 295 K 
for natural rubber according to Treloar. The van der 
Waals model parameters are G = 0.328, y = 161.29, 
a = 0.245, beta = 0.50.

Figure 6. Nearly incompressible hyperelastic material.

Nearly incompressibility condition

4 CONCLUSIONS

A framework has been set up to develop math-
ematical model for representing the real behavior 
of matter in which the strains may be the large, 
i.e. finite. As finite element analysis rarely enforces 
fully incompressibility, constitutive equations are 
obtained for nearly incompressible, isotropic hyper-
elastic material by decoupling it into the volumetric 
and isochoric parts.

It has been shown that thermomechanical descrip-
tion of van der Waals material model is closely related 
to the van der Waals theory of real conformational 
gas. Generalized form of the van der Waals strain 
energy function Ψ is obtained in terms of modified 
invariant ζ = βĪ1 + (1 – β)Ī2, finite chain extensibil-
ity ( y) and mutual interaction (a). With the help of 
phenomenological constitutive equations, stress and 
strain components are derived from the van der Waals 
strain energy function. Finally in order to obtain the 
solution for nonlinear  problems in computational 
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finite elasticity,  elasticity tensor is calculated which 
resembles tangent stiffness matrix arising in a finite 
element discretization process.

The most general corotational approach is used 
to implement the material in finite element tool 
like Ansys. It has been seen that rotation of stress 
and elasticity tensor from material to spatial coor-
dinate system can be avoided by using Hencky 
strain formulation. Results of implementation 
are in agreement with the analytical solution for 
the deformation tests like simple extension and 
pure shear.

The conclusion to be drawn from the preced-
ing discussions is that the formulae of the van 
der Waals modification of the Gaussian network, 
involving four constants G, β, y, and a, correctly 
describe the elasto-mechanical properties of real 
networks. In particular they provide an under-
standing of the relation between the stress-strain 
curves for different types of strain.

Future work can include validation of the mate-
rial model with equibiaxial and volumetric tests 
results. Validation also must be done by compar-
ing the finite element solution with more and more 
experimental results for different materials under-
going large deformation. Currently validation is 
done only for the single element, multielement 
testing is required. Finally, it is the ultimate aim 
of this work to implement van der Waals mate-
rial model in Ansys to make it  commercial, as an 
alternative  incompressible,  isotropic, hyperelastic 
material model.
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Filler-reinforced rubber under transient and cyclic loadings: 
Constitutive modeling and FEM-implementation for time 
domain simulations

M. Rendek & A. Lion
Institute of Mechanics, Department of Aerospace Engineering University of Federal Armed Forces Munich, 
Neubiberg, Germany

ABSTRACT: On the basis of comprehensive experimental data, an amplitude dependent constitutive 
model of finite viscoelasticity based on a rheological Maxwell-chain with process-dependent state vari-
ables is developed. The formulation of this thermodynamically consistent model is possible in both the 
time and the frequency domain. This property is very profitable in the material-parameter identification 
process for FEM simulations of real parts. This kind of model allows transient FEM simulations of vari-
ous rubber parts under arbitrary cyclic loading processes. Due to physical and geometrical nonlinearities, 
these simulations are not possible in the frequency domain. Numerical examples are computed in the 
context of the transient material behaviour. To this end, deformation processes with dynamic amplitude-
changes are prescribed.

1 INTRODUCTION

Cyclically-loaded industrial rubber-parts normally 
manufactured using complicated filler-reinforced 
elastomers show many nonlinear viscoelastic 
effects. Best-known are the frequency- and the 
amplitude-dependence (Payne-effect) as well as the 
Mullins-effect. In the context of dynamic material 
properties in the frequency domain the behaviour 
of the storage and the loss modulus is generally 
studied. In order to understand these effects in 
more detail it is profitable to execute cyclic tests 
in time domain which allow observing further 
transients effects. The focus of this paper is con-
centrated to the amplitude dependence observed 
already in the 60 s (Payne 1962).

2 EXPERIMENTAL OBSERVATION OF 
DYNAMIC MATERIAL BEHAVIOUR

2.1 Quasistatic tension cyclic tests

In order to investigate the amplitude dependence, 
i.e. the reversible softening of the dynamic stiffness 
with increasing dynamic strain amplitude (Payne 
1962), cyclic tension experiments with stepwise 
changing amplitudes and a frequency of 0.1 Hz 
were carried out (Fig. 1). Prior to the real test, the 
rubber specimen was conditioned in order to elimi-
nate the Mullins-effect. It is observed, that the stress 
amplitudes decrease significantly during a certain 

time after the amplitude change. The material 
deformed in such a way becomes softer which cor-
responds to the Payne-effect in time domain. The 
observed stress softening and recovery effects can 
be physically interpreted as process-induced revers-
ible changes in the materials’ microstructure.

2.2 DMA experiments

As a standard approach to study the Payne-effect 
and its frequency dependence amplitude sweep 

Figure 1. Stress response from cyclic tension test with 
stepwise changing dynamic amplitude (carbon black 
filled ESBR).
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tests with different frequencies were driven (Fig. 2) 
(Ji-Hyun Cho 2006). The experimental data shows 
the amplitude dependence of carbon black-filled 
rubber for different frequencies. With increasing 
frequency the softening is more pronounced. Cor-
responding to the smallest amplitude, the frequency 
dependence is studied with the sweep test in Fig. 4. 
Typically, the amplitude-dependent storage modu-
lus shows two plateaus regions (Lion et al. 2009) 
where it is nearly constant. Between them is a pro-
nounced transition area where it decreases with 
growing amplitudes.

Another method to study the Payne-Effect is 
the amplitude step test in the time domain which 
has already been discussed. In this case, the DMA 
shows the dynamic modulus as a time-dependent 
function of the dynamic strain amplitude (Fig. 3). 
The strain amplitude jumps occur every 2700 s.

The stationary values of the storage modulus 
obtained from the amplitude step test (Fig. 3) match 
with the moduli values belonging to the same strain 
amplitude and frequency (10 Hz) from the ampli-
tude sweep test (Fig. 2). After the amplitude changes, 
a pronounced relaxation behaviour is observed.

3 CONSTITUTIVE MODEL

The concept of  finite nonlinear viscoelasticity 
based on Maxwell elements provides a good basis 
for the representation of the observed phenom-
ena of carbon black-filled rubber (cf. Höfer and 
Lion 2009 or Lion 2004). The constitutive model 
describes hyperelastic material behavior, rate- and 
frequency effects and the amplitude dependence. In 
the case of transient loading processes, the authors 
frequently concentrate to the relaxation behavior 
of the parts (see Holzapfel 1996). As defined in 
Eq. 1, the total Cauchy stress is decomposed into 
a rate-independent equilibrium stress and a rate-
dependent overstress.

T T T= +
=

∑eq ovk
k

n

1  
(1)

The hyperelastic equilibrium stress is modeled by 
a nearly incompressible model of the Neo-Hookean 
type with two material parameters (see Eq. 2.). The 
motivation for this choice is the difference of about 
three orders of magnitude in the numerical values 
of the bulk and shear behavior of elastomers.

T B B 1eq d
= − −⎛
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The overstress is formulated as the sum of partial 
overstresses belonging to the Maxwell-elements of 
the chain. The structure of the constitutive equa-
tions for the partial overstresses can be motivated 
from uniaxial Maxwell-elements (Eq. 3) (cf. Haupt 
2002). The rate of the partial overstress in Eq. 3 
is an Oldroyd derivative and D is the well-known 
strain rate tensor. The scalar functions Hk(t)/Zk

0 
can be interpreted as process-dependent relaxation 
times and the material parameters ηk are the vis-
cosities belonging to the Maxwell elements.

S S D
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+ =ovk
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k

k

k

k
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(3)

Application of ‘pull-back’ transformation to 
Eq. 3, introduction of the internal variables eplk 
of Piola strain type and the definition ck = ηk/zk

0 
leads to Eq. 4 for the overstress tensor of Cauchy 

Figure 2. Amplitude sweep (in the transition region) 
at different frequencies (carbon black filled ESBR, 
SHORE 75°).

Figure 3. Amplitude step test from DMA at 10 Hz 
(carbon black filled ESBR, SHORE 75°).
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type and to Eq. 5 for the inelastic Piola strain. This 
formulation is equivalent to Eq. 3 and describes 
the viscoelastic material behaviour in the material 
configuration.

T
F

FT F

F
F F F F

ovk ovk=

= − ⋅ ⋅ − ⋅ ⋅

1

2
det

det
( )

∼

ck
k

T
ink

Te e
 (4)

e e e⋅ = −ink
k

k
inkt

H t
Z

t t( ) ( ) ( ( ) ( ))0  (5)

The relation between the amplitude dependence 
and the microstructure relaxation is considered by 
the function Hk(t). It is defined by Eq. 6 and deter-
mined by the internal state variable qk(t) (Eq. 7) of 
the corresponding Maxwell element (Rendek and 
Lion 2009). The rate of the change in the dynamic 
moduli can be controlled by the gain factors dk. 
This allows scaling transient processes and is lead-
ing to reduced computation times without loosing 
information.

H t d q tk k k( ) ( )= + ⋅1  (6)

q t q tk
k

k( ) ( ( ))= −1
λ

D
 

(7)

The constants λk in the evolution equations for the 
state variables qk(t) (Eq. 7) are the relaxation times 
of the microstructure. However, the experimental 
data shows that the changes in the dynamic mod-
uli are faster when the strain amplitude increases 
(Fig. 3) than when it decreases. This implies that the 
λk should depend on the deformation process.

D C C= − ⋅1
2

1 2tr(( ) )  (8)

In our model, the amplitude dependence is 
driven by the norm of strain rate tensor ||D|| which 
is very sensitive to amplitude changes (Eq. 8).

4 MATERIAL PARAMETER 
IDENTIFICATION IN THE 
FREQUENCY DOMAIN

The above formulated constitutive equations con-
tain a set of material parameters representing the 
actual material properties. These parameters must 
be determined by experiments. Since the formula-
tion of the constitutive model is possible in both 
the time and the frequency domain, the possibil-
ity to identify the parameters on the basis of the 
stress time signals or the curves of the dynamic 

moduli is provided. The identification according 
to the dynamic moduli is faster and the identified 
material constants are valid in wider range of 
frequencies and amplitudes.

The uniaxial stress response for a sinusoidal 
deformation process is given by Eq. 9.

σ σ
ε

ω ω
( )

sin( ) cos( )
t

E t E teq−
Δ

= +0 ′ ″
 

(9)

In Eq. 9, the complex modulus E* is decom-
posed into its real part E´ describing the dynamic 
elastic material behavior and its imaginary part E˝ 
which is related to the damping behavior. Due to 
Fourier analysis of Eq. 4 and Eq. 5 in combination 
with Eq. 6 and Eq. 7 and some additional assump-
tions we obtain the first two Fourier coefficients 
as the frequency-, amplitude- and time-dependent 
storage and loss modulus (Eq. 10 and Eq. 11).
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Due to the structure of the model, the identi-
fication process is based on two steps. At first, a 
sufficient small strain amplitude of about 0.1% is 
applied such that the dynamic moduli are time- 
and amplitude-independent and we have Hk = 1. 
Thus, the material parameters ck, ηk and μ can be 
determined by means of the frequency sweep in 
Fig. 4.

Figure 4. Identification of the material parameters ck, 
ηk and μ in the frequency domain, 12 Maxwell Elements 
were used.
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In the second step, the constants dk and λk 
in Eq. 10 and Eq. 11 describing the amplitude 
dependence are identified on the basis of the test at 
10 Hz (Fig. 5). To compute the time and amplitude 
dependent modulus it is necessary to solve the evo-
lution equations for the variables qk (Eq. 7) for 
the deformation process with stepwise changing 
amplitude.

To reduce the extremely long simulation times 
for the parameter identification, the time-axis of 
the test shown in Fig. 3 was compressed by a factor 
of 180. Then, the hold times of 2700 s at constant 
amplitude were reduced to 15 s. The advantage of 
this scaling is the reduction of the computation 
times, particularly with regard to long-term tran-
sient FEM simulations in the time domain.

In both steps, the parameter identification 
implies to solve the non-linear least-squares prob-
lem with optimization (Eq. 12).
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For quantitative good parameter identification 
results with values of the residual norm below 0.1% 
12 nonlinear Maxwell elements were needed. The 
parameters are listed in Table 1. Since the quality 
of the approximation is sufficient it is not necessary 
to incorporate more Maxwell-elements or material 
parameters into the constitutive model.

5 FEM IMPLEMENTATION AND 
TRANSIENT SIMULATION RESULTS

The developed material model was implemented into 
the commercial FEM code ANSYS in an updated 
Lagrangean formulation (Crisfeld 1998). The 
implementation of user-written constitutive mod-
els is possible with the subroutine USERMAT.f 
which is in the focus of current section. This sub-
routine is based on a corotational formulation of 
stresses and strains (cf. Crisfeld 1998 or Simo 2000). 
All element quantities are initially computed in the 
reference configuration and then rotated to the 
current configuration. The polar decomposition of 
the deformation gradient is needed for large-strain 
and large-rotation applications. It has been used to 
compute the rotation tensor R.
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The incremental solution procedure makes the 
implementation and the integration of the dif-
ferential equations for the rates of the state vari-
ables (Eq. 7) and the rate of inelastic Piola-strains 
(Eq. 5) very comfortable. Eq. 13 and Eq. 14 are the 
incremental solutions of Eq. 7 and Eq. 5 with the 
Euler-Backward algorithm in the recursive form.
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At every time increment, the stress tensor is com-
puted according the Eq. 4 in the reference configu-
ration. Then, it is rotated to current configuration. 
The updated total Cauchy stress is the sum of the 

Figure 5. Identification of the amplitude dependent 
material parameters dk and λk, 12 Maxwell Elements 
were used.

Table 1. Identified material parameters for 12 Maxwell 
elements for carbon black filled ESBR (SHORE 75°). 
The constants ck are given MPa, the viscosities ηk in 
MPas, the λk in s and the dk are dimensionless.

3μ = 9.3074 d = 0.001

c1 = 3.2825 η1 = 0.0791 λ1 = 208.0396 d1 = 9.5834
c2 = 1.4997 η2 = 2.3326 λ2 = 11.1762 d2 = 28.9479
c3 = 2.4369 η3 = 0.4517 λ3 = 111.6479 d3 = 11.3158
c4 = 0.7705 η4 = 0.1427 λ4 = 96.6838 d4 = 6.6054
c5 = 4.5348 η5 = 0.0086 λ5 = 245.4763 d5 = 11.8292
c6 = 5.6670 η6 = 0.0009 λ6 = 394.8773 d6 = 25.9584
c7 = 1.7240 η7 = 123.57 λ7 = 1.1461 d7 = 170.413
c8 = 1.3004 η8 = 2.0097 λ8 = 3.1922 d8 = 18.3577
c9 = 1.4179 η9 = 421.45 λ9 = 1.1362 d9 = 703.421
c10 = 0.988 η10 = 0.011 λ10 = 188.54 d10 = 8.1464
c11 = 1.377 η11 = 1265 λ11 = 1.0000 d11 = 999.99
c12 = 2.427 η12 = 25.31 λ12 = 2.7444 d12 = 138.61
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rotated total stress from the previous time step and 
the rotated stress increment (Eq. 15).

T T R T R( ) ( ) ( )( ( ))( )n n nT+ = + Δ Δ + Δ1 1  (15)

Every incremental solution procedure in the 
context of finite element analyses needs the tan-
gent stiffness operator matrix. Besides the stiffness 
matrix, the strain-displacement relationship matrix 
and the internal force vector are also needed. But 
in the context of the implementation of material 
models the material tangent operator is in the focus. 
Its concrete formulation depends on the formula-
tion of the kinematics in the finite element code. 
The updated Lagrangean material stiffness matrix, 
relevant for the FEM code ANSYS, is based on the 
Jaumann rate of the total Kirchhoff stress tensor 
and the strain rate tensor (Eq. 16).
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The stiffness matrix in Eq. 16 can be derived by 
the pre-transformation of the 4th order material 
stiffness operator (Eq. 17).
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The additive decomposition of the stress ten-
sor leads to a corresponding decomposition of the 
material stiffness operator into the sum of equilib-
rium and overstress parts (Eq. 18).
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The equilibrium part (Eq. 19) can be calculated 
directly from Eq. 2. The corresponding parts due 
to the partial overstresses (Eq. 20) were formulated 
according Eq. 17 and Eq. 4.
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Since the overstress (Eq. 4) depends on the 
variables qk in order to consider the amplitude 
dependence, the tangent operator of the overstress 
depends also on the state variables qk (Eq. 18). But 

to compute the tangent operator of the overstress 
tensor, the partial derivatives with respect to the 
deformation process-dependent internal variables 
qk have been omitted. This negligence has only 
small influence on the convergence rate.
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5.1 Rubber bloc with hole cyclically loaded 
with changing dynamic amplitude

To illustrate the properties and the main benefits 
of presented material model, transient FEM 
simulations of a rubber block with a hole in the 
center were carried out. Such a part could be used, 
for example, as an engine vibration isolator. The 
bottom plate is fixed in all directions. The top 
plate is loaded in the vertical Y-direction with a 
transient displacement function with changing 
dynamic amplitudes. The static predeformation 
is 20% in tension and the excitation frequency is 
1 Hz (Fig. 7). The displacement amplitude was 
switched every 25 s during the computation time 
(Fig. 7). The material parameters of the 12 non-
linear Maxwell elements for this simulation were 
identified in chapter 4 (Table 1) and contain all 
information about the material.

The total computation time of  the FEM 
simulation is reduced by the same scaling factor 

Figure 6. Equivalent stress von Misses at time 95 s 
(post. 1).
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as used in the parameter identification procedure. 
Thus, the FEM simulation of about 100 s duration 
corresponds to a real loading process of 180 × 100 s. 
Looking at the stress response (Fig. 8) on a given 
material point of the rubber block with the hole 
shown in Fig. 6, the experimentally observed sof-
tening effect (Fig. 1) is represented by the constitu-
tive model.

For the purpose of an easier post processing 
and a well-defined physical understanding of the 
dynamic behavior of the block, the dynamic mod-
ulus E* was computed on the basis of the stress 
signal σ(t) scaled with the amplitude of the local 
total strains Δε (Fig. 9). The curve of the time-
dependent dynamic modulus shows the expected 
stepwise decrease in the modulus with increasing 
dynamic strain amplitude. This result corresponds 
to the Payne-effect in the time domain and was 

observed in the DMA step-tests plotted in Fig. 3. 
The effect of different significant microstructure 
relaxations times during the different deformation 
amplitudes can be seen in the simulations too.

The positions of critical strains and stresses in 
the rubber block can be detected directly in the 
post processor because the local dynamic moduli 
are influenced by these quantities. As a matter of 
fact, the area around the hole of the rubber block 
is the most critical location. According to the com-
puted modulus in Fig. 9, the local stiffness is about 
four times smaller during large cyclic deformations 
than during small deformations. This knowledge 
can be supportively used in the context of mate-
rial or shape optimizations of bushings or shock 
absorbers. Further applications of transient simu-
lations can be found in the big area of multibody 
simulation in the automotive industry. In this con-
text, the dynamic reaction forces from suspension 
bushings or engine mounts contain basic infor-
mation for further works, like durability or NVH 
analyses.

6 CONCLUSIONS

In the present work, a nonlinear constitutive model 
of finite viscoelasticity which considers the typical 
amplitude dependence of carbon black reinforced 
elastomers has been formulated. The basis of the 
model is a nonlinear Maxwell chain in combination 
with a hyperelastic equilibrium stress and process 
relaxation times or viscosities. In order to describe 
the amplitude dependence a set of additional 
internal state variables has been introduced which 
can be attributed to microstructural relaxation 
phenomena. The developed material model was 
implemented into the commercial FEM software 

Figure 9. Computed dynamic modulus from the FEM 
stress response in the area around the hole.

Figure 7. UY_U—Transient loading displacement 
function with changing dynamic amplitude on the top 
plate of the model and UY_H—local displacement in 
hole area.

Figure 8. Amplitude dependent stress response in the 
hole area with microstructure relaxation from FEM 
simulation.
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ANSYS. The material parameter identification 
was realized on the basis of comprehensive DMA 
experiments in both the time and the frequency 
domain. Already with a fairly small number of 12 
nonlinear Maxwell elements the fundamental phe-
nomena of filler-reinforced rubber are qualitatively 
and quantitatively described. A transient FEM 
simulation of a simple vibration isolator (rubber 
block with a hole) was computed as demonstration 
example.
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A computational contact model for nanoscale rubber adhesion

Roger A. Sauer
Institute for Continuum Mechanics, Leibniz Universität Hannover, Germany

ABSTRACT: We present a continuum mechanical contact model which is capable of describing and 
simulating rubber adhesion at the nanometer scale. The formulation is based on the coarse-graining of the 
molecular interaction, like van der Waals attraction, between neighboring solids during contact. A non-
linear finite element implementation of the model is presented which allows the efficient simulation of 
adhesive contact problems at the range between several nanometers and a few micrometers. The model 
shows excellent agreement with the analytical JKR theory in the range where the JKR model is applicable. 
The model behavior is illustrated by several numerical examples. As an application of the contact model 
the nanoindentation of a thin rubber film is considered.

2 A CONTINUUM ADHESION MODEL

This section provides an overview of the coarseg-
rained contact model (Sauer and Li 2007b), which 
is suitable to model nanoscale rubber adhesion. 
We consider two interacting bodies, B1 and B2, and 
suppose that the system is governed by the poten-
tial energy

Π Π Π Π= − +
=

∑ [ ] ,int, ,k k
k

ext c
1

2
 (1)

where

Πint, dk k k kV
k

= ∫ W ( )F
B0  

(2)

denotes the internal energy of body Bk (k = 1, 2). 
As an alternative to the integration over the refer-
ence configuration B0k , Πint,k can also be expressed 
as an integration over the current configuration Bk. 
Wk denotes the energy density per reference vol-
ume. In general, Wk is a function of the deforma-
tion gradient Fk = grad ϕk.

Adhesive contact is described by the contact 
interaction energy

Πc = ∫∫ β β φ υ υ1 2 2 1
21

( ) ,r d d
BB  

(3)

where φ (r) denotes the interaction energy between 
the molecules of body B1 and B2. Here we use the 
Lennard Jones potential
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1 INTRODUCTION

This research is motivated by understanding and 
analyzing the nanoscale interactions between two 
contacting bodies. At this scale long-range inter-
action forces, like van der Waals adhesion, play a 
crucial role in determining the contact behavior. 
In many cases molecular adhesion carries over 
to macroscale problems. Examples include gecko 
adhesion and rubber adhesion on smooth sur-
faces. The mechanisms furnishing the transition 
of adhesion from the nanoscale to the macroscale 
are a topic of  active research. Key factors facilitat-
ing the transition are the compliance of the bod-
ies and the surface roughness on the intermediate 
scales.

In (Sauer and Li 2007b) we have proposed 
a computational model for nanoscale contact, 
termed the coarse-grained contact model (CGCM), 
that offers great flexibility in analyzing general 
contact problems at the range of  a few nanometers 
to many hundreds of  nanometers accurately, and 
which can be used in computational multiscale 
techniques to be applied at even larger scales 
(Sauer 2009).

This paper gives an overview of  the coarse 
grained contact model and discusses its appli-
cation to rubber adhesion. The overview of  the 
theoretical and computational framework of  the 
CGC model is given in sections 2, 3 and 4. For 
validation, section 5 presents a comparison 
between the CGC model and the widely used 
JKR theory. In section 6 the application of  the 
CGC model to the nanoindentation of  a thin 
rubber film is considered. Section 7 concludes 
this paper.



48

which is suitable to model van der Waals adhesion. 
The quantities β1 and β2 denote the molecular den-
sities of bodies B1 and B2. These densities refer to 
the current configuration. The transformation

β β0 1 2k k k k k k= = =J J, det , , ,F  (5)

provides the molecular densities, denoted β01 and 
β02, in the reference configuration.

Πext,k denotes the external energy applied to 
body Bk through imposed body forces and surface 
tractions. The equilibrium configuration of the 
two interacting bodies is found from setting the 
variation δ Π equal to zero for all admissible vari-
ations of the deformation ϕk . The variation of the 
contact energy (3) yields
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denote the interaction forces acting at xk ∈ Bk. 
As seen, they depend on the integration over the 
neighboring body. Under certain, realistic approxi-
mations (Sauer and Wriggers 2009) these forces 
can be written as
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where rk denotes the closest distance between point 
xk and the surface of the neighboring body B� 
(� = 1, 2; ≠ k). Vector np denotes the surface normal 
of B� at the closest projection point of xk. The 
material parameters B� and � can be replaced by 
Hamaker’s constant AH = 2 2

01 02 0
6π β β �r (Israelach-

vili 1991). Setting δΠ = 0 for all admissible varia-
tions δϕk, we obtain the statement
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which is the governing weak form of the considered 
contact problem. Alternatively eq. (9) can also be 
written as an integration over the reference configu-
ration B0k. Since the contact forces bk, according to 

eq. (8), vary rapidly, special care is required for the 
numerical integration of the last term in eq. (9). To 
improve the numerical integration, an alternative 
formulation to eq. (9) has been developed in (Sauer 
and Li 2007b; Sauer and Li 2007a), which is based 
on surface tractions. We therefore consider

d d dυ αk k k k k= c r r a�( ) cos ,  (10)

where c� depends on the surface curvature of the 
neighboring body B� (Sauer and Wriggers 2009). 
For small curvatures c� → 1. With the help of rela-
tion (10) we can rewrite statement (9) into

grad ext( ) :

cos

,δ υ δ

δ α

ϕϕ σσ

ϕϕ
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k k k

k k k k

k
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(11)

where tk denotes the contact surface traction 
defined by

t bk k k k k k: ( ) ( ) .= ∫ c r r rlr

r

s

c β d
 

(12)

Considering βk constant, the integration of 
eq. (8) yields

t nk k
k k
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(13)

Equation (13), together with eq. (11) provide 
the basis of the finite element implementation of 
the CGC model that is discussed in the following 
section. Further details on the derivation reported 
above and a careful analysis of the accuracy of 
this model are presented in (Sauer and Wriggers 
2009).

3 NONLINEAR FINITE ELEMENT 
FORMULATION

This section presents the basic finite element equa-
tions of the adhesive contact model governed by 
weak form (11). The focus here is placed on the 
treatment of the contact integral (the last term 
in eq. (11)); the treatment of the internal and exter-
nal integrals can be found in the nonlinear finite 
element literature, e.g. (Wriggers 2008).

In order to discretize the contact integral, we 
consider the usual finite element interpolations 
for the displacement field uk and its variation δϕk. 
Inside each finite element Γe that discretizes the 
surface of Bk , we have
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uκ κ≈ ≈N u N ve e e e, δϕϕ  (14)

with

Ne nN N N
e

= [ , , , ],1 2I I I…
 

(15)

where NI denotes the shape function of node I of  
element Γe. The contact integral over the surface 
element can thus be written as

− ⋅ =∫ δ αϕϕk k k k
T e

k
t cos ,d ea

Γ
v fc

 
(16)

where

fc eNe T
k k k: cos= −∫ t α da

eΓ  
(17)

defines the contact force vector acting on the 
nodes of element Γe. For practical computations 
it is convenient to transform this expression to 
an integration over the reference configuration of 
the element as is discussed in (Sauer and Wriggers 
2009). That paper also gives further details on the 
finite element derivation and presents the contact 
algorithm and the linearization of vector fc

e.

4 MODEL PARAMETERS

To characterize the size effect and the adhesional 
strength of a considered problem we introduce the 
parameters

γ γL W
R
r

W
w

= =0

0

0

0
, .

 
(18)

R0 and r0 are two length scales that characterize 
the overall problem geometry and the nanoscale 
equilibrium spacing of the Lennard-Jones poten-
tial (4). Parameter γ L thus characterizes the size of 
the problem in relation to the atomic scale. W0 and 
w0 denote two energy densities that correspond to 
the energy stored in the elastic deformation and in 
the adhesion. They are defined as

W E w
r0 0
0
3= =, ,AH

2 2π  
(19)

where E denotes Young’s modulus and AH denotes 
Hamaker’s constant. According to the defini-
tion of Hamaker’s constant we can also write 
w0 = β β01 02 0

3�r . Parameter γ W characterizes the 
bulk stiffness of the problem in relation to the 
strength of adhesion. A large value of γ W corre-
sponds to relatively stiff  bodies and weak adhesion, 

whereas a low value for γW corresponds to relatively 
soft bodies and strong adhesion. Typical values for 
the molecular equilibrium spacing and Hamaker’s 
constant are r0 = 0.4 nm and AH = 10−19 J (Israelach-
vili 1991).

5 COMPARISON WITH THE JKR MODEL

As a validation of the coarse-grained contact model, 
we compare it with the analytical contact model 
of (Maugis 1992). This model is a generalization 
of the widely used JKR model (Johnson, Kendall, 
and Roberts 1971), which is often applied to rubber 
adhesion. The comparison presented here extends 
the comparison reported in (Sauer and Li 2007a). 
That paper also lists the equations of the analyti-
cal Maugis model. The Maugis model is based on 
linear half-space theory and applies to the adhe-
sive normal contact of two spheres, where the 
contact area is much smaller than the radius of 
the spheres. Here we consider contact between a 
sphere of radius R0 = 21 nm with a flat half-space 
(i.e. radius ∞). Considering r0 = 0.4 nm, this cor-
responds to a size parameter of γ L = 52.5. In the 
Maugis model the strength of adhesion is char-
acterized by the parameter λ ∈ (0, ∞). Increasing 
λ corresponds to increasing adhesion. In fact the 
limit λ → ∞ reproduces the JKR model as a special 
case. In the present example the adhesion param-
eter is chosen as λ = 1.3. Parameter λ is a model 
specific parameter that has no explicit correspond-
ence to the physically motivated parameter γ W. It 
has been found that the value γ W = 11.55 produces 
a remarkable agreement in the following results.

Figure 1 shows the normal contact force P versus 
the normal contact approach u for the considered 
problem. For moderate displacements the agree-
ment is excellent. For increasing displacements 
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Figure 1. Load displacement curve for a sphere in 
adhesive contact with a half-space.
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the two curves diverge since the small deformation 
assumption used in the Maugis model is no longer 
valid. For increasing negative displacements, which 
correspond to separating the bodies, the Maugis 
model loses its applicability since it is not defined 
there. For the considered case a contact instability 
exists, which is indicated by the S-curve in the load-
displacement curve (Sauer and Li 2007b).

To further illustrate the agreement between the 
two models, we examine the radial contact pressure 
between the two bodies as is shown in Figure 2. 
The pressure distribution according to Maugis 
and the CGC model is shown in the graphs on 
the right hand side. The agreement between both 
models is excellent. The vertical axis displays the 
radial distance from the symmetry axis meas-
ured relative to the sphere radius R0. The hori-
zontal axis measures the pressure in multiples of 

Young’s modulus E. Altogether, four cases are 
shown, which correspond to the four states at 
u = –0.0388 R0, u = –0.0176 R0, u = 0.0423 R0 and 
u = 0.1013 R0 that are marked by open circles in 
figure 1. According to the Maugis model these cor-
respond to a = 0.050 R0, a = 0.186 R0, a = 0.329 R0 
and a = 0.420 R0, where a characterizes the radius 
of the contact area. The graphs on the left hand 
side display the deformation of the contact part-
ners together with the stress field σz, which is the 
stress component in the vertical direction. The 
stress coloring chosen in the figure ranges from 
−0.12 E (dark blue) to 0.08 E (dark red). Both the 
stress field, and the pressure distribution show the 
smooth repulsive compression at the center of con-
tact and the sharp attractive tension at the contact 
boundary. The agreement between the two models 
is much better in the repulsive zone than in attrac-
tive zone, which is due to the approximation intro-
duced by Maugis in order to describe the adhesive 
pressure.

Further comparison examples, along with detailed 
discussions, are given in (Sauer and Li 2007a).

6 NANOINDENTATION EXAMPLE

As a numerical example of  the coarse grained 
contact model we compute the 3D nanoindenta-
tion of  a thin rubber film. A rigid Vickers indenter 
is considered, which is a four-sided pyramidal 
indenter with an opening angle of  2 × 68° between 
opposing faces. The indenter is pressed into the 
thin film which has a considered thickness of 
R0 = 10 nm. Considering r0 = 0.4 nm, this corre-
sponds to a size parameter of  γ L = 25. Initially a 
gap of  g0 = 1.5 r0 = 0.06 R0 is chosen between the 
indenter tip and the film surface. The rubber film 
is considered perfectly bonded to an underlying 
rigid substrate. The rubber material is considered 
nearly incompressible, and is described by the 
Neo-Hookean material model

W J U J I( , ) ( ) ( ),C^ ^= + −μ
2
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(20)

which is based on a split between the volumetric 
deformation, described by the determinant of the 
deformation gradient

J = det ,F  (21)

and the deviatoric deformation, characterized by

I J
T^ ^ ^ ^ ^ ^

1

1
3= = =

−
trC C F F F F, , .  (22)
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Figure 2. Contact between sphere and half-space: 
Deformation and stress field (left); contact pressure 
between the two bodies (right); The four cases corre-
spond to the four states marked in figure 1.
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The volumetric strain energy is taken as

U J
K

J
K

J( ) ( ) .= − −
4

ln2 1
2  

(23)

Parameters K and μ denote the bulk and shear 
modulus which are related to Young’s modulus E 
and Poisson’s ratio ν according to

K E E=
−

=
+3 1 2 2 1( )

,
( )

.
ν

μ
ν  

(24)

In the following example Poisson’s ratio is cho-
sen as ν = 0.499. E is used for normalization and 
can thus be left unspecified.

For the following indentation computations a 
Q1P0 finite element formulation for large defor-
mations is used (Wriggers 2008). Due to symme-
try only a quarter segment of the film is modeled. 
A segment size of R0 × 3R0 × 3R0 is chosen.

Figure 3 shows the load displacement curves 
in the range u ∈ (−0.1 R0, 0.5 R0) for the cases of 
weak adhesion (γ W = 1000) and strong adhesion 
(γ W = 10). The difference between both cases is 
revealed by the enlargement shown in Figure 4. 
For γ W = 10 considerable attraction (P < 0) exists 
between the bodies prior to contact. For γ W = 1000 
the attractive forces between the bodies are negli-
gible and the resultant contact load P is positive. 
Further, Figure 4 shows the results for two differ-
ent meshes: a coarse mesh with 10 elements along 
R0 and a fine mesh with 25 elements along R0. The 
figure shows that for γ W = 1000 (weak adhesion) 
the difference between both meshes is very small. 
For γ W = 10 (strong adhesion) however, the coarse 
mesh causes a large error so that the difference 

between the coarse and fine mesh is quite large. 
This shows that for increasing adhesion finer 
meshes must be used in order to maintain accurate 
computational results.

Figures 5 and 6 display the deformation 
at u = 0.5 R0 for γ W = 1000, where adhesion is 
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Figure 3. Load displacement curve P(u) for indentation 
with weak adhesion (γ W = 1000) and strong adhesion 
(γ W = 10).

Figure 4. Enlargement of the load displacement curve 
from figure 3.
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Figure 5. Nanoindentation of a rubber film: deforma-
tion and stress field under the indenter for weak adhesion 
(γ W = 1000).

Figure 6. Nanoindentation of a rubber film: deforma-
tion and stress field under the indenter for strong adhe-
sion (γ W = 2.17).
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negligible, and γ W = 2.17, where the adhesion 
is very strong. As can be seen, strong adhesion 
leads to large tensile contact forces and surface 
deformations at the contact boundary, which are 
not present for weak adhesion. The coloring shown 
in both figures visualizes the stress field σr, which is 
the stress in the radial direction from the indenter 
tip. For γ W = 2.17, the range of σr lies between 
–0.55 E (blue: compression) and 0.09 E (red: ten-
sion). Since the tensile stress region is localized in a 
narrow band at the contact boundary, a high mesh 
refinement is needed to capture these forces accu-
rately. The adhesion forces lead to the reduction of 
the resultant contact force: For γ W = 1000 we have 
P = 0.549 ER2

0, whereas for γ W = 2.17 we only have 
P = 0.506 ER2

0.

7 CONCLUSION

The present paper introduces the coarse-grained 
contact model, a computational nanoscale contact 
model based on nonlinear continuum mechanics, 
and applies it to rubber adhesion. The model is 
validated against the analytical contact model of 
(Maugis 1992), which is based on the JKR model. 
The comparison shows an excellent agreement 
between the models in the range where the JKR 
theory is applicable. Finally the computational 
contact model is applied to the analysis of the 
nanoindentation of a thin rubber film. The differ-
ent behavior between weak and strong adhesion 
is illustrated and it is shown that strong adhe-
sion computations require a much larger mesh 
refinement.

Further validation of the CGC model has been 
reported in our previous studies: In (Sauer and Li 
2007b) the deformation of carbon-nanotubes is 
computed and compared to related studies in the 
literature. In (Sauer 2009) a multiscale contact 
model descibing the gecko adhesion mechanism 
is presented and it is shown than the computed 

pull-off  forces of a single gecko spatula is in agree-
ment to experimental data. A rigorous numerical 
analysis of the CGC model as well as details on the 
3D finite element equations are discussed in (Sauer 
and Wriggers 2009).

The continuum mechanical framework gives the 
CGC model great flexibility and allows the accurate 
computation of a large class of contact interaction 
problems at the nanoscale. The CGC model can be 
applied for length scales down to a few nanometers 
before the continuum assumption breaks down. At 
this range the model is still far more efficient than 
molecular mechanics computations (Sauer and Li 
2008).
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implemented into a general purpose finite element 
code (ABAQUS via user’s subroutine) for form-
ing simulation. In the framework of Continuum 
Damage Mechanics, the formulation is based on 
the decomposition of the gradient of deformation 
into a nearly-incompressible elastic part, which the 
strain-energy function is depended, and a volumi-
nal damage part induced by an isotropic variable 
introduced into the same function.

The proposed approach can be used with sev-
eral examples of the isotropic behaviour filled-
elastomer, using classical energy densities, as the 
Ogden and polynomials models. The local inte-
gration is outlined thanks to the Newton iterative 
scheme applied to a reduced system of one equa-
tion after some numerical assumptions. For the 
equilibrium solution strategy, dynamic explicit 
method is used. Some numerical examples are pre-
sented to discuss the capability of the coupled non 
linear hyperelastic model to predict isotropic duc-
tile damage initiation and growth during forming 
processes of filled-elastomer.

2 CONSTITUTIVE MODELING

2.1 Basics kinematics

We consider a rubber-like solid regarded as a con-
tinuous body. To formulate a three-dimensional 
constitutive theory to represent the non-linear 
behaviour of  filled-elastomers, the multiplicative 

1 INTRODUCTION

The rubbery environments present the same mechan-
ical behaviour as hyperelastic or visco-hyperelastic 
solids. With a wide range of applications in indus-
trial products, and the variety of effects in rubber, 
the models become more and more sophisticated. 

Most of the implementations of constitutive 
model are done via the free strain-energy function 
which is modified by introducing variables to take 
into account the various physical phenomena (Lion 
1996; Mullins 1969; Dorfmann and Ogden 2004). 
For example, the high degree of deformability 
often generate microscopic and voluminal defects 
leading to the creation of micro-cracks inside the 
structure. A first work was done in (Figueredo and 
Cherouat 2007), where we proposed to enrich a 
non-linear coupled damaged hyperelastic behav-
iour of rubber-like materials. This latter reproduce 
both the Mullins effect in cyclic loading and a per-
manent degradation effect of the matter noticed 
as from the primary loading. In addition, the 
approach has been modified in (Figueredo and 
Cherouat 2008) considering a permanent strain 
induced by the degradation effect in the matter.

Now this paper deals with the experimental 
investigation and constitutive modeling of the 
mechanical response of filled-elastomer mate-
rials. A FE-implementation of a constitutive 
model for rubber into the programs ABAQUS 
taking into consideration a permanent and volu-
minal strain induced by damage is developed and 
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decomposition of  the deformation gradient into 
an elastic and a damage part is used (Sidoroff 
1975; Andrieux 1996):

F F F= ⋅e d  i.e. in determinant: J = JeJd (1)

where the elastic (Fe) and the permanent compo-
nent (Fd) represent respectively the reversible and 
the irreversible transformation. Fd is the fictitious 
intermediate configuration linked to the dam-
age process which is physically interpreted as a 
unloaded configuration made by the elastic return. 
Finally, we deduce the elastic left Cauchy-Green 
tensor and its rate:

B F F Ve e eT e= ⋅ = ( )2
 (2)

B L B B L V D V⋅ = ⋅ + ⋅ − ⋅ ⋅e e e e d e2 *  (3)

where Ve is the pure elastic strain tensor (i.e. 
F V R Be e e e= ⋅ ⋅)   and Ve are both Eulerean 
elastic strain measure. As for L F F( )=

⋅
⋅ −1  and 

D R D Rd e d eT*( )= ⋅ ⋅ , they measure the rates strain 
respectively of the total and the permanent defor-
mation (Dd being the symmetric part of �F Fd d −1

).

2.2 Thermodynamics background

The pure elastomers are supposed incompressible 
or almost-incompressible. The deformation due to 
the carbon chain deployment inside the structure, 
can not induce variation of volume. This leads us 
to satisfy the assumption of one elastic transfor-
mation isochoric or almost-isochoric. As for the 
permanent transformation, in the case of filled-
elastomers for example, the irreversible formation 
of micro-cracks and voluminal defects is reflected 
by an increasing variation of the volume. Thus we 
should verify during a loading:

Je ≈ 1 and then : Jd ≈ J (4)

Under this condition, J increases with the dam-
age’s appearance inside the structure. Ones postu-
late a relation between J and D (D being the scalar 
internal variable linked with the isotropic damage). 
For example, from (Saanouni et al. 1998; Andrieux 
1996), a potential, depending on J and D, is postu-
lated to satisfy the following internal constraint:

Φ = Φ (J, D) = J − g(D) = 0 (5)

where g(D) is a differentiable, positive and increas-
ing scalar function of the damage variable D, 
and g(D = 0) = 1 for a classical incompressibility 
condition.

Within the framework of the laws of isotropic 
hyper-elastic behaviour, we consider the free strain-
energy function W, which depends overall on the 
elastic motion Fe, and the internal variables Ξi asso-
ciated to physical phenomena inside the material.

We will keep the same notation to express 
the free strain-energy function W with different 
mechanics motion elements:

W W W I I I
W

e
i

e
i

e e e
i

e e e
i

( , ) ( , ) ( , , , )
( , , , )

F BΞ Ξ Ξ
Ξ

� �
�

1 2 3

1 2 3λ λ λ

where the Ii
e and the λi

e i( , , )∈{ }1 2 3  respectively the 
invariants of the tensor Be and the principal elastic 
elongations (i.e. eigenvalues of Ve). 

Finally in an isotherm framework, we write the 
fundamental inequality of Claudius-Duhem:

D = − ≥τ :D �W 0  (6)

where τ is the Kirchhoff stress tensor, and D the 
symmetric part of L.

2.3 The free strain-energy function coupled 
with damage

In this work, we propose to couple the Ogden form 
of strain-energy function with an internal state 
variable D, which take account the irreversible deg-
radation of the matter following isotropic CDM 
theory (Lemaitre and Chaboche 1985):

W J D D W Ji
e e

i
e e( , , ) ( ) ( , )λ λ= −1 0  (7)

with λi
e e

i
eJ= −( ) ,/1 3λ  and:

W J

D
J

i
e e i

i

e e e

i

n

e

i i i
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1
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2

3

1 1

( , ) ( )

( )

λ μ
α

λ λ λ
α α α

= + + −

+ −
=
∑

This form is decoupled in a deviatoric part 
(depending on λi

e) and a voluminal part (depending 
on Je), and μi, αi and D1 are material parameters. 

Just like those form expressed with the invariants 
of the tensor Be (Polynomial form of Mooney), the 
prediction depends on the development’s degree 
n. The D1 value determine the compressibility on 
elastic motion, and it can be considered as almost-
incompressible if  the value are close to zero (the 
ABAQUS Software recommends values about 
10–2–10–3 to satisfy this condition).

Finally the current use of the Ogden form by 
experimenters (uniaxial-biaxial tensile test, simple 
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shear) pushes us to make it available on tridimen-
sional simulations.

2.4 Damage evolution

In order to describe the damage evolution, we 
firstly consider W0 as a function expressed with 
B e and Je. From the relation (3), we calculate the 
derivative of W:

�W D
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The latter relation is introduced into the 
inequality of Claudius-Duhem (6), and after some 
calculations we obtain the folloming relations (the 
stress-strain relation and the dissipative relation):
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where Y and τ are the thermodynamic forces respec-
tively associated to the damage D and the permanent 
rate tensor of deformation Dd* turned, given by:

Y = − ∂
∂

=W
D

W Ji
e e

0( , )λ
 

(9)

Following the framework of the Generalised 
Standard Materials theory in the case of rate-
independant flow, a damage criterion is given by 
(Andrieux 1996):

f (Y; D) = Y − Q (D) ≤ 0 (10)

An unloading, neutral loading or loading from 
a damage state shall be added to this criterion. 
Q(D) being a differentiable positive and increasing 
function of D, representing the size of the damage 
surface in the Y-space and is given by:

Q D Q D Dn( ) = + 0  
(11)

where Q, n and D0 are the damage parameters. 
Q is the intensity expressed in term of energy, n 
is describing the linearity of the damage effect 
evolution, and D0 is a positive threshold of 

non-damage effect (usually D0 << 1). Finally, in the 
same space, a flow potential is introduced to com-
plete a non-associative damage flow:

F D R
DD ( , ; ) :Y Yτ τ τ= +

−2 1  
(12)

where R is a parameter describing the intensity 
of the permanent deformation. Following the 
standard normality argument the damage and the 
permanent rate tensor evolution (complementary 
laws) are given by:
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where δ
.
 is the damage multiplier given by the con-

sistency condition f
.
 = 0, i.e.:

�δ τ
τ τ τ τ= ° :

° : ° + ′( ° = (
)

D) with  1R DQ D−  
(14)

3 NUMERICAL APPLICATION

3.1 Numerical resolution

After some simplifications, the model is reduced 
to a scalar equation (damage criterion) and a ten-
soriel equation (evolution of B e):
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(15)

The Euler-Implicit time discretisation for flow 
variables and the Newton-Raphson method for 
non-linear equation resolution are used. The 
deformation gradient F is known at the beginning 
and at the end of the increment and all the other 
elements are known at the beginning of the incre-
ment. ΔD and ΔBe are the principal unknowns. 
When the systems (17) is resolved, the stress can be 
calculate from the hyper-elastic behaviour (8) with 
the new values of Dt+Δt and Bt t

e
+Δ . The proposed 

model is implemented in ABAQUS Software using 
user’s Subroutine, UMAT and VUMAT, respec-
tively for a global implicit and explicit integration.

3.2 Identification of material parameters

Firstly, we propose to identify the material param-
eters from an experimental uniaxial tensile test of 
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Figure 2. 3D cubic finite element.

Figure 3. Stress versus Strain.

Table 1. Numerical optimization method for identification.

Table 2. Material parameters.

μ1 −1.6025 MPa
μ2  0.2692 MPa
μ3 −0.0007 MPa
α1 −1.2303 Hyperelastic parameters
α2  2.8041
α3 −4.3190
D1  0.0005

Q 29.2240
n  2.6468
D0 10−6 Damage parameters
R  0.0003

a filled-elastomer test-tube. The principle of the 
numerical optimization used for the identification 
is shown on Table 1. The paramater’s values evalu-
ated by the optimization are shown on the Table 2, 
and the Force-Displacement curve associated to 
this result are shown on Figure 1. The parameters 
D1 and D0 are not identified in this study, and are 
fixed respectively to 0.0005 (almost-incompressible 
condition on the elastic motion) and 10–6 (thresh-
old of non-damage condition).

3.3 Numerical simulations

3.3.1 Uniaxial tensile test
In order to shown the efficiency of the coupled 
model, we simulate an uniaxial tensile test on a 3D 
cubic finite element presented on Figure 2. The 
parameters have the same values shown on table 2.

The comparison of the stress evolution versus 
the strain, coupled with damage effect and uncou-
pled, is presented in Figure 3. The stress-softening 
effect due to the damage processus is observed 
until the rupture (D = 1).

As for the variation of the volume, we present, 
in Figure 4, the evolution of the different dilations: 
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J (total), Je (elastic) and Jd (damage). The total 
volume has reached approximately 1.022 and we 
can note an almost-incompressible behaviour for 
the elastic motion, his value do not exceed approxi-
mately 1.005. This latter can be more reduced by 
the parameter D1 which can be defined smaller. As 
for the damage dilation, it reaches approximately 
1.015 due to the appearance of the damage during 
the loading.

3.3.2 Tensile test of a plate with hole
We propose to simulate a plate perforated in ten-
sile test. The latter will be modelled in 2D, via the 
ABAQUS Software, according to the dimensions 
of the Figure 5.

Only one quarter of the plate will be considered 
just to reduce the time-calculation. Calculation 
was carried out with and without damage for the 
comparison. Another calculation, using it stand-
ard model of ABAQUS, was also made to validate 

our model uncoupled (i.e. D = 0 during loading). 
The distribution of Von-Mises stresses at the hole’s 
edge is shown on the Figure 6. The maximum is 
reached at the hole’s edge on the top. The finite 
element, whose the stress is maximum, is selected 
to plot the curves of the Stress versus Strain (see 7) 
and the variation of volume (see 8).

Figure 4. Dilation versus Strain.

Figure 5. Diagram of the perforated plate.

Figure 6. Von-Mises stress at the edge of the hole (MPa).
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4 CONCLUSIONS

In this study, we have formulated a rate-independent 
model that captures the effects of material degra-
dation and a voluminal permanent set for a class 
of filled-elastomers. In the framework of CDM, 
an irreversible state variable D model the isotropic 
damage effect associated to the creation of micro-
cracks inside the structure. The model has been 
implemented into the finite element code ABAQUS 
and has been tested in order to shown the efficiency 
of the method. An optimization script has been 
developed to identify the different material param-
eters, hyperelastic and damage, from an uniaxial 
tensile test. Finally, the softening-stress and the vol-
ume variation respectivily induced by damage and 
the voluminal permanent strain are illustrated with 
two simulations: An uniaxial tensile test of one 3D 
finite element, and a tensile test of a plate with hole 
in 2D. In all cases, the results satisfy the almost-
incompressible condition for the elastic motion and 
a compressible motion for the permanent strain.
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An approach to the continuum description of the behavior 
of particulate elastomeric composites

L.A. Golotina & L.L. Kozhevnikova
Institute of Continuous Media Mechanics UB RAS, Perm, Russia

ABSTRACT: The proposed approach to the macroscopic continuum description of the behavior of 
particulate polymeric composites consists in prescribing the constitutive relations for tested materials as 
the dependence of the density of potential strain energy on the finite strain tensor invariants, obtained 
in studies of deformation and fracture in specialized cells. This relation is represented not analytically 
but as electronic spreadsheets that involve the results of solving the boundary-value problems of defor-
mation of structural cells. Algorithm of realization of the finite element method is developed to study 
the stress-strain state of particulate composite products based on the data taken directly from electronic 
spreadsheets.

2 STRUCTURAL CELL

A unit cell of a specified shape under specified 
loading conditions has been offered earlier as a 
representative mesoelement for particulate poly-
meric composites (Moshev & Kozhevnikova 2000). 
The offered structural unit cell represents an elas-
tomeric cylinder with the height equal to its diam-
eter. A rigid spherical inclusion (filler) is placed at 
the centre of the cylinder (fig. 1). It is assumed that 
this element is disposed within a closely packed 
ensemble. The maximum solid-phase filling of this 
package reaches 0.64, which coincides with the 
limiting filling of random structures consisting of 
identical spherical particles.

The cell is a main carrier of elastomeric com-
posite properties. The tensile strength of the cell 
is represented by three states: tension without dis-
continuity, tension with a separating matrix and 
matrix rupture followed by the loss of strength.

A set of parameters that govern the cell behav-
ior involves: properties of the elastomeric matrix 
(in the form of neo-Hooke’s model) and its rupture 

1 INTRODUCTION

Dispersion-filled elastomeric composite materials 
have found wide application in different engineer-
ing areas. In coarse-grained elastomeric compos-
ites the size of matrix layers between the particles 
is considerably larger than the typical size of mac-
romolecules. Under such assumption, the mechan-
ical behavior of  the material can be described 
using continuum mechanics approaches. A speci-
fied unit cell approach is capable to model fairly 
well the complicated macroscopic properties of 
particulate polymer composites. These materials 
are the systems in which it is possible to stand out 
the representative structural cells. This allows one 
to quantitatively estimate the mechanical behav-
ior of cells depending on the governing structural 
parameters: the volume part of the filler, the prop-
erties of the binding polymer and the strength of 
its coupling with the filler. In this case, it is also 
possible to investigate the evolution of cells on all 
stages since the moment of their formation to frac-
ture. Representative structural elements seem to be 
effective tools for creation macroscopic continuum 
models of advanced materials. An individual struc-
tural element or cell is supposed to be a specific 
construction capable of reflecting, in principle, 
macroscopic behaviour of the material. It is sup-
posed, as well, that the construction of the struc-
tural cell allows the effective properties of the cell 
to be determined. The transformation of the stress 
and strain fields existing inside a cell into the cor-
responding macroscopic characteristics of the cell 
is the step in describing a continuous medium. Figure 1. A unit structural cell.
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deformation, filler particle size, volume filler 
 concentration, and matrix-filler bond strength. 
The mechanical behavior of the cell is determined 
in the solution of the boundary-value continuum 
problem. It is assumed that the cells, being sub-
jected to tension, compression, or shearing remain 
cylindrical, and their ends—plane. This provides 
their dense packing during deformation. Herein-
after the structural cells will be considered as some 
solid elastic objects possessing the specific behav-
ior. Doing so, we turn from the structural descrip-
tion towards continuum one.

The next step consists in choosing appropri-
ate constitutive relations for the cell’s mechanical 
description. Among numerous alternatives, we 
have taken the simplest one

σij = 2 G (ε1, σ0) (εij –θ/3) + δij σ0,

θ = f (ε1, σ0).

Here, G is the shear modulus, and θ is the vol-
ume compressibility. These magnitudes are not 
constant. They are functions of current magni-
tudes of  the maximum main strain, ε1, and the 
mean stress, σ0.

A number of boundary value problems with var-
ious structural input parameters have been solved 
to get enough data for construction functions, 
G (ε1, σ0) and θ = f (εij, σ0), and ultimate strains at 
break values of cells.

The analytical description of materials with 
complicated behaviour, like that of damageable 
particulate composites, inevitably requires a great 
number of material parameters for adequate 
representation. However, as compared with the 
like descriptions obtained through treatment of 
physical experiments, it has an advantage of a 
greater comprehensiveness that can protect from 
unfounded extrapolations.

3 TABULAR FORM OF CONTINUUM 
RELATIONS REPRESENTATION

A new method of modeling the mechanical behav-
ior and failure of particulate polymer composites 
has been developed with the intent to explicitly 
relate meso- and macroproperties of the material. 
The proposed approach consists in creating a data 
base that involves the results achieved in solving 
the boundary-value problems dealing with defor-
mation of structural cells under different loading 
conditions up to failure. Calculated results are 
represented as the dependence of the deformation 
elastic energy density on the constitutive invari-
ants of the finite strain tensor. The availability 
of such data base makes it possible to develop 

the algorithm for the numerical solution of the 
boundary-value mechanical problems using the 
finite-element method (or any other numerical 
method in variational formulation) without the 
analytical representation of the dependence of the 
elastic potential on invariants.

A stepwise algorithm has been developed which 
allows the implementation of the finite element 
method at large deformations. Also developed are 
some specialized procedures providing the use of 
data taken directly from electronic tables in place 
of physical equations. It allows us to establish a 
direct connection between discrete tabular data 
and finite element techniques, based on a com-
monly used variational equation:

∂ ∂ ⋅ − ⋅ − ⋅ =∫∫ ∫W dV K u dV P u dS
V SV

/ ,ε δε ρ δ δ 0

where ε is the Cauchy-Green finite strain tensor, 
W = W(I1, I2, I3) is the potential energy density, 
Ii are the invariants of tensor ε.

In this case, the task is reduced to: (1) present-
ing tabular data, emerging from the solution of 
a set of particular boundary-value problems for 
unit cells, as a relationship between the poten-
tial energy density W and the invariants Ii of  the 
Cauchy-Green finite strain tensor ε; (2) develop-
ment of an appropriate interpolation procedure 
allowing rapid search of W-values in the tabular 
database; (3) the approximation of the relationship 
W = W(I1, I2, I3) for each finite element in a rather 
simple form which is suitable for construction of 
effective numerical algorithms.

The mechanical behavior and conditions for 
failure of the structural cell of at different volume 
percent filler fraction were studied under various 
loading conditions: tension and compression at 
positive, zero and negative external pressures and 
shearing. The obtained results were tabulated in 
electronic form.

Studies performed for discrete models showed 
that the occurrence of macrocracks in the material 
is only possible when it is inhomogeneous in prop-
erties. This inhomogeneity may be natural (initial) 
or induced in the course of the lifetime of the mate-
rial. It produces conditions under which the elastic 
stability is lost and the macrocrack appears in the 
most compliant point of the structure. Essential 
difference in the rigidity of elements comprising 
particulate composites and stochasticity of their 
location on structural level give grounds to refer 
these composites to initially inhomogeneous. As 
the source of initial inhomogeneity, we consider the 
variability of local concentration of the filler. First 
we assume that one cell corresponds to each finite 
element. To model the inhomogeneity of cells, we 
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use the data obtained by theoretical synthesizing 
random geometrical figures. For modeling the sys-
tems with the prescribed random distribution of 
properties, we have calculated dependences for 
cells with different volume filler concentration. 
The obtained results were tabulated in electronic 
form. When solving the boundary-value problem, 
we performed the local approximation W in terms 
of the data obtained for local concentration that 
were taken in a random fashion using the distribu-
tion function.

The tensile curves were calculated for rectan-
gular specimens. The numerical results were com-
pared with the existing experimental data. It was 
found that the proposal approach is capable to 
describe the complicated mechanical behavior of 
particulate polymer composites. Figure 2 demon-
strates the calculated stress-strain curve (2) and 
experimental data (1) from (Schwarzl et al. 1965). 
The similarity between the both curves seems to be 
satisfactory.

4 CONCLUSIONS

As it is demonstrated above, establishing analytical 
constitutive relations for materials with complicated 
mechanical behaviour meets considerable difficul-
ties, which originate of necessity to determine and 
use a great number of material parameters often 

with unclear physical meaning. Hence, a search of 
other approaches for describing mechanical behav-
iour of these materials seems to be justified.

The tabular form of the mechanical descrip-
tion is likely to be a realistic way, when one takes 
into account that informational resources and 
the computation time of the modern machinery 
are considerable and tend to further progressing. 
However, this approach will require solving some 
new problems. An algorithm for using such tables 
is to be developed containing the appropriately 
selected interpolation procedures and aimed at the 
incorporation into the well-known finite element 
techniques.

The transformation of the discrete mechanical 
description of structural elements into continuum 
form open the possibility of direct connection 
between structural specificity and well developed 
finite element design projects based on utilisation 
composite materials with complicated mechanical 
behaviour. This, in essence, means the establish-
ment of a closer contact between material scien-
tists and designers.

Moreover, identifying the behaviour of indi-
vidual finite elements with the behaviour of indi-
vidual structural cell we get a unique chance to 
incorporate into design procedures accounting 
natural mechanical inhomogeneity that deter-
mines the performance variability of  the designed 
macroscopic structures.
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A phenomenological finite strain framework for the simulation 
of elastic polymer curing

M. Hossain, G. Possart & P. Steinmann
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ABSTRACT: A phenomenologically motivated small strain model to simulate the curing of thermosets 
has been developed and discussed in a recently published paper (1). Inspired by the concepts used there, 
this contribution presents an extension towards the finite strain regime. The thermodynamically consist-
ent framework used here for the simulation of curing polymers is independent of the choice of the free 
energy density, i.e. any phenomenological or micromechanical approach can be utilised. Both the govern-
ing equations for the curing simulation framework and the necessary details for the numerical implemen-
tation within the finite element method are derived.

additional dependent variable into the Helmholtz 
free energy, namely the completion of reaction. 
The only limitation of this model is that a full 
derivation of stress tensors and consistent tangent 
operators, which are essential for the iterative solu-
tion of boundary value problems within finite ele-
ment schemes, is lacking.

Another approach has been published by Lion & 
Höfer (2) who proposed a phenomenological 
thermo-viscoelastic curing model for finite strain 
deformations. It accounts for thermally and chemi-
cally induced volume changes via a ternary mul-
tiplicative split of the deformation gradient into 
mechanical, thermal and chemical parts. Similar 
to Adolf’s ansatz, a coordinate of reaction is intro-
duced that corresponds to the degree of cure. The 
model is mainly based on the assumption of proc-
ess dependent viscosities as in the previous works 
of Haupt & Lion (10; 11; 12). The resulting con-
stitutive relation is derived in a thermodynamically 
consistent manner, i.e. it fulfills the second law of 
thermodynamics, which is an important issue that 
many of the earlier curing models did not touch. 
Detailed algorithmic formulations for the finite ele-
ment implementation of this model are elaborated 
in Retka & Höfer (13). The energy density used for 
the mechanical part of this model is of a phenom-
enological type.

The main assumption, considered earlier (1) 
in the development of  linear constitutive curing 
models, is, from the rheological point of  view, 
that a cross-linking or curing process can, for 
the elastic case, be understood as a continuous 
increase in stiffness. From a molecular point of 
view we assumed further that when a step in strain 

1 INTRODUCTION

There is a vast number of applications in almost 
every branch of daily life where polymeric materi-
als play an important role. In cases where the very 
formation of such materials plays a decisive role to 
meet particular design goals of a structure, e.g. for 
adhesives in automotive, electronics or aerospace 
industry, one can observe an increasing demand 
for constitutive models and simulation methods 
that consider a time- or degree of cure dependence 
of the mechanical properties. Apart from adhe-
sives, further applications relevant for such models 
would be carbon- or glass fibre-reinforced epoxy 
laminates and (nano-)particle-reinforced polymer 
structures in general (15; 16).

An uncured polymer usually behaves as a deform-
able viscous liquid practically incapable of sustain-
ing any load other than hydrostatic. With time 
evolving, the curing reactions proceed, polymer 
chains form (and possibly cross-link to each other) 
and the viscosity of the liquid resin, its molecular 
weight and the stiffness increase. A number of 
rheological analogies to such processes have been 
applied and discussed by several authors (2; 3; 4; 5) 
and also our previous small strain curing model 
made extensive use of such assumptions. A physi-
cally and chemically sound approach to model 
polymer curing has been developed in a series of 
papers by Adolf and co-workers (3; 6; 7; 8; 9), who 
proposed not only linear constitutive models but 
also an extension to the large strain regime. Their 
continuum model, originally devised to describe 
viscoelastic glassy polymers, is extended towards 
the curing of polymers by the introduction of an 
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is applied, the chains between existing cross-links 
are deformed which is accompanied by some stress 
distribution in the material. Due to the progress in 
curing, new cross-links occur which has been con-
ceptualised by the addition of new chains to the 
network. These fit into the already deformed struc-
ture and are not affected by the previous deforma-
tion, i.e. new chains do not contribute to the stress 
until the deformation is changed again. Expressed 
in rates this behaviour would be described by σ⋅  = 0 
as long as ε⋅ = 0. It is noteworthy that this particu-
lar behaviour prohibits the simulation of curing 
materials by just considering an additional time 
dependence of  the material parameters. Since we 
would like to avoid any initial restriction concern-
ing the choice of  constitutive model, we depart 
from our general equation for the stress update 
developed in (1) and provide the necessary exten-
sions to capture finite strain deformations. This 
approach is valid only for materials that have 
passed the gel point, which is only a weak restric-
tion since the stiffness increase relevant for practi-
cal applications takes place mainly after gelation. 
In particular, we will omit the consideration of the 
initial polymer solution as a multi-component dif-
fusion mixture.

2 SIMULATION FRAMEWORK

The method introduced here aims at the simulation 
of materials undergoing finite strain deformations 
while their elastic properties are simultaneously 
experiencing a temporal evolution. As a starting 
point we go back to the general equation for the 
one-dimensional stress update of our recently pub-
lished (1) small strain modelling approach for the 
curing of thermosets:

� �σ ε( ) ( ) ( ).t c t t=  (1)

Thereby, c(t) denotes the time-dependent mate-
rial stiffness linearly relating stress- and strain-rate. 
For the case of large strain deformations we trans-
fer this format to

� � � � �S E C( ) ( ) : ( ) ( ) : ( ),t t t t t= = 1
2

 (2)

where S, E = ½[C – I ] and C denote the 2nd Piola-
Kirchhoff stress tensor, the Green-Lagrange 
strain tensor and the right Cauchy-Green tensor, 
respectively. By (•

.
) the material time derivative is 

expressed and �(t) describes the time dependent 
stiffness operator as derived from the strain energy 
density Ψ of  an arbitrary, time-dependent material 
model via

�( ) ( )
( )

.t t
t

= ∂
∂

4
2

2
Ψ

C
 (3)

Stress formulation (2) is of a hypoelastic type, 
although it differs from the original version pro-
posed by Truesdell & Noll (14). As for any other 
constitutive assumption, the property of thermo-
dynamical consistency requires special attention. 
This property is given if  a free energy density Φ 
can be formulated that satisfies the isothermal dis-
sipation inequality

S E:
!

� �− ≥Φ 0  (4)

for all possible processes. The standard Coleman-
Noll argumentation then provides the stress 
formulation (2) if  the following ansatz for Φ is 
chosen:

Φ( ) [ ( ) : [ ( ) ( )]] : [ ( ) ( )] ,t s t s t s ds
t

= ′ − −∫1
2 0

� E E E E
 
(5)

where �′(s) = d�(s)/ds denotes the total differen-
tial of  the material specific, time dependent stiff-
ness tensor according to Eq. (3) and with respect 
to the integration variable s. In analogy to a lin-
ear spring, this convolution integral can be inter-
preted as the accumulation of  elastically stored 
energy while both the stiffness and the deforma-
tion are continuously evolving. Note that defini-
tion (5) is physically reasonable if  and only if  the 
derivative of  the stiffness tensor is positive semi-
definite, i.e.

[ : ] : ,′ ≥ ∀� E E E0  (6)

which is a requirement intrinsically met if  � is 
derived from an appropriately chosen strain energy 
density Ψ. To evaluate the dissipation inequal-
ity (4) the material time derivative Φ⋅  needs to be 
computed:

� � �Φ = ′ −⎡
⎣⎢

⎤
⎦⎥∫ ( ) : [ ( ) ( )] : ( ) .s t s t ds

t
E E E

0  
(7)

This additionally requires permutability of the 
double contractions, i.e.

[ : ] : [ : ] : ,

( ) ( ) ,

′ = ′ ∀

⇔ ′ = ′

� �

� �

A B B A A B

ijkl kl ij klij ij klA B B A
 

(8)

which is given since � stems from a potential and 
thus possesses major symmetry. Insertion of result 
(7) into the elastic version of (4) yields
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S E E E( ) ( ) : [ ( ) ( )] : ( )
!

t s t s ds t
t

− ′ −⎡
⎣⎢

⎤
⎦⎥

=∫ � �
0

0
 

(9)

and the standard Coleman-Noll procedure pro-
vides the following functional for the 2nd Piola-
Kirchhoff stress:

S E E( ) ( ) : [ ( ) ( )] .t s t s ds
t

= ′ −∫ �
0

 (10)

Computing the material time derivative finally 
yields the desired result, i.e. constitutive equation (2):

� � � � �S E C( ) ( ) : ( ) ( ) : ( ).t t t t t= = 1
2

 (11)

This tensor-valued ordinary differential equa-
tion for the stress can be solved iteratively by apply-
ing numerical integration schemes like the implicit 
Euler backward:

S S C Cn n n n n+ + += + −1 1 11
2

� : [ ],  (12)

whereas [•]n = [•] (tn) and tn+1 = tn + Δt. The main 
advantage of  this stress formulation is that any 
kind of  constitutive (polymer) model—either phe-
nomenologically or micromechanically based—
can be inserted. The only ingredients required 
are the temporal evolutions of  the governing 
material parameters to determine �n+1, which 
can be parametrised e.g. directly in time or in 
terms of  the degree of  cure. In particular, this 
ansatz is not restricted to hyperelasticity but can 
also be used for viscoelastic material models. 
A second important property of  relation (12) is 
its capability to reproduce the physical observa-
tion that the stress state of  a curing material is 
changed if  and only if  its strain state is modi-
fied, i.e. S

.
 = 0 as long as Ċ = 0. This requirement 

constitutes a significant design constraint for any 
model considering curing processes. It assures 
that the evolution of  material properties becomes 
visible just by the time the deformation state is 
changed—even though its free energy density 
evolves permanently.

In order to apply the finite element method for 
the solution of boundary value problems under 
certain constitutive assumptions, it is common 
practice to resort to implicit iterative schemes like 
the Newton-Raphson method. In particular, a 
consistent linearisation of stress formulation (12) 
with respect to changes in strain is required. The 
computation of this current tangent operator intro-
duces a sixth-order tensor A, namely the derivative 
of the current material specific stiffness operator 
with respect to the strain:

E
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n

n
n n n n

n

n sym n
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+

+
+ +

+

+ +

= ∂
∂

= ∂ + −
∂
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1
1 1

1
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S C C

C

C

( : [ ])
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� 11
1

1
1 1 1

− ∂
∂

= + −

+

+
+ + +

C
C

C C

n
n

n
n n n n

] :

[ ] : ,

�

� A

 (13)

where Isym = 1⁄2[δikδjl + δilδjk] denotes the symmetric 
fourth order identity tensor, δij is the Kronecker 
delta and An n n+ + += ∂ ∂1 1 1� / C .

In the following sections, this framework for 
the simulation of curing materials will be particu-
larised for the Neo-Hooke model. To this end the 
underlying expressions for free energy density Ψ 
and stiffness operator � are recapitulated and the 
corresponding tangent operators E are derived.

2.1 Application: Neo-Hooke model

We consider a rather simple but frequently used phe-
nomenological constitutive ansatz for polymers, the 
so-called compressible Neo-Hooke model for which 
the corresponding free energy density is given by

Ψ( , ) (ln ) ln [ ].C J J J I= − + −
1
2

1
2

32
1κ μ μ

 
(14)

Here, I1 = C : I denotes the first invariant of the 
right Cauchy-Green tensor while J = detF is the 
determinant of the deformation gradient and κ 
and μ are the Lam parameters. Using Eq. (3) some 
manipulations provide the corresponding stiffness 
operator C which is required in Eqns. (12, 13):

�

�

=
∂
∂

= ⊗ + −
= − −

− − − −

4

2
2

2

2
1 1 1 1

Ψ
C

C C C Cκ κ
κ κ

[ ln ]
[ ln ] .

μ
μ

J
JA B  

(15)

The fourth-order tensors A and B are intro-
duced for the sake of simplicity and can be written 
componentwise as

( ) ( )

( )

A

B

ijkl ijkl ij kl

ijkl
ijkl

= ⊗ =

=
∂
∂

⎛

⎝⎜
⎞

⎠⎟
= −

− − − −

−

C C C C
C
C

1 1 1 1

1 11
2

1 1 1 1C C C Cik jl il jk
− − − −+⎡⎣ ⎤⎦.

Thus, the current stiffness operator necessary to 
update the stress according to Eq. (12) is deter mined 
by the cure-dependent parameters κ, μ and the strain 
state included in J, A, B:

�n n n n J+ + + += − −1 1 1 12κ κA B[ ln ] .μ  (16)
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The current tangent operator (13) additionally 
requires the computation of An+1 :

A
n

n

n n

n

J
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+ − +

+
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∂

∂
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2 2

�
C

C C
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C
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A B B Bln

[

μ

BB C C,+ + ⊗ −− +2 21 1ln ]J nB C μ (17)

which closes the constitutive equations for a Neo-
Hookean material undergoing a curing process. For 
the sake of completeness the sixth-order tensors 
B = A, c and C = B, c are given component-wise:
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3 EXAMPLES

A few numerical examples are presented to dem-
onstrate that the proposed simulation framework 
can reproduce the mechanical behaviour of poly-
mers during isothermal curing. All simulations 
have been performed using a research-based in-
house finite element code that has been extended 
by the constitutive relations and tangent opera-
tors summarised in Section 2.1. First, some one-
dimensional examples reflect the behaviour of a 
single eight-noded brick element for a prescribed 
uniaxial stretch history and parameter evolution. 
Next, a three-dimensional simulation is presented 
to demonstrate the influence of stiffness gain on 
the material response. For the sake of simplic-
ity, the bulk modulus evolution has always been 
calculated from the current shear modulus via 
κ μ υ υ( ) ( )[ ] / [ ]t t= + −2 1 3 1  by assuming a constant 
Poisson’s ratio υ = 0.35.

3.1 One-dimensional example

First, a simple uniaxial tension test is simulated using 
a single finite element to check whether the proposed 

finite strain curing models will predict the gain in 
stiffness during the advancement of curing and 
provide a correct behaviour in case the strain rate 
becomes zero. To this end a three phase deformation 
is applied consisting of a linear increase to λ = 1.05 
within the first five seconds which is followed by 
fourty seconds holding and another linear increase 
to λ = 1.1 during the last five seconds, cf. Figure 1.

The Neo-Hooke curing model is used with a 
prescribed exponential saturation function for 
the evolution of the shear modulus, also depicted 
in Figure 1. The resulting stress responses versus 
time and stretch are given in Figure 2. The physical 
observation that the stiffness increase during cur-
ing has no impact on the stress response of a con-
stant deformation state is correctly reproduced, 
which is reflected by the constant lines between 5 
and 45 seconds (left-hand plots) and, implicitly, by 
the kinks at λ = 1.05 that stem from the continu-
ous increase of μ (right-hand side curves). Fur-
thermore, the initially fast growing shear modulus 
leads to a nonlinear stress growth during the first 
five seconds, whereas the behaviour is almost linear 
with high stiffness at the end since the saturation 
value for μ has been reached meanwhile.

3.2 Three-dimensional example

A three-dimensional U-shaped geometry is consid-
ered to present an example with inhomogeneous 

Figure 1. Load history λ(t) and shear modulus evolu-
tion μ(t) according to μ(t) = μ0 + [μ∞ – μ0] [1 – exp–κμt] with 
[μ0, μ∞, κμ] = [0.0001 MPa, 2.5 MPa, 0.0925 s–1], applied 
to the Neo-Hooke curing model.

Figure 2. Elastic curing using the Neo-Hooke model, 
Piola stress vs. time and stretch.



69

stress distribution under displacement-driven 
loading. Its dimensions are 20 × 16 × 2 mm3. The 
geometry is discretised by 384 eight-noded hex-
agonal elements and is supported as depicted in 
Figure 3(a). Displacement increments Δux = 0.4 mm 
are applied at the right side leg nodes to achieve 
elongations in x-direction. While being loaded, the 
specimen undergoes elastic curing, whereas 

[μ0, μ∞, κμ ] = [0.0001, 2.5, 0.115]

has been chosen for the Neo-Hooke model. 
Figures 3(b, c) depict the resulting deformations 
and Cauchy stresses in x-direction after forty tensile 
and another forty compressive displacement load-
steps. First, tensile stresses and a significant defor-
mation arise, cf. Figure 3(b) while after the second 
forty displacement loadsteps of equal magnitude 
but reverse direction, the plate is deformation-free 
but, due to the interim stiffness increase, still under 
compressive stresses, cf. Figure 3(c).

4 CONCLUSIONS

This contribution proposes a three-dimensional, 
thermodynamically consistent framework for 
the simulation of  polymeric materials undergo-
ing curing processes and finite deformations. 
Based on some elementary rheological consid-
erations the general equations for stress update 
and tangent operator as required for a finite 
element implementation are derived. With this 
at hand, phenomenologically motivated elastic 
polymer models is utilised. The numerical exam-
ples demonstrate that the developed approach is 
suitable to correctly reproduce the relevant phe-

nomena observable in curing polymers. None-
theless, some restrictions like the assumption of 
constant temperature and the purely phenom-
enological character of  the presented approach 
should and will be subject of  further investiga-
tion. Especially the extension towards viscoelas-
ticity and the consideration of  shrinkage effects 
is going to be dealt with in the next phase of  this 
work.
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ABSTRACT: In this article the mechanical properties of a porous carbon black-filled rubber are 
investigated with two different geometries. In this case it is important to mention the porosity and the 
associated compressibility of this material. In this contribution we focus on the theoretical modelling of 
the basic elasticity and of the visoelastic behaviour. Therfore, uniaxial tesion tests with different feedrates 
and different geometries are performed. It is found that the material behaviour is independent of the geom-
etry. The constitutive model for the basic elasticity is based on a polynomial ansatz for an incompressible 
material which is supplemented by a pressure term to match the compressible behaviour of the structure. 
Finally, the concepts of finite viscoelasticity with intermediate configuration is applied. Because the mate-
rial has a strongly nonlinear behaviour with respect to the feedrate nonlinear viscosity functions are intro-
duced. The material parameters of the model are estimated using a stochastic identification algorithm.

1 INTRODUCTION

Rubber materials are used in automotive parts 
such as tires and gaskets. For the developement 
of these complex parts the use of simulation tools 
and therefore an appropriate model of such mate-
rials is necessary. The most assemblies are com-
posed of a solid rubber part and a porous rubber 
part, both carbon black-filled. For the simulation 
of these complex assemblies, a material model for 
both kinds of rubbers is required. Porous rub-
ber materials are often called cellular rubber. The 
investigated cellular rubber is a mixed open- and 
closed-cell foamed rubber enclosed by a moulding 
skin. Its mechanical and thermical properties are 
not yet fully characterized, so research pays a par-
ticular attention on it. A worldwide overview on 
the application of cellular rubber used as gasket 
in automotive engineering is given by Vroomen, 
(Vroomen, Choonoo, Odenhamn, and Hatta 2004). 
Summarizing no correlation between results from 
experiments on dogbone specimens and the practi-
cally applied parts exists for cellular rubber. There-
fore an adequate model for cellular rubber does 
not exist, although there are many material models 
for incompressible rubber materials.

In this article the developement of a new material 
model for cellular rubber is proposed. Thus, uniax-
ial cyclic tests and relaxation tests using different 
rates are performed. Both the basic elastic and the 
viscoelastic properties are examined and identi-
fied. The particular difficulty of this material is 
the porosity leading to a structural compressibilty. 

Hence, a two-phase model is used to represent the 
experimental data. A compressible material model 
is developed for the basic elasticity taking into 
account the structural compressibility. Further-
more the viscoelastic part of the model is obtained. 
In this context other effects typically observed 
for rubber materials occure, such as the mullins 
effect. Another aspect is the high non-linearity 
with respect to the feedrate. For different feedrates 
nearly the same stresses and the same hysteresis 
loops are obtained. To quantify this behaviour a 
nonlinear viscosity function is established.

2 EXPERIMENTS

2.1 Samples and measurements

The experiments are performed using two speci-
mens of different geometries. Both dogbone speci-
mens according to ISO 527, cut from a car door 
gasket, and cylindrical specimens with a diam-
eter of 9 mm and a length of 110 mm are used. 

Figure 1. Two geometries of specimens with a silk-
screen mark.
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To control the deformation, the specimens are 
marked with silkscreen color as shown in figure 
1. Because of the compressibility of the material, 
the length and width of the mark is recorded by 
video extensiometry during the deformation. At 
this connection the stretches λ1 and λ2 in tension 
direction and in transversal direction respectivly 
can be calculated by

λ λ1
0

2
0

= =l
l

b
b

, ,
 

(1)

where l, b are the length and width of the mark in 
the deformed state and l0, b0 are the correspond-
ing quantities of the mark in the undeformed state. 
The material is assumed to be isotropic (λ2 = λ3). 
Hence, the increase of volume during the uniaxial 
tension test can be calculated by the determinant 
of the deformation gradient

det F = λ1 λ2 λ3 = λ1 λ2
2. (2)

2.2 Experiments and analysis

The following tension tests are performed:

• Preconditioning of the samples by cyclic tests
• Cyclic tests around a medial strain
• Tests at different feedrates to determine the vis-

coelastic behaviour
• Relaxation tests

The investigated black carbon-filled rubber 
shows a mullins effect in the first cycle that can be 
explained with the breakage of some network junc-
tion points. Due to this damage process the stress 
in the second cycle is below the one in the first 
cycle. Therefore, each specimen has to be precon-
ditioned, which means that the specimen is loaded 
and unloaded seven times with the highest feedrate 
of 0.273 s–1 until the maximum of deformation 
(100%). Hence, it can be excluded that the mullins 
effect influences the behaviour of the material dur-
ing the test.

Afterwards, the basic elasticity can be exam-
ined. In a quasi-static process with a feedrate of 
0.000273 s–l the cellular rubber still shows a hys-
teresis in the stress-strain diagram. Thus, the basic 
elasticity cannot be investigated with this process. 
Another possiblity to obtain the basic elastic prop-
erties are relaxation tests. Unfortunately relaxation 
tests cannot be applied for the examined material, 
because of the long relaxation time. Finally a suc-
cessful method to obtain the basic elasticity are 
cyclic tests around a medial strain. In these tests the 
examined deformation is predetermined and cyclic 
tests around this deformation are performed as 

 2.0
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Figure 2. Cyclic tests to get the basic elasticity.

can be seen in figure 2. The maximum peak of the 
obtained hysteresis in the stress-strain curve begins 
to fall down to a stationary curve. In figure 2 the 
first 50 cycles are shown. The stress value in the 
midpoint of the hysteresis of the medial strain, 
i.e. a strain of 60% in the example, represents the 
basic elasticity. By this method, the basic elastic-
ity can be obtained easier and faster than by the 
other methods. The basic elasticity is recorded for 
the dogbone and the cylindrical specimens respec-
tivly by the third method and the results are shown 
in figure 3. The curve of basic elasticity is nearly 
the same for both geometries. So it can be assumed 
that the basic elasticity is independent from the 
geometrical shape of the specimen. For that rea-
son, only the dogbone specimens are investigated. 
During the basic elasticity tests the behaviour of 
different feedrates is examined, too. It is found that 
there is no difference between the both geometries 
with respect to the visoelastic behaviour. So only 
the dogbone specimens are used for the following 
tests. To get more information on the viscoelastic 
behaviour the stress-strain curve is recorded using 
three different feedrates in the range from 0.273 s–1 
to 0.00273 s–1 during the first 5 cycles. Figure 4 
shows results for the fastest feedrate of 0.273 s–1, 
figure 5 the medial one and figure 6 the slowest one. 
It is important to mention that both the degree of 
the hysteresis and the maximum stress value do not 
change a lot with respect to the feedrate. Hence, the 
nonlinearity in time has to be taken into account in 
the model. The fast softening during the first cycle 
and the slower softening in the following ones has 
to be noticed, too.

Finally a relaxation test at a deformation of 
60% is performed, figure 7. After a relaxation time 
of 1800s the obtained stress value is around 10% 
bigger than the measured basic elasticity.
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3 MODELLING ASPECTS AND 
PARAMETER IDENTIFICATION

3.1 Theoretical modeling

In this section a phenomenological continuum 
mechanical model is presented, which is able to ade-
quatly reflect the results observed in the experiments 
by means of a finite viscoelastic material descrip-
tion including a point of compaction. The required 
basic theory will be derived and documented, 
whereby isothermal conditions are assumed and 
long-range effects are neglected. At this the stand-
ard viscoelastic rheological model is used, where a 

dogbone specimen
cylindrical specimen
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Figure 3. Basic elasticity of cellular rubber for different 
geometries.

Figure 4. Viscoelastic behaviour at a constant rate of 
0.273 s–1.
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Figure 5. Viscoelastic behaviour at a constant rate of 
0.0273 s–1.
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Figure 6. Viscoelastic behaviour at a constant rate of 
0.00273 s–1.

Figure 7. Relaxation tests at a deformation of 60%.
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single spring is connected in parallel to a series of 
spring-dashpot-elements (Maxwell elements).

The implementation of the finite viscoelasticity 
is realised on the concept of deformation-valued 
internal variables, e.g. (Lion 1996; Sedlan 2001; 
Reese 2001) and others.

In the theory of finite viscoelasticity a multipli-
cative split of the deformation gradient tensor F 
into an elastic part Fe and an inelastic part Fi is 
introduced. In this connection a fictitious interme-
diate configuration with its own deformation, stress 
and strain tensors is used. In order to account for 
the influence of the pore gas the theory of porous 
media, (Bowen 1980; Bowen 1982; de Boer 2000), 
is applied, a so-called hybride model, (Ehlers 1993; 
Diebels 1999). 

Additionaly the constitutive equations have to 
be discussed in a thermodynamically consistent 
frame. Therefore the Clausius-Planck inequality is 
recalled. For its derivation, the specific free Helm-
holtz energy ΨS for the solid phase and ΨG for the 
gas phase are introduced. To evaluate the entropy 
balance, the process variables

S GR
S S

je= { }ρ , ,B B  
(3)

are choosen where ρGR stands for the effective gas 
density, the left Cauchy-Green deformation ten-
sor B F FS S S

T= ⋅  and the left Cauchy-Green defor-
mation tensors B F FS S

je
S
jeT= ⋅ , which describe the 

Newton elements in the Maxwell elements. The 
evaluation of the entropy principle, (Coleman 
and Noll 1963), yields the following form for the 
Cauchy stress
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with the partial density of the solid ρ S, the partial 
density of the gas ρG and porosity n. This expression 
results from the assumption of an inphase motion 
of the gas and solid phase, i.e. from the assumption 
that the pores are closed. The pressure term pGR is 
obtained from the ideal gas law

p p J
J n
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(5)

with the Jacobian JS and the ambient pressure p0. 
The basic elasticity is represented by a Yeoh type 
approach, (Yeoh and Flemming 1997). This law is 
extended by a volumetrical term which describes 
the point of compaction, (Ehlers and Eipper 
1999). Perhaps a further modification of this term 

is needed, if  the data pool contains results of com-
pression tests. Finally the stress response for the 
basic elasticity is calculated by
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Moreover the polynomial ansatz of  the Yeoh 
model is modified to be monotonously. In the 
case of viscoelastic behaviour a set of Maxwell 
elements with appropriate evolution equations 
for the internal variables are established. For the 
Maxwell elements different models are used. The 
non-equilibrium stress based on the Neo-Hooke 
model leads to
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and the modified Yeoh model to
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Furthermore the non-linear viscosity is pre-
sented by

η η η η= + + −−
0 1 1 2 2k kD Dexp( )  (9)

with the deformation velocity D and the parameters 
η0, η1, η2, k1 and k2.

After all, the evolution equations in the deviatoric 
form result from the dissipation inequality, (Sedlan 
2001; Lion 2000). In the case of the Neo-Hookean 
model the evolution equation is represented by
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and for the modified Yeoh model by
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3.2 Identification of parameters and simulations

Based on the obtained data pool the parameters 
of the presented model have to be determined by 
a parameter identification. Therefore, the param-
eters of the basic elasticity are determined. Moreo-
ver the viscoelastic parameters are constituted. 
Three Maxwell elements proved to be sufficient 
to represent the viscoelastic behaviour of the dog-
bone specimens in the examined range of feedrates. 
The first Maxwell element is based on the Neo-
Hookean model, the second one on the modified 
Yeoh model and the third one also on the modified 
Yeoh model, but using only the last parameter c j

30. 
In this connection the nonlinear viscosity function 
is only used in the first and third Maxwell element. 
The second one is responsible for the shape of the 
curve and the slow decrease of the peak stress in 
successive cycles. 

Figure 8 shows a very good match between 
the experimental data at feedrate 0.0273 s–1 and 
the numerical simulation. In figure 9 the data of the 
fastest feedrate is presented. In this case, a good 
match between the experimental and numerical data 
is found. There are only small differences at large 
deformations λ1 ≥ 1.9. For the smallest feedrate, 
figure 10, the hysteresis is a bit too small and the 
characteristic softening after the first cycle cannot 
be seen. After the cyclic test a relaxation test is sim-
ulated to validate the results of the parameter iden-
tification. At the beginning of the relaxation there 
occure some differences between the experimental 
and the numerical results. After some seconds, the 
curves converged until the end of experiment. At 
this point the basic elasticity is not reached as can 
be seen in logscale, the value is around 10% above 
the measured basic elasticity, figure. 11.

Figure 8. Comparison between experimental and numer-
ical data for a rate of 0.0273 s–1.

λ
1
[−]

T
11

[M
Pa

]

0.4

1.0

0.8

0.0

1.2

1.4 1.8 2.2

experiment
simulation

Figure 9. Comparison between experimental and numeri-
cal data for a rate of 0.273 s–1.

λ1[−]

T
11

[M
Pa

]

0.4

1.0

0.8

0.0

1.2

1.4 1.8 2.2

experiment
simulation

Figure 10. Comparison between experimental and numer-
ical data for a rate of 0.00273 s–1.
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Figure 11. Comparison between experimental and numer-
ical data for a relaxation test.
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4 CONCLUSIONS AND OUTLOOK

This study gives an overview of mechanical prop-
erties of cellular rubber. Some experiments inform 
of cyclic tests and relaxation tests are performed. 
Also a material model based on the theory of 
porous media is presented. To represent the non 
linearity with respect to the feedrate a viscosity 
function is introduced depending on the rate of 
deformation. The results of cyclic tests show a sat-
isfying agreement with the numerical simulations. 
The differences between experimental and numeri-
cal data are small but they have to be decreased 
by improving the nonlinear viscosity function. The 
relaxation test for the used feedrate represents the 
experimental results very well.

In the further work the material model has to be 
expanded based on the results of triaxial compres-
sion tests. Simulation of real assemblies will also be 
performed. Taking into account real applications 
thermical effects should be investigated, too.
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A micro-sphere model for rubbery polymers with continuously 
evolving chain—ODF

Christian Miehe
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ABSTRACT: We outline a micromechanically-based two-scale model for a predictive modeling of finite 
elasticity, viscoelasticity and damage in rubbery polymers and discuss details of its numerical implemen-
tation. The proposed constitutive formulation treats rubbery polymers based on a micro-structure that 
may be visualized by a micro-sphere. The surface SO(2) of the micro-sphere represents a continuous 
orientation continuum of  polymer chains. The key idea of the earlier developed micro-sphere model in 
rubber elasticity [1] was the combination of (i) micro-mechanism-based constitutive models for the single 
chain response with (ii) the definition of the macroscopic stress response of the polymer network by a 
directly evaluated homogenization over the chain orientation space. The setting up of the constitutive 
models for a single chain of the polymer is performed in an attractive modular format, accounting for 
non-affine elastic equilibrium response, viscous overstress effects and Mullins-type damage mechanisms. 
In this work, we modify the micro-sphere model originally proposed in [1, 2, 3] by an additional evolution 
equation for the chain orientation distribution function (codf ) defined on the microsphere SO(2). We then 
define homogenization procedures on SO(2) that exploit the presence of the codf. We outline the continu-
ous formulation of the two-scale model and develop details of its algorithmic implementation. The results 
obtained by the the proposed modified micro-sphere model is compared with the original formulation. The 
excellent performance and predictive quality of the formulation is demonstrated by means of a repre-
sentative numerical examples that cover simulations of characteristic experimental results.
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Algorithm of constant definition for a visco-elastic rubber model 
based on cyclic experiments, stress relaxation and creep data
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ABSTRACT: A model for simulation of rubber behavior is presented. The equation system is constructed 
using the scheme illustrating the mechanical behavior of rubbers. The scheme points are connected by 
elastic, viscous, plastic and transmission elements. To describe the properties of each element, the known 
equations of the nonlinear theory of elasticity, the theory of nonlinear viscous fluids and the theory of 
plastic flow under finite deformations are used. A step by step algorithm is proposed to derive the con-
stants of the model. It is shown that the constants of constitutive equations found at earlier steps remain 
unchanged at subsequent steps. Research experiments (cyclic loading tests including relaxation and creep) 
provide much useful information concerning the viscoelastic properties of rubbers.

1 INTRODUCTION

1.1 Model of mechanical behavior of rubbers

The mechanical behavior of rubbers is described 
by the model schematically represented in Fig. 1, 
where each point corresponds to a particular set 
of constitutive equations. The scheme shows how 
the tensor nonlinear equations are combined into 
the system of equations describing the complex 
viscoelastic behavior of an arbitrarily deformed 
medium. The algorithm that constructs constitu-
tive equations from separate groups of equations 
(elastic, viscous, plastic, transmission) is described 
in detail in this work. The present model uses the 
approach that is based on the additive decomposi-
tion of the strain rate tensor of the medium into 
the strain rate tensors of the scheme elements. The 
internal scheme points are required to meet the 

condition of correlation of Cauchy stress  tensors. 
The scheme for the mechanical behavior of the 
material has transmission, elastic, viscous and 
plastic elements, which correspond to the follow-
ing equations given below.

2 CONCEPTUAL MODEL

The material under study is assumed to be incom-
pressible. The deviator of the Cauchy stress ten-
sor Ti of  elastic element i is computed using the 
ordinary formulas of the nonlinear theory of 
elasticity:

dev devT n ni k
i

k
i k

i
k
i

k

f= ∂
∂

⊗
⎛

⎝⎜
⎞

⎠⎟=
∑ρ λ

λ
( )

( )
( ) ( ) ,

1

3

in which the mass density of the medium free 
energy f depends on the extension ratio of elastic 
elements.

f f i
k= ( , , ),( )… …λ

where k = 1, 2, 3; i = 2, 5, 7; ρ is the mass density 
of the medium, λ λ λ1 2 3

( ) ( ) ( ), ,i i i  and n n n1 2 3
( ) ( ) ( ), ,i i i  

are the extension ratios and eigenvectors of the 
stretch tensor Vi of  the i-th elastic element. Time Figure 1. Model for the mechanical behavior of rubber.
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 variations in the tensor Vi are calculated by the 
evolution equation:

2 0 5 0 5

νi
i i i i i iY D Y Y Y W W YR R

. . ,= − −� T

where W RRR = � T. The formula uses the following 
notations:

Y Vi i m
m= >
2

0ν ν, ,

where R is the rotation tensor in the polar decompo-
sition F = VR of the strain gradient of the medium 
F into the left stretch tensor V and the rotation R, 
and νm is the ratio of the m-th transmission ele-
ment, connected on the left to the elastic element 
under consideration. The rate of work done in the 
i-th elastic element is determined by the formula:
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The rubber used for investigation is a nanocom-
posite consisting of an elastomeric binder and black 
carbon aggregated nanoparticles. The structural 
deformation of the elastomeric binder fraction and 
the macroscopic deformation of the rubber differ 
significantly. The difference is taken into account 
by transmission elements. Application of these ele-
ments increases the strain rate tensor at the right 
point of the transmission element by a factor of 
νm in comparison with the corresponding tensor 
at the left point and simultaneously decreases the 
Cauchy stress tensors:

D D T Tm
m

m m k m
left right left right= =1

ν
ν, .

The deviator of the Cauchy stress tensor Tj of  
the j-th viscous element is calculated by the equa-
tions of the theory of nonlinear viscous fluid using 
the appropriate strain rate tensor Dj

dev Tj = 2ηj Dj,

For the n-th plastic element, the Cauchy stress 
tensor deviator is defined by the equations of the 
theory of plastic flow

D
D D
T T

Tn
n n

n n
n= ⋅

⋅dev dev
dev ,

To complete the system of equations, the pro-
portional relation between the strain rate tensor of 

the plastic element Dn and that of the material D 
is used.

D D D Dn n n⋅ = ⋅κ ,

where the term κn is the nonnegative function pre-
scribed by the relation

κ ζn
n n

n n n n

g
g g= <

={0, ( , ) ,
( ), ( , ) .

Φ
Φ

V
V

…
…

The flow function Φn that is used to formu-
late the criterion for the development of plastic 
deformations in the medium is the function of the 
stretch tensor V and other state parameters of the 
medium. The plastic deformation of the medium 
takes place only in the case when the flow function 
Φn reaches its maximum value over the entire his-
tory of the medium development.

gn = max Φn.

The material entropy s and the heat flux h are 
found using the formulas of nonequilibrium 
thermodynamics

s
f

c= −
∂
∂

= −
θ

θ, ,h h grad

where ch > 0 is the thermal conductivity.

3 ANALYSIS

Step-by-step technique for determining constants 
for the model of the mechanical behavior of rubber 
In order to determine constants for the model, five 
specimens were tested under cyclic loading condi-
tions. In the first cycle, the specimen was stretched 
with constant velocity λ

.
 = l/60–1. After that, over the 

period of 60 minutes one observed the stress relaxa-
tion process at a fixed deformation of the medium. 
Further, the material was unloaded at constant 
strain rate λ

.
 = −l/60–l, and the creep of the mate-

rial was observed for 30 minutes. Then, other cycles 
of deformation were started, which differed from 
the fist cycle by the fact that the stress relaxation 
was observed for 30 minutes instead of 60 minutes, 
and the maximum extension ratio was lower than 
that obtained in the first cycle. Table 1 summarizes 
extension ratios for each specimen and cycle.

Such experiments provide a great deal of infor-
mation concerning the mechanical properties of 
the material. Testing of one specimen during one 
run gives the data for material softening in the 
first cycle of deformation (Mullins effect), viscoe-
lastic  properties, relaxation and creep processes. 
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The constants of the model can be defined in a 
 step-by-step manner based on the data acquired at 
the previous steps.
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FIRST STEP. Consider a simple situation 
assuming that the volume density of the material 
free density w = ρf is the function of extension 
ratios of the second element only:
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This indicates that all elements (between the 
forth and tenth elements) have no effect on the 
mechanical behavior of the material. Plastic defor-
mations are accumulated solely in the first cycle of 
deformation, while in subsequent cycles the mate-
rial demonstrates elastic behavior. Let us shift the 
experimental data so that all cycles, excluding the 
first, leave the origin of coordinates (Fig. 2). Based 
on the experimental data thus modified, the elastic 
properties of the second element are defined.

Now we seek the constants c c1
2

2
2( ) ( ),  of the elas-

tic element and the values of the ratio ν1 of the first 
transmission element. The ratio ν1 is assumed to have 
its own value for each specimen, while the constants 
c c1

2
2
2( ) ( ),  are general for all specimens. The relaxation 

processes are finished completely. To determine the 
constants, only the points (equilibrium points) on the 
experimental curves obtained after the completion of 
relaxation processes are used. The theoretical curve 
goes through these points. We consider the points 
with extension ratios (thick points in Fig. 2) less 
than the maximum ratio observed in the first cycle 
of deformation. The case when the theoretical curve 
passes through other points will be discussed later.

The values of the above quantities are found 
in the following manner. For the third specimen, 

we calculate the values of variables c c1
2

2
2( ) ( ),  and ν1 

and, for other specimens, only the values of vari-
ables ν1. The values of constants c1

2( ) and c2
2( ) are 

used to describe the properties of the elastic ele-
ment. The third specimen is taken as a basic object 
for determination of the elastic properties of the 
medium because it occupies an intermediate posi-
tion as to the level of maximum deformations. 
Thus, one may expect to obtain some average val-
ues. The model used at the first step and the theo-
retical curve for the fifth specimen obtained with 
this model are shown in Fig. 2.

SECOND STEP. Based on the values of the 
ratio of the first transmission element ν1 obtained 
for different specimens, the parameter ν1 is repre-
sented as the function of maximum deformations 
over the entire strain history of the medium.

ν ν ν1 1
1

2
1= −( ) ( )exp( max ),IV  (1)

where the invariant IV is obtained by the formula

I 3tr( tr(V
2= −V V) ) .2

Let us now find the other two constants of the 
model: ν1

1( ) and ν2
1( ). We assume that the first elastic 

element simulates the relation between the struc-
tural stresses in the active part of the binder in the 
elastomeric nanocomposite and the macroscopic 
stresses of the material. Clearly, it depends on the 
fragmentation of aggregates into pieces after the 
rubber has been stretched. In the model, this proc-
ess is taken into account by decreasing the ratio of 
the first transmission element and determined by 
equation (1).

THIRD STEP. We suggest that the model allows 
us to take account of irreversible deformation 

Table 1.

Cycle

Specimen

1 2 3 4 5

1 1.5 1.75 2 2.25 2.5
2 1.25 1.25 1.25 1.75 1.25
3 1.5 1.5 1.5 1.75 1.5
4 _ 1.75 1.75 1.75 1.75
5 _ _ 2 2 2
6 _ _ _ 2.25 2.25
7 _ _ _ _ 2.5

Figure 2. Experimental results obtained by testing the 
fifth specimen (with shift along the axis λ), and theo-
retical curve plotted at the first step of determination of 
constants.
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 accumulation. To this end, the scheme is 
complicated through introducing the third plastic 
element in it. The properties of this element are 
defined by the choice of the function ζ3 (g3) and 
Φ3 (T). Unlike the previous steps, we find it using 
the real (not shifted) curves of the dependence of 
the stretching force on the extension ratio of the 
specimens (Fig. 3).

ζ κ κ κ3 3 0
3

1
3

2
3

3

3

( ) exp ( ),( ) ( ) ( )g g= +

= ⋅Φ dev dev ,T T

where T is the Cauchy stress tensor of the mate-
rial. Let us now define the values of the constants 
κ κ κ1

3
1
3

2
3( ) ( ) ( ), and  so that the model describe accu-

rately the values of the residual extension ratios 
(after stopping the creep process) for all examined 
specimens.

FOURTH STEP. To construct the mathemati-
cal model of the mechanical behavior of rubbers, 
the hypothesis for the formation of high-strength 
fibers in the deformed material is used. The fibers 
consisting of oriented polymer are formed when 
the polymeric chains slip off  the interface layers 
of filler particles into the gaps between particle 
aggregates. We suggest that the fibers appear in 
the material due to the plastic flow caused by its 
stretching, and they maintain their elastic prop-
erties at any stretch value less than the maximum 
one. At this step, the elastic properties of the fibers 
formed in the first cycle of loading are described by 
elements 4 and 5 (Fig. 1). The properties of plastic 
element 6 simulating fiber formation are described 
at step 5. The medium free energy potential is writ-
ten as a sum w = w2 + w5, in which

w c5
5

5 5 5

0 0
0= <

≥{ , ,
, .

if
if

ξ
ξ ξ

and

ξ5 1
5

2
5

3
51 1 1= − − −( )( )( ).( ) ( ) ( )λ λ λ

To define the constant c5 of the fifth elastic 
element and the ratio ν4 of the fourth transmission 
element, all the points on the experimental curve 
obtained after completion of the relaxation proc-
ess are used.

FIFTH STEP. At this step, the model takes into 
account the sixth plastic element that describes 
fiber formation caused by the motion of poly-
mer chains from the layers into the gaps between 
inclusions. The properties of this element defined 
by the choice of the function ζ6 (g6) and Φ6(T) are 
found by examining the experimental data points 

Figure 3. Experimental data obtained by testing the 
fifth specimen, and theoretical curve plotted at the third 
step in determining constants.

Figure 4. Experimental data obtained by testing the 
fifth specimen, and theoretical curve plotted at the fourth 
step of determining constants.

corresponding to the moments of completion of 
the relaxation process in the first cycles of defor-
mation of all specimens (Fig. 5).

ζ κ κ κ6 6 0
6

1
6

2
6

6

6

( ) exp ( ),( ) ( ) ( )g g= +

= ⋅Φ dev dev ,T T

where T is the Cauchy stress tensor defining 
stresses in the material. Let us select the values of 
constants κ κ κ0

6
1

6
2
6( ) ( ) ( ), and  so that the calculation 

curve for first-cycle loading passes through the 
chosen points.

SIXTH STEP. Let introduce in the model ele-
ments describing the viscoelastic behavior of the 
material. This procedure can be realized in two ways, 
of which one suggests insertion of several Maxwell 
elements with simple dependences for viscosity 
coefficients, and the other by insertion of only one 
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of these elements with non-linear expression for vis-
cosity coefficient. We have chosen the second vari-
ant and used the seventh elastic and eighth viscous 
element to describe the peculiarities of the material 
behavior (Fig. 1). The medium free energy potential 
is written as a sum w = w2 + w5 + w7, in which

w c i
i

7 1
7 7 2

1

3
3= −

⎛

⎝⎜
⎞

⎠⎟
⋅

=
∑( ) ( )( )λ

The viscous element properties are determined 
by the following shear viscosity function:

η η η8 0
8

1
8= ( ) ( )exp ( ).IV

The constants c1
7

0
8

1
8( ) ( ) ( ),η η  chosen such that the 

theoretical curve coincides with the experimental 
data at the stretched parts of the material obtained 
in all cycles of deformation, excluding the first cycle.

SEVENTH STEP. The mathematical expres-
sion for the viscosity function η8 is complicated 
to get an adequate description of the experimen-
tal results collected both during the stretch of the 
material and during the removal of external loads. 
For this purpose, one more term is added to the 
mathematical expression η8.

The constants η η η2
8

3
8( ) ( ), and 4

(8)  are chosen such 
that the theoretical curves coincide with the experi-
mental curves both when stretching the specimen 
and on its unloading in all cycles of deformation, 
excluding the first cycle.

η η η
η η η

8 0
8

1
8

2
8

3
8

=
− ⋅ ⋅

( ) ( )

( ) ( )
exp ( )

(exp ( ))
I

V D V D
V

4
(8)) exp (+ + −

Figure 5. Experimental results for the first cycles of defor-
mation of the specimen. The dot-and-dash curve refers to 
the first specimen, the dot curve to the third specimen, and 
the dash curve to the fifth specimen. The solid curve shows 
theoretical data determined for material stretching with 
consideration of increasing plastic deformations.

EIGHTH STEP. During the two previous steps, 
fast processes have been modeled. Now, it is neces-
sary to verify theoretical calculations, which allows 
us to describe accurately stress relaxation processes. 
To this end, the numerical value of viscosity in the 
process of relaxation must be essentially larger 
than the viscosity of the material underwent load-
ing and unloading cycles. Consider this process in 
detail. First, let us forget for some time the expres-
sion found for η8. For each specimen, we have sev-
eral segments of stress relaxation that occurred 
during deformation of the specimens (Fig. 7). 
Under relaxation, the values of stretch of the spec-
imen remain unchanged, only the extension ratios 
of the seventh elastic element change. The viscosity 
values η8 are approximated by the formula:

η η8 6
8

7= ( ) exp ( ),bIV

Figure 6. Experimental data obtained by testing the 
fifth specimen, and theoretical curve plotted at the sev-
enth step of determining constants.

Figure 7. Experimental data obtained by testing the 
fifth specimen, and theoretical curve plotted at the eighth 
step of determining constants.
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where I V VV 7 7
2

73tr( tr(= −) )2 . The value of 
parameter b depends on the stretch tensor of the 
specimen. The value of each extension ratio is 
defined, and then its strain dependence is described 
by the following mathematical expression:

b = −
η
η
6
8

7
8

( )

( )exp ( )
,

IV

where η η6
8

7
8( ) ( ),  are constants. The viscosity function 

takes the form
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TENTH STEP. Let us comSbine fast and slow 
relaxation times of viscosity
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where I 3tr( tr( )D
2 2= −D D) , and the constant η8

8( ) 
is defined by examining the points where the load-
ing regime changes from loading to relaxation and 
from relaxation to unloading.

ELEVENTH STEP. To describe the experiment 
in the first cycle of loading, the following term is 
added to the obtained dependence of viscosity:
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where the constants η η9
8

10
8( ) ( ),  are defined in the first 

cycle of loading, since the current and maximum 
values of stretch of the specimen coincide. The 
analysis of the remaining cycles of deformation 
yields the constant η11

8( ).

4 CONCLUSIONS

The step-by-step approach has been developed to 
determine the constants of the model describing 
the viscoelastic properties of rubbers. The system 
of constitutive equations takes into account the 
peculiarities of the material behavior at the struc-
tural level. The theoretical results describe accu-
rately the behavior of rubbers.
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Figure 8. Experimental data obtained by testing the fifth 
specimen, and theoretical curve plotted at the eleventh 
step of determining constants.
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ABSTRACT: A general method of constructing the system of constitutive equations was applied to 
develop the model describing the behaviour of rubber compounds. The effect of softening of the material 
after the first stretching (Mullins effect), viscoelastic properties and recovery of mechanical behavior after 
the long rest and thermostating is simulated.

INTRODUCTION

Rubbers are elastomeric nanocomposites that 
have long been used in industry and are of  great 
practical importance. The incorporation of  active 
fillers in rubber compounds increases by an order 
of  magnitude the strength of  the material com-
pared to the unfilled elastomer and increases 
breaking deformations (Kraus, 1971). These 
materials have a number of  features essential for 
the understanding of  their behavior. In particular, 
near filler particles there appear polymer layers 
with special characteristics. During the failure of 
rubber compounds, at the tip of  a macrorupture 
there occur fibers joining the edges of  this mac-
rorupture (Le Cam et al., 2004), where the poly-
mer chains are in the oriented state (Trabelsi et al., 
2003). The formation and disappearance of  the 
oriented regions explain the hysteresis phenom-
ena in the material subject to cyclic loading (Toki 
et al. 2003; Toki et al. 2004). On this basis, we put 
forward the following hypothesis: during defor-
mation, between the aggregates of  filler particles 
there appear uniaxially oriented fibers caused by 
the slippage of  polymers chains from the layers 
near the active filler into the gaps between par-
ticles. In the present paper, we offer the struc-
tural-phenomenological model able to accurately 
describe the mechanical behavior of  the medium 
taking into account the process of  fiber formation 
at the nano-level of  the material.

The mathematical model describing the mechan-
ical behavior of the material is schematically rep-
resented in Figure 1. The system of constitutive 

equations is constructed in correspondence with 
following rules:

1. To each point of the scheme the rate of deforma-
tion tensor of this point is assigned, which plays 
the role of a tensor parameter necessary for con-
struction of the mathematical model.

2. The Cauchy stress tensor and the rate of 
 deformation tensors are assigned to the elastic, 
viscous and plastic elements of the scheme.

3. For each transmission element the Cauchy stress 
tensor for the left and right points are used.

4. It is assumed that the rate of  deformation 
 tensor of the left point of the scheme coincides 

Figure 1. Scheme of mechanical behavior of rubber 
compound. Elements in dashed box simulate mechanical 
properties of high-strength fibers.
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with the rate of deformation tensor D of  the 
medium, and the rate of deformation tensor of 
the right point of the scheme is equal to zero.

5. The rate of deformation tensor of elastic, vis-
cous and plastic elements is calculated as the dif-
ference between the rate of deformation tensors 
of the left and right points of these elements.

6. The material is assumed to be incompressible. 
The trace of any rate of deformation tensor 
in the model is equal to zero.

7. The Cauchy stress tensor T of  the medium is 
equal to the sum of the Cauchy stress tensors of 
elastic elements and the left points of transmis-
sion elements connected with the left point of 
the scheme.

8. The sum of the Cauchy stress tensors of elas-
tic, viscous and plastic elements and the right 
points of transmission elements connected on 
the left with any inner point of the scheme is 
equal to the sum of the Cauchy stress tensors of 
elastic, viscous and plastic elements and the left 
points of transmission elements connected on 
the right with this point of the scheme.

Our investigation focuses on the study of iso-
thermal processes. To describe the properties of 
elements shown in the scheme, the known formulas 
from continuum mechanics are used. For calcula-
tion of the Cauchy stress tensors Ti of  elastic ele-
ments, we take the mass density of free energy f, 
which is the function of stretch ratios of all elastic 
elements

f f i i i= ( ,..., , , ,...),( ) ( ) ( )θ λ λ λ1 2 3

where λ λ λ1 2 3
( ) ( ) ( ), ,i i i  are the stretch ratios for the 

i-th elastic element. This means that the deviator 
of the Cauchy stress tensor of the i-th elastic ele-
ment should be calculated by the formula of the 
nonlinear elasticity theory

dev dev

dev

T n ni
i

i
i if

=
∂

∂
⊗

⎛

⎝⎜
⎞

⎠⎟

⋅ = ⋅ −
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∑ρ λ
λκ
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κ κ
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( ) ( ) ,

( ) ( )
1

3

1
33

tr( ),⋅

where ρ is the mass density of the material, and 
n n n1 2 3

( ) ( ) ( ), ,i i i  form an orthonormal triple of eigenvec-
tors of the stretch tensor Vi of  the elastic element. 
V n n n n n ni

i i i i i i i i= ⊗ + ⊗ + ⊗λ λ λ1 1 2 2 2 3 3 3
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).

For the i-th elastic element, the material time 
derivative of the stretch tensor �Vi is calculated by 
equation:

2 0 5 0 5
νm i i i i i iY D Y Y Y W W Y

W R R

R R

R

. . ,

,

= − −

=

�

�

T

T
 (1)

where

Y Vi i m
m= >
2

0ν ν, ,

R is the rotation tensor in the polar decomposition 
F = VR of  the deformation gradient of the medium 
F into the left stretch tensor V and the rotation R; 
νm is the transmission ratio of the m-th transmis-
sion element connected on the left with the consid-
ered elastic element. If  the left point of the elastic 
element coincides with the left point of the scheme 
then transmission ratio νm is equal to unity.

The known equations of the nonlinear elastic 
theory describing the time variation of stretch 
ratios of the i-th elastic element

�λ λk k k k k( ) ( ) ( ) ( ) , , ,i i i i
i= ⊗ ⋅ =n n D 1 2 3

and the rate of work in this element

T Di i
k
i

k
k
if

⋅ =
∂

∂=
∑ρ

λ
λ( )

( )

1

3
�

are the consequences of equation (1) in the case 
when the parameter νm is a constant

νm = const.

In the general case, parameters νk can be the 
time decreasing functions. They are convenient 
to use for modeling the growth of damages in the 
medium.

The deviator of the Cauchy stress tensor of the 
j-th viscous element is calculated by the formula 
from the theory of nonlinear viscous fluids

devT Dj j j= 2η ,

where the shear viscosity coefficient is the non-
negative function of state parameters ηj ≥ 0.

The deviator of the Cauchy stress tensor of the 
plastic element is calculated by the formula of the 
plastic flow theory

D
D D
T T

Tn
n n

n n
n= ⋅

⋅dev dev
dev ,  (2)

where n is the number of the plastic element. For 
modeling the plastic flow process, it is necessary 
to exclude the ambiguity in expression (2). To this 
end, it is offered to use the mathematical expres-
sion which links the rate of deformation tensor of 
the plastic element with the rate of deformation 
tensor of the medium:

The symbol kn designates the non-negative 
function of  state parameters. When calculating, 
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a

b

c

d

Figure 2. Difference in mechanical behavior of rubber compound in first experiment after thermostating (continuous 
lines) and in second experiment after long rest and new thermostating (dashed lines). Maximum stretch ratio in experi-
ment equal to 1.75 (a), 2 (b), 2.25 (c) and 2.5 (d).

we assume that plastic flow is possible under the 
following condition:

max inv (Tn) = inv (Tn), (3)

where

inv ( dev devT T Tn n n) ,= ⋅

i.e., when the invariant of stresses in the appro-
priate plastic element is equal to the maximum of 
this invariant in the considered element during the 
whole deformation history of the medium.

The transmission element in the model serves to 
increase the rate of deformation tensor by νm times 
and to decrease simultaneously the Cachy stress 
tensor by νm times

T T D Dm m m m
m

m
left right left right= =ν

ν
, ,1

where νm is the non-negative function of the state 
parameters (the transmission ratio), and k is the 
number of the transmission element.

The necessity to introduce transmission ele-
ments into the model stems from the following. 
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Figure 3. Relaxation curves of samples in the first experiments (continuous lines) and in the second experiment 
(dashed lines). Maximum stretch ratio in experiment equal to 1.75 (a), 2 (b), 2.25 (c) and 2.5 (d).

In the initial state, the particle aggregates of carbon 
black in rubbers touch each other, forming a filler 
network. We put forth a hypothesis that during 
deformation the polymer chains slipped off from 
the polymer layers near the filler particles into 
the gaps between aggregates, where high-strength 
fibers are formed as a polymer in the uniaxially 
oriented state (Figure 1). The strength of these fib-
ers is a thousandfold higher than the strength of 
the elastomeric material without a filler (binder 
strength). This increases the macroscopic strength 
of rubbers (filled elastomers) by an order of 
magnitude. For example, the strength of spider 
cobweb is 2000–4000 MPa and the strength of non-

crystallizing elastomeric materials is 4–10 MPa. We 
reason that such a relationship between strengths 
will also appear when comparing the strengths of 
oriented fibers and the binder.

The fact that during deformation polymer chains 
slipped off  into the gaps between aggregates clari-
fies the deformation growth at the moment of rup-
ture of filled elastomers compared to the unfilled 
material. In the course of deformation, the neigh-
boring particle aggregates of carbon black move 
away at a large distance from each other, and other 
aggregates come into the gaps between them. How-
ever, the material is not destroyed in this case. After 
removing the external load, the material reverts to 
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its primary state. This may take place only in the 
case when fibers are able to elongate by several tens 
of times. The macroscopic deformations of the 
material do not exceed the stretch ratios of 4–7. 
This distinction between the macroscopic defor-
mations and the deformation of separate elements 
of the material on structural level can be taken into 
account by the transmission elements introduced 
in the model.

We simulated the effect of  softening of  the 
material after the first stretching (Mullins effect), 
viscoelastic properties and recovery of mechanical 
behavior after the long rest and thermostating 
(Figure 2–Figure 5). We found that all difference 
in mechanical behavior of rubber compound in 
first experiment after thermostating and in sec-
ond experiment after long rest and new termostat-
ing was produced by plastic element with number 
six. It means from our viewpoint that only hight-
strength fibers remember the long history of defor-
mation of the material.
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ABSTRACT: Multi network theory is a suitable framework for describing the material behaviour 
of elastomer components. It has been shown in former works that these models are able to predict the 
changes in mechanical behaviour due to ageing effects like stress relaxation and set, respectively. In that 
case the number of chain segments of the original polymer network is reduced due to chain scission while 
new chain populations are generated in a non-deformed state due to post curing processes. This concept 
of multiple competing network chains can be generalized to simulate the viscous material behaviour of 
elastomers and the Payne effect, respectively. In this framework viscous behaviour can be interpreted on 
one hand as a reduction of the number of chain segments of the original polymer network coinciding on 
the other hand with the generation of an equal number of chain segments of a new chain population. 
Additionally, the interaction of polymer and filler which is responsible for the Payne effect, the depend-
ence of the dynamic modulus on strain amplitude, might also be interpreted as scission and creation of 
new polymer chains at filler particles. A thorough phenomenological visco-elastic model is presented 
which might easily be implemented in FEM codes.

leading to a reduction of stiffness and gives rise to 
stress relaxation. By all means a change in micro-
structure of the polymer network occurs.

There are additional long-term effects which 
also change the micro-structure of the polymer 
network and consequently the effective number of 
polymer chains in the material. These effects are 
summarized by ageing processes and will be used 
in the following to explain the basic assumptions 
of the model which can be generalized to simulate 
the viscous behaviour of the material. An imple-
mentation of these concepts into FEM codes is 
straightforward and has been carried out to the 
solver ABAQUS, Baaser & Ziegler (2006), Baaser 
et al. (2009).

1.2 Ageing processes

For a chemical description of the ageing processes 
there are endless possible reactions which all can 
be summarized for a mechanical description by 
two basic mechanisms: the scission and recombi-
nation of polymer chains. If  a polymer backbone 
breaks due to a chemical reaction it is obvious 
that the appropriate polymer chain no longer con-
tributes to the stiffness of the material. But even 
when a cross-link between two macro-molecules 
breaks the formerly constrained polymer chains 
are released which also results in a reduction of 
effective polymer chains. Chain ends are able to 

1 MATERIAL MODEL FOR RUBBER

1.1 Introduction

The mechanical behaviour of elastomeric mate-
rials typically is described within the framework 
of non-linear thermo-elasticity or visco-elasticity 
on the basis of the formulation of a strain energy 
density function, Ogden (1984). Many models 
are based upon the assumption of entropy-elastic 
behaviour of a network of macro-molecules. For 
the simplest material model, the Neo-Hookean 
model, the stiffness is directly proportional to 
the density of polymer chains. In this context it 
is important to distinguish between the terms of 
‘macro-molecule’ and ‘polymer chain’. While the 
former represents the realistic item of the chemi-
cal molecule, the ‘polymer chain’ only represents a 
fraction of the molecule between two constraints 
which can be defined by cross-links and additional 
entanglements between two macro-molecules, 
respectively. For a static material model these con-
straints are assumed to remain constant in time 
which yields a constant number of polymer chains 
and constant stiffness, respectively. For a rubber 
material the cross-links can be considered in a first 
approximation as fixed constraints and constant in 
time. The entanglements of molecules in contrast 
change in time due to polymer slippage. This might 
be interpreted as a reduction of polymer chains 
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recombine creating new cross-links. Additionally 
a radical attack on the polymer backbone might 
result in a generation of new bonds between two 
molecules, both processes increase the effective 
number of polymer chains and the overall stiff-
ness of the material, respectively. It is important to 
note, that these new polymer chains are generated 
in a relaxed state, i.e. stress- and strain-free. Their 
contribution to the strain energy density must be 
related to their strain-free configuration and there-
fore to the configuration at the time of creation. 
A new population of polymer chains was created 
which competes with the original one. Whenever 
the deformation changes a new population of 
polymer chains is created with its own strain-free 
configuration where the contribution of the strain 
energy density must be referred to. This finally 
leads to a large number of competing populations 
of polymer chains. The competitive situation of 
two populations is obvious when unloading the 
material after a long ageing period. In Figure 1(a) 
the original population of polymer chains in a ref-
erence volume is shown in an unloaded state. The 
particular polymer chains are indicated as springs. 
Theses springs are stretched when loaded by a 
constant strain (b). If  this load remains constant 
for a long time new polymer chains can be created 
stress-free (c). When the load finally is removed 
(d) the original polymer chains seek to reach their 
unloaded configuration which is hindered to a cer-
tain amount by the new created population finally 
yielding a remnant deformation, usually referred 
as permanent set.

1.3 Generalization to viscous behaviour

Within the framework of competing polymer chain 
populations a generalization to viscous rubber 
behaviour is apparent with the description of so-
called physical relaxation processes in mind. In a 
micro-mechanical view physical relaxation at a cer-
tain constant deformation can be understood as the 

change of entanglements due to polymer slippage. 
A single polymer chain originally belonging to the 
initial population no longer contributes to the stiff-
ness, which has the same effect as the scission of 
this polymer chain. But the chain is not really split, 
it is rather relaxed in the actual configuration and 
has to be assigned to a new population of polymer 
chains which are strain-free in the actual deforma-
tion state. It is important to note that—in contrast 
to the ageing model—the total number of polymer 
chains remains constant. It is not the number of 
polymer chains that alters but the affiliation to dif-
ferent populations of polymer chains. When the 
load changes again the number of polymer chains 
in both populations decrease in favor of a third 
population similar to the ageing model. The only 
difference to the ageing model concerns the evolu-
tion rate of the number of polymer chains of the 
new population.

2 VISCOUS BEHAVIOR IN THE 
FRAMEWORK OF MULTI 
NETWORK THEORY

2.1 Constitutive model

For the simplest hyperelastic material model, the 
Neo-Hookean model, the strain energy density w 
is given by

w G I= ⋅ −/ ( ),2 31  
(1)

where I1 = tr{B} denotes the first invariant of the 
left Cauchy-Green strain tensor B = FFT (F denotes 
the deformation gradient) and G is the shear mod-
ulus, Ogden (1984). Within the framework of sta-
tistical mechanics G is proportional to the initial 
density of polymer chains N0 and yields

G N kT= 0 ,  (2)

with k the Boltzmann constant an T the absolute 
temperature. For a uniaxial load with constant 
stretch ratio λ the Cauchy stress equals

σ λ
λ

= ⋅ −⎛
⎝⎜

⎞
⎠⎟

N kT0
2 1 .

 
(3)

Due to polymer slippage N0 is no longer con-
stant but decreases with time. So equation (3) is 
able to describe physical relaxation in a phenom-
enological way. Assuming a new population of 
polymer chains with density NNC has been created 
at a stretch ratio of λC their contribution to the 
strain energy density must be referred to this defor-
mation λC. A description of general multi-axial 

Figure 1. Origin of permanent set due to competing 
polymer populations.
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loads requires the use of tensor formulation. 
The relevant deformation gradients are shown in  
Figure 2, where B0 and Bt denote the reference and 
the actual configuration, respectively. The ordinary 
deformation gradient F0(t) maps the reference con-
figuration on the actual configuration. Bξ denotes 
the intermediate configuration at time ξ where the 
new population is created and Fξ(t) is the defor-
mation gradient which maps this intermediate 
configuration on the actual one. For the sake of 
simplicity a Neo-Hookean law is assumed for the 
new population, too. Due to the Neo-Hookean 
behaviour and according to equations (1) and (2) 
the contribution of the new population to strain 
energy density is

w N kT t t= ⋅ ⋅ −1
2

3NC
TTr{( ( ) ( )} ).F Fζ ζ

 
(4)

It is obvious from Figure 2 that the intermedi-
ate deformation gradient can be expressed via the 
ordinary deformation gradient

F F Fζ ξ( ) ( ) ( ).t t= −
0 0

1
 

(5)

For a uniaxial load at stretch ratio λ equations 
(4) and (5) result in the Cauchy stress of
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(6)

with λC the stretch ratio of  the intermediate con-
figuration where the new population was created. 
When the load varies with time a new population 
of  polymer chains is created for each deformation 
state and each population contributes to Cauchy 
stress by a term comparable to equation (6). Thus, 
the strain energy function becomes a functional 
of  the deformation history and the density of 
polymer chains has to be replaced by its evolution 
rate �NNC .

2.2 Evolution rate for the new population 
of polymer chains

It has been stated above that the number of new 
created polymer chains in a new deformation state 
equals the total number of the polymer chains 
which has been broken in all former populations 
within the same time period. Therefore the decay 
law of the original population is a crucial quantity. 
Since it is more intuitive to argue with the number 
of polymer chains instead of the density of pol-
ymer chains we use the former expression in the 
following although being well aware that it should 
be the density to be argued with. Let us assume 
that the polymer chains of the original population 
consist of permanent chains that do not break and 
variable chains that are able to break at a certain 
configuration and finally are attached to a new 
population. The number/density of polymer chains 
at the beginning t = 0 can be specified by

N N Np v0
0 0= +( ) ( ),

 
(7)

where Np
(0) and Nv

(0) are the permanent and vari-
able number of polymer chains, respectively. For a 
constant load only the permanent polymer chains 
remain to the original population when time goes 
to infinity, the variable ones have been broken. 
When N(0)(t) denotes the number of polymer 
chains of the original population with respect to 
time this quantity can be written as

N t N g t Np v
( ) ( ) ( )( ) ( )0 0 0= + ⋅

 
(8)

with g(0) = 1 and g(∞) = 0. Very often the func-
tion g is parameterized by a series of exponential 
decays called Prony series. For a constant deforma-
tion the relaxation modulus of the material is given 
via equation (2) by

G t N t kT( ) ( ) .( )= 0
 (9)

When a new population of polymer chains is 
created these chains are able to break. There are 
no permanent chains belonging to the new popula-
tion and for the sake of simplicity the decay of the 
population is assumed to be governed by the same 
function g as the original population. Consider 
a constant deformation for a short time period 
Δt. There is a certain number of polymer chains 
of each existing population that break within Δt 
and the total number of these chains form the new 
population strain-free in the actual configuration. 
With this assumption the rate of increase for the 
new created polymer chains �NNC  is governed by a 
Volterra integral equation of the second kind

� � � �N t N g t N g t
t

vNC NC d( ) ( ) ( ) ( )( )+ ⋅ − = − ⋅∫ ξ ξ ξ
0

0 . (10)Figure 2. Different configurations for constitutive model.
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If the function g is parameterized by a Prony 
series

g t gi
t

i

n
i( ) /= ⋅ −

=
∑ e τ

1  
(11)

with gi and τi the various relaxation strengths 
and relaxation times, respectively, the integral 
equation (10) can be solved more or less analyti-
cally and in combination with the multi-axial con-
stitutive model introduced in the last section this 
formulation is able to be implemented into a FEM 
code, e.g. ABAQUS using the UMAT interface.

2.3 Verification of the model

Since the FEM implementation of the material 
model has not done yet we present the predictions of 
the model for some simple deformation modes and 
compare them to the results of well-known mod-
els like the generalized Maxwell element in linear 
visco-elasticity. In each case we start with the relax-
ation modulus G(t) or equivalent to that the func-
tion g(t) in equation (8). As mentioned above g(t) is 
parameterized by a certain number of exponential 
decay functions which is called the Prony series in 
this context. Both the number of Prony elements 
and the loading mode are diversified whereas we 
use simple shear and uniaxial tension for loading 
mode. It is important to note that both functions 
G(t) and g(t) do not show any strain dependence. 
This means that the characteristics of the relaxa-
tion process stay the same no matter how large the 
deformation is. But anyway the model is applicable 
to large deformations without any restrictions.

2.3.1 Harmonic shear loads
First we apply a harmonic shear load of constant 
amplitude

ε ε ω( ) sin .t t= ⋅
  (12)

The simplest relaxation behaviour consists of a 
single Prony element

g t t( ) ,/= −e τ  (13)

which is able to describe in connection with the 
distinction of the number of polymer chains by 
permanent and variable ones (cf. equation (8)) a 
Maxwell element. For a relaxation time τ = 0.1 s, the 
stress strain behaviour for a frequency of f = 1 Hz 
and a shear amplitude of 0.01 is shown in Figure 3. 
The fraction of permanent polymer chains was 
determined at 10% of the total number of initial 
polymer chains for this test example. Starting from 

zero load a stationary state in stress-strain-curve is 
reached after a very few cycles. The dynamic mod-
ulus of this stationary state is shown in Figure 4 
for different frequencies.

Both, the Maxwell element in linear visco-elasticity 
and our model result in exactly the same relation for 
storage and loss modulus, respectively. But already 
the next less simple relaxation model with two relaxa-
tion times which is equivalent to two Prony elements 
results in different shape of the dynamic modulus 
which is shown in Figure 5 and Figure 6. For this 
example the relaxation times have been determined 
τ1 = 0.1 s and τ2 = 10 s, respectively. Since τ2 is ten 
times larger than the period of the load the station-
ary state is not reached as fast as in the former exam-
ple (cf. Figure 3).

2.3.2 Uniaxial tension
In the framework of non-linear visco-elasticity it 
is more enlightening to analyze the stress-strain 
behaviour of materials when loaded by a uniaxial 
tension since many of the commonly used material 
models are only valid for small strain amplitudes 
and differences between the models become appar-
ent for large strains. In addition to that the notion 
of dynamic modulus is ambiguous since different 
definitions which are equivalent for small strains 
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Figure 3. Stress strain behavior for harmonic shear load.
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have different results for large strains. The tensor 
formulation of our model ensures the applicability 
of large strains without any restrictions. Starting 
analogous to section 2.3.1 with only one relaxation 
step with a relaxation time τ = 0.1 s, the stress strain 
behaviour for a frequency of f = 1 Hz is shown in 
Figure 7. If  the results of the stress are expanded 
in powers of the strain amplitude the small strain 
approximation is obtained by neglecting the higher 
orders in strain amplitude. For this approximation 
the dynamic modulus is well-defined and yields—
except for a factor 3—the same result compared to 

harmonic shear loads. The same holds true when 
two Prony elements and therefore two relaxation 
times are considered.

3 MODELLING THE PAYNE 
EFFECT—AN OUTLOOK

In addition to those non-linear effects whose ori-
gin is the non-linear kinematics for large strains 
there is another source of  non-linearity for real-
istic elastomer materials: due to the weak bond 
energy between polymer chains and filler particles 
these bonds are able to break and rearrange. In 
a microscopic view the bond is released when the 
external energy on the polymer chain exceeds the 
binding energy of  the polymer filler bond. These 
circumstances might also be described by scission 
and new generation of  polymer chains. In contrast 
to the analysis in the former chapters the amount 
of  the broken chains is no longer a function of 
time but depends on the deformation history of 
the polymer chains. For multi-axial loads a strain 
measure is necessary which governs the scission 
or rearrangement of  polymer and filler. When the 
deformation exceeds a critical value, the polymer 
chain is assumed to disconnect from the filler 
particle. Subsequently the chain is unloaded and 
relaxed and can adsorb again on any filler par-
ticle. When a polymer chain disconnects from a 
filler particle the number of  polymer chains of  the 
initial population of  polymer chains is reduced by 
one. Since this chain is able to absorb at the filler 
in a relaxed state, this can be interpreted as a crea-
tion of  a new population of  polymer chains that 
are unloaded in the configuration at their time of 
creation. So for every population the strain must 
be referred to the strain at the time of  its creation. 
To evaluate the evolution rate for the new popu-
lations of  polymer chains the whole load history 
has to be taken into account since the actual strain 
tensor has to be referred to the strain tensor at 
the time of  the creation of  the population. For 
that reason a FEM implementation is hardly suc-
cessful at the moment since the stress tensor has 
to be stored for each material point at each time 
increment.

3.1 Prediction for harmonic shear load

According to the decay law g(t) (cf. equation (8)) 
of polymer chains at a relaxation experiment a 
decay function has to be defined which governs the 
break and rearrange of the polymer at filler par-
ticles. In a first approximation the decay law has 
been selected as an exponential decay with respect 
to the strain Δε referred to the strain at the time 
of creation. Similar to equation (8) the number 
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Figure 5. Dynamic modulus for 2 Prony elements in 
our model.

0

0,2

0,4

0,6

0,8

1

1,2

1,00E-04 1,00E-02 1,00E+00 1,00E+02 1,00E+04 1,00E+06

angular frequency ωω (1/s) 

st
or

ag
e 

/ l
os

s 
m

od
ul

us
 (

M
P

a)

storage modulus
loss modulus

Figure 6. Dynamic modulus for 2 Prony elements for 
linear visco-elasticity.

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

0 0,5 1 1,5 2

stretch ratio l (-) 

C
au

ch
y 

st
re

ss
 (

M
P

a)

Figure 7. Stress strain behavior for uniaxial tension 
with strain amplitude of 50%.



96

of polymer chains of the initial population can be 
written

N N g N N Np v p v
v( ) ( ) ( ) ( ) ( )( ) ( ) .0 0 0 0 0ε ε
ε

ε= + ⋅ = + ⋅
−

e
Δ

 
 (14)

With a fraction of 10% for the number of 
the permanent polymer chains and a parameter 
εv = 0.02 in the decay law (cf. equation (14)), a har-
monic shear load with strain amplitude 0.2 shows 
a stress-strain behavior which has no longer the 
shape of an ellipse but has pronounced corners at 
maximum strain. The stress-strain curve for differ-
ent strain amplitudes is shown in Figure 8. Start-
ing for small strain amplitudes with a high slope 
and hardly any hysteresis both the slope of the 
end-to-end diagonal and the hysteresis depend on 
the strain amplitude. When the slope of the end-
to-end diagonal is defined as the size of the storage 
modulus this means that the dynamic modulus is a 
decreasing function of the strain amplitude which 
commonly is referred to the Payne effect.

4 CONCLUSIONS

A flexible constitutive material model is presented 
that can be applied to describe different elastomer 

material properties like the ageing behaviour, the 
viscous behaviour and the dependence of  the 
dynamic modulus on strain amplitude most com-
monly called the Payne effect, respectively, starting 
from the relaxation modulus of the material. The 
viscous material behaviour is evaluated analytically 
even for finite strains, when the relaxation modu-
lus consists of a Prony series, a sum of exponen-
tial decay functions. It is shown that the dynamic 
modulus in the small strain approximation equals 
the result of the three parameter model of linear 
visco-elasticity. For two or more Prony elements 
already the differences to the results of the general-
ized Maxwell model are specified. In an outlook a 
description of the Payne effect within the frame-
work of this model is shown which will be able 
to simulate strain amplitude dependence in time-
domain calculations. While the modelling of the 
ageing behaviour has already been implemented 
in FEA code, both, the viscous behaviour and the 
simulation of the Payne effect has to be done in 
future while there are some restrictions especially 
for the last mentioned Payne effect that might pre-
vent the implementation for general load cases.
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An experimental study of magneto-sensitive natural rubber 
components applied in a vibration isolation system
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ABSTRACT: The effectiveness of magneto-sensitive natural rubber components applied in a vibra-
tion isolation system is experimentally investigated, where influences of excitation position, amplitude, 
frequency and magnetic field are examined. The magneto-sensitive elastomer consists of micron-sized, 
irregularly shaped iron particles blended in soft natural rubber at a concentration close to the critical 
particle volume fraction, shown to be the most favorable composition for optimum behaviour. A rigid alu-
minium mass supported on four vibration isolators is excited by an electro-dynamic shaker. Each compo-
nent of this vibration isolation system is composed of two thin, square shaped, symmetrically positioned 
magneto-sensitive elements excited in simple shear with a magnetic field applied perpendicularly to the 
motion by an electromagnet. The magnetic field is varied by applying different intensities through the coil. 
The excitation position is either on the centre or on the edge of the surface of the mass, using step-sine 
excitation of various amplitudes in the frequency range of 0 to 300 Hz. The results show that it is possible 
to use magneto-sensitive rubber for vibration control purposes.

1 INTRODUCTION

Vibration isolators usually require a combination 
of stiffness and damping to provide a proper con-
nection between two parts of a structure and a 
proper isolation from unwanted vibrations. Most 
of them are made of rubber, which means that once 
installed in an application their dynamic behaviour 
in frequency cannot be adjusted to avoid critical 
frequencies.

Different solutions (see, i.e., Carlson & Jolly 
2000, Yu et al. 2001, Gil-Negrete et al. 2005) such 
as passive fluid mounts, adaptive tuned vibration 
absorbers (TVA), stiffness tunable mounts and 
suspensions or variable impedance surfaces have 
been proposed in order to reach more tunable 
characteristics.

Magneto-sensitive (MS) elastomers constitute 
a new kind of  smart material that offer an alter-
native approach to the problem (Carlson & Jolly 
2000). They consist of  magnetically polarisable 
particles embedded in an elastomer matrix, and 
their properties can be modified rapidly, continu-
ously and reversibly when applying an external 
magnetic field.

Iron particles are usually selected as polaris-
able particles due to their high permeability, low 

remanent magnetisation and high saturation 
magnetisation. The distribution of these particles 
in the elastomer can be anisotropic or isotropic, 
depending on whether they have been aligned by 
an applied magnetic field before curing.

Research on dynamic properties of magneto-
sensitive elastomers has been performed of late. 
Most studied isotropic and anisotropic distribu-
tions of carbonyl iron, spherical particle filled 
elastomer matrix. For example, Bellan & Bossis 
(2002) studied the amplitude dependence and mag-
netic sensitivity of the Young modulus at very low 
frequencies; Boczkowska et al. (2007) focused on 
urethane magneto-rheological elastomers, vary-
ing particle volume concentration up to 33% and 
measuring storage modulus in the 0–100 Hz range 
at a deformation amplitude of 0.1%; Chen et al. 
(2007) introduced natural rubber as matrix mate-
rial, focusing on the different shear modulus and 
loss factor at low frequencies (5 Hz) that could be 
obtained by varying magnetic field and temperature 
when vulcanising the mixture; Varga et al. (2006) 
and Schrittesser et al. (2008) went up to 100 Hz, 
comparing dynamic properties of compounds with 
and without application of magnetic field during 
vulcanisation. The influence of the magnetic field 
was more pronounced for anisotropic specimens.
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Nevertheless, from the point of view of manufac-
turing MS rubbers it would make the process easier 
if the application of a magnetic field before curing 
could be avoided. Lokander & Stenberg (2003a, b) 
observed that high magneto-rheological (MR) effects 
can be also reached with isotropic MS elastomers 
with larger irregularly shaped iron particles if the 
particle concentration is close to the critical particle 
volume concentration (CPVC). Furthermore, they 
showed that the MR effect is independent of the 
elastomer matrix.

Following this research line, Blom & Kari 
(2005a, b) worked with irregularly shaped iron parti-
cles in silicone and natural rubber. They explored the 
frequency and amplitude dependence of the shear 
modulus in the audible frequency range, and Lejon & 
Kari (2008) included the influence of the preload.

Theoretical applications based on experimental 
results show how the performance of vibration 
isolators is greatly improved by adopting magneto-
sensitive rubbers (Blom & Kari 2005b, c).

In this project, the potential applications of 
magneto-sensitive rubber in noise and vibration 
control need to be studied experimentally. Natural 
rubber was thus selected as matrix material, due 
to its appropriate characteristics in vibration iso-
lation. The iron particles were irregularly shaped 
and in a concentration close to the CPVC. Curing 
of MS rubber was conducted in absence of mag-
netic field, thus leading to an isotropic distribution 
of particles within rubber matrix. The frequency 
range was restricted to the low structure-borne 
vibration transmission range.

On the one hand, characterisation of dynamic 
properties was performed in the frequency range 
of interest in simple shear MS natural rubber com-
ponents, varying amplitude and magnetic field. 
On the other hand, laboratory measurements were 
conducted in a vibration isolation system, which 
consisted of aluminium mass mounted upon four 
MS components and excited by an electro-dynamic 
shaker. The influences of excitation position, ampli-
tude, frequency and magnetic field were analysed.

2 DYNAMIC TESTS ON MS COMPONENTS

2.1 Materials and methods

The raw matrix material was natural rubber (SMR 
GP) containing 100 phr rubber, 6 phr zinc oxide, 
0´5 phr stearine, 3´5 phr sulphur, 0´5 phr mercapto-
benzothiazole and 40 phr plasticisers. The iron 
particles were irregularly shaped with a particle 
size distribution of 77´7% of 0–38 μm, 15´6% of 
38–45 μm and 6´7% of 45–63 μm. The iron particles 
were mixed into the natural rubber at a particle con-
centration of 33% during the vulcanisation process, 

which was conducted in the absence of a magnetic 
field and thus led to an isotropic ground state.

Simple shear MS rubber samples (half  of 
the standardised quadruple simple shear speci-
men) were created from two MS rubber elements 
25 × 25 × 2 mm in dimension and symmetrically 
positioned, as shown in Figure 1. The elements 
were glued to the steel plates using Loctite 406. 
The magnetic field was applied to the samples per-
pendicularly to the motion by an electromagnet.

Dynamic stiffness measurements of the MS com-
ponents were conducted in an Instron MHF400 
dynamic testing machine. The components were 
subjected to shear displacement of constant ampli-
tude. The excitation signal frequency varied from 
50 Hz to 300 Hz with a constant frequency step of 
10 Hz. The magnetic field was generated by a home-
made electromagnet, consisting of a power-supplied 
coil wired round an iron C-frame directing a mag-
netic flux perpendicular to the shear direction. The 
magnetic field was controlled by the electric current 
through the coil, which ranged from 0 A to 2 A, 
where the saturation of the samples was reached. 
All these tests were performed at the excitation 
amplitudes of 0.01, 0.025, 0.05, 0.075 and 0.1 mm.

2.2 Results and discussion

The dynamic shear modulus magnitude and loss 
angle are shown in Figure 2 in the absence of 

Figure 1. Simple shear MS rubber sample.
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Figure 2. Shear modulus magnitude and loss angle 
versus amplitude at 100 Hz and no magnetic field.
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magnetic field for the five tested amplitudes, at 
the excitation  frequency of 100 Hz. The loss angle 
is between 10–12° and the magnitude shows an 
amplitude dependence characteristic of any filled 
rubber, decreasing from 1.5 MPa at 0.01 mm to 
1 MPa at 0.1 mm.

Figures 3, 4 show the dynamic shear modulus 
magnitude and loss angle respectively over the fre-
quency range of interest of the MS components 
for an excitation amplitude of 0.01 mm. It can be 
observed how the magnitude increases with the 
applied magnetic field while the loss angle remains 
unaffected. When an intensity of 2 A is applied to 
the electromagnet the MS component is said to be 
magnetically saturated since the magnitude does 
not increase significantly for higher intensities.

The relative magneto-rheological effect (MR 
effect) is depicted in Figure 5 for the five tested 

amplitudes, corresponding to an excitation fre-
quency of 100 Hz. The MR effect is defined as 
the increase in magnitude of the dynamic shear 
modulus in the presence of magnetic field com-
pared to that in the absence of magnetic field. Fig-
ure 5 indicates that the MR effect increases with 
decreasing excitation amplitude. The largest MR 
effect recorded corresponds to the amplitude of 
0.01 mm with an increase of almost 28% when the 
samples are saturated.

3 APPLICATION CASE

3.1 Procedure

A vibration isolation system was mounted in the 
laboratory in order to study the effectiveness of 
using magneto-sensitive natural rubber components 
as isolators. It consisted of a rigid aluminium mass 
of 13 kg and dimensions of 220 × 180 × 120 mm 
supported on four MS rubber samples placed at the 
four corners of the block (Fig. 6).

The magnetic field was applied to each com-
ponent perpendicular to the shear direction by an 
electromagnet. The four electromagnets were con-
nected in parallel and fed by a single source. The 
electric current through each coil was varied from 
0 A to 2 A, the point at which the saturation of the 
components is attained.

The mass was excited by an electro-dynamic 
shaker. The excitation force signal was a step-sine of 
constant amplitude starting at 10 Hz and increased 
with a constant frequency step of 2 Hz up to the 
maximum frequency of interest, not over 300 Hz.

Excitation amplitudes of 1, 5, 10 and 50 N were 
applied. The response of the system in vertical 
direction was captured with an ICP accelerometer. 

Figure 3. Shear modulus magnitude versus frequency 
for different intensities at 0.01 mm.

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Frequency (Hz)

M
ag

ni
tu

de
 (

M
Pa

)

0A
0.5A
1A
2A

50 100 150 200 250 300
0

5

10

15

20

Frequency (Hz)

L
os

s 
an

gl
e 

(º
)

0A
0.5A
1A
2A

Figure 4. Shear modulus loss angle versus frequency 
for different intensities at 0.01 mm.

Figure 5. Relative magneto-rheological effect versus 
amplitude at 100 Hz.
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 Frequency response functions were obtained between 
different excitation and response positions; when the 
shaker was applied to the center of the top surface of 
the mass. The acceleration was measured at an adja-
cent position (point inertance), and when the excita-
tion position was on the mid point of one edge of 
the top surface, the accelerometer was placed at the 
mid point of the opposite edge (transfer inertance), 
as illustrated in Figure 6. Instruments used for meas-
urements are shown in Table 1.

3.2 Results and discussion

The influence of the excitation level is shown in 
Figure 7 when no magnetic field is applied to the 
samples. These frequency response functions were 
measured by exciting and measuring the response 
in the center of the upper surface of the block, 
and thus the vertical mode was captured. As the 
excitation force increases, the MS components 
are subjected to larger displacements. This causes 
lower dynamic stiffness and hence the decrease of 
the natural frequency of the vertical mode, as it is 
observed in Figure 7.

In Figure 8 the influence of the magnetic field is 
depicted for an excitation force amplitude of 10 N. 
The magnetic field makes the components stiffer 
and therefore, it causes a shift of the resonances 
towards higher frequencies. The natural frequency 

of the system without any applied magnetic field 
is 88 Hz and moves to 100 Hz when an electrical 
current of 2 A goes through each electromagnet, 
that is, when the components are magnetically 
saturated.

From the resonance frequencies of the vertical 
mode the magnitude of the dynamic shear modu-
lus can be estimated using Equation 1:

f K
m

AG
me

= =1
2

4 1
2

8
π π

 (1)

where f = natural frequency of the vertical mode; 
m = mass of the block; K = magnitude of dynamic 
stiffness; A = area of MS elements; e = thickness 
of MS elements; G = magnitude of dynamic shear 
modulus.
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Figure 7. Point inertance for different excitation levels 
with no magnetic fields.
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excitation amplitude of 10 N.

Table 1. Measurement instruments.

Instrument Model

Electro-dynamic shaker LDS 409
Force trasducer DYTRAN 1051V4
ICP accelerometer PCB 333A31
Power-supply VD 310
Frequency analyzer I-DEAS TEST

Figure 6. Measurement set-up of the aluminium mass 
supported on four MS components.
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Looking at the results obtained from the 
dynamic tests on the MS components used as iso-
lators (Figs. 2, 3), it might be concluded that an 
excitation force of  10 N leads to a displacement 
close to 0.01 mm on the samples.

Regarding the magneto-rheological effect, it 
may be obtained from these FRF measurements 
since it is directly related to the frequency shift:

f f2 0 1= +MR  (2)

where f2 = natural frequency with 2 A; f0 = natural 
frequency with 0 A; MR = relative MR effect.

In Table 2 the variation of the resonances from 
zero-field to saturation is shown for excitation 
forces of 1, 10 and 50 N, and the corresponding 
MR effects (calculated using Equation 2). Com-
paring these results to the MR effect shown in 
Figure 5, displacements of less than 0.01, 0.01 and 
0.05 mm could be estimated for the considered 
excitation levels respectively.

Finally, Figure 9 shows the effect of  chang-
ing the excitation and measurement positions, 
where a rotation mode was also excited apart 
from the vertical mode that was present in the 
previous measurements. Curves corresponding 
to zero-field and saturated states are displayed, 
when the excitation force amplitude was 10 N. 
The resonance frequency shifts from 92 Hz with 
zero-field to 102 Hz in saturation for the vertical 
mode, and from 176 Hz to 196 Hz for the rota-
tion mode.

The original resonance peak can be avoided and 
reduced in 26.1% for the first mode and in 37.6% 
for the second, if  the magnetic field is applied. 
A control strategy that consisted on turning on and 
off  the magnetic field manually was followed in 
order to elude those peaks. The test started with an 
intensity of 2 A applied to the coils. At 98 Hz the 
magnetic field was turned off  up to 128 Hz, where 
it was switched on again. The saturated curve was 
followed up to 184 Hz, where the MS components 
were again back at its original properties until the 
end of the test. The frequency response function 
acquired in this test is tagged as “controlled FRF” 
in Figure 9.

4 CONCLUSIONS

A vibration isolation system was experimentally 
investigated in order to study the effectiveness 
of  using magneto-sensitive natural rubber 
components as isolators. Laboratory measure-
ments were conducted in the low structure-borne 
vibration transmission frequency range of inter-
est in a rigid mass support on four MS compo-
nents and excited by an electro-dynamic shaker. 
The natural frequencies of  the system were shifted 
approximately 10% when the magnetic field was 
applied since the MS samples became stiffer. By 
manually controlling the magnetic field through 
the samples, resonance peaks could be avoided, 
reducing the level of  the frequency response func-
tions. These results demonstrate the potential of 
using magneto-sensitive rubber in noise and vibra-
tion control in real applications.
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Representation of dynamic elastomer behavior with focus 
on amplitude dependency

Herbert Baaser & Guido Hohmann
Freudenberg Forschungsdienste KG, Weinheim, Germany

ABSTRACT: In this article, we present a description and FE implementation of a phenomenological 
material model incorporating the time-dependent (viscous, dynamic) behaviour of elastomers for indus-
trial applications such as seals and dampers. In particular, we focus on a numerical representation of 
amplitude dependency in the time domain in addition to the classic viscous descriptions. This Payne or 
Fletcher-Gent effect results in a decrease in dynamic stiffness with increasing strain amplitude and 
therefore influences all experimental observations on elastomer materials. In our formulation, the hyper-
elastic (static) part of the material response is defined on the basis of any freely selected function of strain 
energy (density), where the branch of time domain viscoelasticity is realised by using a hereditary integral 
and a Prony series formulation. In addition, we modify each of the resulting modules in order to account 
for the amplitude dependency. This approach is based on a factorisation of experimental results and cul-
minates in a scalar weighting of the modules of the Prony series. An examples from automotive bushing 
application shows the capability and numerical efficiency of that constitutive description.

1 INTRODUCTION

In this article, we describe a phenomenological 
material model which simulates the static and 
dynamic behaviour of  elastomers for industrial 
applications such as seals and dampers. In this con-
nection, we consider viscous, i.e. time-dependent, 
behaviour in which dynamic stiffness decreases 
with increasing strain amplitude (Payne effect) 
in addition to frequency dependency. Viscosity is 
modelled in the time domain by means of  a Prony 
series whose parameters are determined by a 
dynamic-mechanical analysis (DMA). In addition, 
the resulting characteristic modules are modified 
in order to simulate the influence of  the excitation 
amplitude, see also (Baaser 2007). A similar for-
mulation also results in (Höfer and Lion 2007) due 
to an expansion of  the Kraus model. We adjust 
the above-referenced formulation to data which is 
also gained from these measurements. As shown 
in Fig. 2, these measurement results indicate an 
additional dependency on the applied shear angle 
given as dynamic strain. In Fig. 3, we demonstrate 
the same results with the reference module |G|ref 
at 1% shear, standardised as a function of  this 
equivalent shear. We suggest here to calculate the 
equivalent shear γeqv in line with

γ eqv I I= + −
1
2

31 2( ) ,
 

(1)

where the first and second invariant of the right 
or left Cauchy-Green deformation tensor, C or b, 
are designated with I1 and I2. The core element of 
this modification for the representation of ampli-
tude dependency is the determination of this typi-
cal deformation measurement for the purpose of 
comparing the local component strain with the 
shear stress of a DMA measurement, see also 
Fig. 1. The presented model approach is imple-
mented using the Abaqus finite-element system 
by way of the UMAT interface. Consistent deriva-
tion of the material tangent ensures the optimum 
convergence of the equilibrium iteration of the 
non-linear problem and can thus be used for all 
element types in simulation. This signifies a gain 
in efficiency specifically for industrial applications. 
Taking an example from automotive technology, 
the efficiency of the model and its implementation 
are demonstrated.

Figure 1. DMA-test specimen under harmonic load 
applying a “best practice” simple shear mode.

∅36 mm
Elastomer Samples
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2 MECHANICAL MODEL FOR 
TIME-DEPENDENT BEHAVIOUR

This mechanical model is very largely based on 
formulations known from technical literature for 
rate-dependent inelasticity in the case of major 
deformations. More details can, for example, be 
found in (Kaliske and Rothert 1998) or (Holzapfel 
2000). The key focus here is a three-dimensional 
extension of  the rheological model depicted in 
Fig. 4. The one-dimensional formulation of 
response of the situation in Fig. 4 yields in differ-
ential equations for each string α. Their 3D gener-
alization is given by

� �Q Q Sα
α

α
α+ =

τ iso, ,
 

(2)

where the Siso,α indicate the isochoric parts of the 
(possibly nonlinear) responses of the springs, and 
τα, is the relaxation time of the α ’th string. A closed 
form solution of (2) is given by the time-related 
convolution of the individual tension rates of a 
Maxwell string responses in the stress

Q e Q e S dtα α α
α α= +− − −∫T T t

T

iso t/ ( ) /
, ( ) ,τ τ

0
0

�

 
(3)

for each string. For the numerical implementation of 
this formulation, (Holzapfel 2000) contains appropri-
ate details and information about implementation, 
specifically for treatment of the history variables. 
Within this context, the benefit of the modular 
structure and thus the flexibility for the treatment 
of any hyperelastic formulations are shown here. 
An expanded model with a formulation of the Yeoh 
type is depicted which, in the static case, is adjusted 
to measurement data from uni-axial tensile tests, see 
(Baaser et al. 2006) and thus reflects the basic elastic-
ity of the model in the infinite string in Fig. 4.

3 CONSIDERATION OF AMPLITUDE 
EFFECT BY “BEST DISTANCE” 
APPROXIMATON

As indicated by experimental findings in Fig. 2, elas-
tomeric materials also demonstrate a distinct decrease 
in stiffness with increasing amplitude (Payne or 
Fletcher-Gent effect) due to the polymer-filler 
interaction, in addition to frequency dependency. 
In the procedure shown here, we modify the stiff-
nesses assumed in Fig. 4 with a factor which we 
obtain from an adjustment using an exponential 
function, see Fig. 3 and later in (10). Thus, we addi-
tionally include an amplitude dependency in the 
constitutive law as a function of the equivalent shear 
suggested in (1).

In order to define such “equivalent shear”, we are 
searching for a measure to compare a general defor-
mation b to a standardized shear state e.g. given by 
bSiSh = FSiSh · FT

SiSh  in the sense of a “best distance”. 
Assuming a “best practice” simple shear situation 
realized by a sample in Fig. 1, we characterize that 
by the deformation gradient

Figure 2. Amplitude dependency: stiffness decrease for 
increasing amplitudes at 1 hz and 63 hz excitation for 
temperatures of about 20°C and 80°C.

Figure 3. Normalized results of fig. 2 at 1% shear.

Figure 4. Uniaxial model of viscoelastic behavior by a 
spring element in parallel to Maxwell elements (general-
ized Poynting-Thompson-structure).
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FSiSh =
⎡
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⎢
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⎢

⎤
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⎥
⎥
⎥

1 0
0 1 0
0 0 1

γ

 

(4)

with the typical shear angle γ. So, the question 
arise, how to find an “equivalent shear” γeqv charac-
terizing the shear portion in an arbitrary state b.

Defining a “distance measure”

a I I I ISiSh SiSh2
1 1

2
2 2

2= − + −( ) ( )  (5)

of the invariants I1 and I2 of b compared to them 
of bSiSh, we can minimize a2 in (5) in order to obtain 
γ in (4), because

I ISiSh SiSh
1 2 1 2

23, , ( ) .= = +γ γ
 

(6)

Minimization of (5) with respect to γ,

∂
∂

= − + + + =
a

I I
2

1 2
24 8 3 0

γ
γ γ γ( ) ( ) !

 
(7)

gives us γ = ± + −1 2 31 2/ ( )I I , where we define the 
positve solution as γeqv as already given in (1).

In the following, we give some examples for 
that proposal. Given (a) an uniaxial deformation 
defined by the uniaxial stretch λ1ax, we obtain

γ λ
λ

λ
λeqv

ax
ax

ax
ax

ax

1
1
2

1
1

1
2

1
2

2 2 1 3= + +
⎛

⎝⎜
⎞

⎠⎟
− ;

 
(8)

and (b) a biaxial deformation defined by the stretch 
λbiax, we obtain

γ λ
λ

λ
λeqv

biax
biax

biax

biax

biax
= + + + −2

4

4

2
1

2
1 3

2
 

(9)

All arbitrary deformation modes lie in between 
these extrem values of uniaxial and biaxial stretch 
given in Tab. 1 in the case of ideal incompressible 

material such as elastomeric products in that range 
of observation. In adddition, to visualize these 
results, we give (1) plotted as surface over the plane 
of invariants I1 − I2 in Fig. 5. So, one can easily get 
an impression of that proposal for γeqv in order to 
determine the shear portion of an arbitrary defor-
mation by the draft computation in (1).

4 REALIZATION & IMPLEMENTATION

The formulations described here are implemented 
in the Abaqus finite-element system by way of 
the UMAT interface in Fortran77. In accord-
ance with the convention provided there, in this 
routine, based on the current deformation gradi-
ent F and on the history data, the Cauchy stress 
tensor σ and the consistent module D with respect 
to the logarithmic deformation value ε = ln(v) of 
the left stretch tensor v are calculated in the cur-
rent configuration and returned. Due to the non-
linearities in the constitutive law, the local solution 
of an equation system as an integration during the 
time interval [t,t + Δt] is necessary at the level of 
the UMAT interface, i.e. each integration point 
of any element formulation, see (Tsakmakis and 
Willuweit 2003). We perform this integration using 
an implicit Euler method, which, as is generally 
known, is not per se isochoric, see (Baaser 2004). 
For this reason, an additional constraint condi-
tion is included in this equation to obtain material 
incompressibility.

5 MATERIAL CHARACTERIZATION & 
PARAMETER CALIBRATION

The material model presented here is adjusted 
to materials by means of a dynamic-mechanical 

Table 1. Examples for γeqv.

λ1ax γ eqv
ax1 λbiax γ eqv

biax

1.0 0.0000 1.0 0.0000
1.5 0.7169 1.5 1.5246
2.0 1.2748 2.0 3.0465
2.5 1.7621 2.5 4.7910
3.0 2.2111 3.0 6.8277

Figure 5. The equivalent shear γeqv as function of I1 and 
I2 visualized as surface in between arbitrary uniaxial and 
shear states. The biaxial states can be given in that dia-
gram by mirroring the uniaxial case on the shear line.

I1

I2

γ eqv uniaxial modes

shear modes
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analysis (DMA) using defined specimens (see Fig. 1) 
which are run through by way of a broad tempera-
ture window within a frequency range. This means 
that a master curve of the material is obtained 
using a temperature-frequency correspondence 
(WLF shift), see also (Kaliske and Rothert 1998). 
This curve (see Fig. 6) can be depicted by a Prony 
series through the parameter set Gα

Prony and τα
Prony 

for each string, signifying a direct analogy to the 
Maxwell elements in Fig. 4.

As mentioned above, we modify the resulting 
modules GProny

α  for the purpose of describing the 
storage and loss portion in addition by factorisa-
tion in order to obtain an influence of the strain 
amplitude in the model. For this purpose, the curve 
depicted in Fig. 3 is applied to the modules as

G
A

B k
Geqv

eqv
α αγ

γ
mod Prony( )

exp( )
=

+ −1
 

(10)

permitting an adjustment by means of an expo-
nential function with three parameters A, B, k 
and, thus, modifying the modules of the Maxwell 
strings, see Fig. 4.

6 EXAMPLE & RESULT

Within this context, we consider a typical chassis 
bushing from an automotive application in a 3D 
model as depicted in Fig. 8. In order to investigate 
the influence of amplitude dependency, we use 
this model to consider torsional stiffness at dif-
ferent torsional angles of up to 7° at a constant 
excitation frequency. Material properties have been 
determined for this component by the adjustment 
described above. As a model response, we ana-
lyse the resulting reaction moment as a function 
of excitation, see Fig. 9. In addition to hysteresis 
for this strain mode, the quality of simulation is 
demonstrated there in concurrence with the meas-
urement results. Whereas a simulation with the 
Abaqus standard without modification provides 
an excessively stiff  behaviour with regard to ampli-
tude dependency, the amplitude dependency of the 
material considered in this model is seen as a result. 
This amplitude dependency is also visible in the 
structural response and demonstrates a decrease 
with regard to the standard formulation at a given 
frequency and amplitude.

Figure 6. Master curve—storage modulus.

Standard-FEM

Actual Model

Experiment

Figure 9. Torsional stiffness about z-axis—7°.
Figure 7. Master curve—loss angle at reference 
temperature.

Figure 8. 3D-FEM-Model (cut section) of a bushing from 
automotive application and depicted torsional moment 
about z-axis.

M

fixed boundary
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7 SUMMARY & CONCLUSIONS

The numerical implementation of a time-dependent 
material model in the commercial Abaqus FE 
program package is presented here. This material 
model is also capable of taking into consideration 
the amplitude dependency of the material response 
which is known for elastomers. This is achieved 
by modifying the stiffnesses of the Maxwell ele-
ments in the representation by means of a Prony 
series (“factorisation”). The necessary material 
parameters are calibrated from a dynamic-
mechanical analysis. In this way, in addition to the 
semi-realistic simulation of static elastomer prop-
erties, the viscous, i.e. time-dependent, characteris-
tics can be integrated in the numerical model. This 
now also permits dynamic simulations of overall 
components which, as indicated here taking the 
example of a chassis bushing, result in statements 
about stiffness behaviour depending on the excita-
tion amplitude.
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Viscoelastic properties of filler reinforced elastomers

M. Klüppel & J. Fritzsche
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ABSTRACT: For a better understanding and for getting a deeper insight into structure and dynamics 
of filler reinforced elastomers, it is important to investigate the relations between filler network morphol-
ogy, interphase dynamics and bulk viscoelastic properties on a broad frequency scale. In the present work, 
dynamic-mechanical and dielectric spectra of silica and carbon black filled S-SBR samples are studied 
in a wide frequency and temperature range. For the creation of dynamic-mechanical master curves fre-
quency dependent measurements at different temperatures are applied to cover a larger frequency range. 
It is demonstrated that the time-temperature-superposition (TTS)-principle is not fulfilled for filled elas-
tomers and the introduction of vertical shift factors is necessary to obtain viscoelastic master curves. 
The changes in the dynamic-mechanical properties by the incorporation of fillers and the failure of the 
TTS-principle in the low frequency (high temperature) regime are shown to be related to the superim-
posed dynamics of the filler network. It is governed by the viscoelastic response of glassy-like polymer 
bridges between adjacent filler particles, which differs from that of the polymer matrix. The reduced chain 
mobility close to the filler interface becomes apparent by a broadening of the glass transition on the low 
frequency side.

1 INTRODUCTION

Traditional filler like carbon black or silica have 
long been used for reinforcement of elastomers 
especially in mechanical purposes. Recently the 
physical improvement of polymers using nano-
particles like silicate nanoparticles, organoclays or 
nanotubes became more and more important. The 
employment of these nanoparticles remains in an 
increasing interest in understanding the changes in 
dynamic and structural properties caused by fill-
ers and nanoparticles. In particular, the use of the 
traditional fillers results in improved resistance to 
wear and tear, decreasing heat build up, increased 
stiffness as well as increased fatigue resistance and 
abrasion resistance (Kraus 1965). But up to now 
the origin of this reinforcement effects is only 
partly known. Years ago it was suggested that the 
reinforcement of polymers is accompanied by the 
formation of immobilized polymer layers due to 
the interfacial interaction between the polymer 
matrix and filler, which leads to a general change in 
thermodynamic properties of the system. The exist-
ence of glassy-like polymer layers was proposed 
by different authors based on results obtained by 
NMR- and dielectric spectroscopy and mechani-
cal analysis. Additionally various authors reported 
measurements on thin polymer films showing 
that the measured glass transition temperature of 
these films strongly depends on the thickness of 
the polymer layer. In dependence of the substrate 

causing an attractive or repulsive interaction with 
the polymer an increase or a decrease of the glass 
transition temperature with decreasing layer thick-
ness could be found (Hartmann et al. 2003, Soles 
et al. 2004, Grohens et al. 2002). These results 
have been confirmed by simulations and analytical 
studies concerning the change of dynamics next to 
filler surfaces (Starr et al. 2002, Douglas & Freed 
1997).

Recently (Long & Lequeux 2001) developed a 
thermodynamic model giving an interpretation of 
these phenomena. They proposed that the viscos-
ity close to the glass transition is determined by 
slow dynamic domains resulting from thermally 
induced density fluctuations and the glass transi-
tion process originates in the percolation of these 
slow domains. They found that the percolation 
threshold depends on the interaction between 
polymer and substrate. For strongly interacting 
polymer films the threshold is lower due to the 
emergence of additional rigid paths through the 
substrate. Thus, the dynamics are modified near 
the surface resulting in a dependence of the glass 
transition temperature Tg (ω) on the distance from 
the surface. This implies a glassy-like polymer 
shell with temperature and frequency dependent 
thickness surrounding the filler particles. In vari-
ous investigations (Berriot et al. 2002, Berriot et al. 
2003) were able to show that this concept allows 
to describe quantitatively some typical effects 
on the dynamic-mechanical modulus with the 
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 incorporation of filler. However, with a certain 
amount of filler additionally the influence of the 
filler network has to be taken into account which 
was not considered by (Long & Lequeux 2001). 
The role of  filler networking in different aspects 
of  rubber reinforcement has been investigated by 
several authors. A review is given in (Heinrich & 
Klüppel 2002, Klüppel 2003). In particular, it has 
been demonstrated that, driven by osmotic deple-
tion forces, filler networking takes place during 
heat treatment or vulcanization. Due to strong 
polymer-filler couplings the polymer between 
adjacent filler particles is not squeezed out totally 
and characteristic gaps remain. The confined 
polymer in these gaps is strongly immobilized and 
forms glassy-like bridges between adjacent filler 
particles transmitting the stress through the filler 
network (Klüppel 2003, Klüppel & Heinrich 2005, 
Le Gal et al. 2005). Since viscoelastic response 
of  the filler network results from the stiffness 
and viscose losses of  the immobilized polymer 
bridges the small strain elastic modulus of  highly 
filled composites can be traced back to the spe-
cific viscoelastic properties of  the glassy bridges, 
i.e. the filler-filler bonds (Klüppel 2003, Meier & 
Klüppel 2008.

The viscoelastic properties are important enti-
ties for several rubber technological applications 
like friction and fracture mechanics. It was dem-
onstrated by (Le Gal et al. 2005, Le Gal & Klüppel 
2008) how viscoelastic master curves can be used 
for modeling the dry and wet friction behavior of 
elastomers on rough surfaces. In addition, it has 
been shown by (Klüppel 2009) how viscoelastic-
ity impacts the fracture mechanical properties as 
the crack growth rate of elastomers under cyclic 
loading.

In the present paper we will address some 
open questions related to micro-mechanical 
mechanisms affecting the viscoelastic properties 
of  filled elastomers. Therefore we will analyze 
a solution styrene butadiene rubber filled with 
different loadings of  silica and carbon black, 
respectively. The silica is silanized with silane as 
a coupling agent to provide a chemical bonding 
between filler and polymer. We will focus on the 
investigation of  the dynamic-mechanical behav-
ior using horizontal shift factors determined by 
dielectric-relaxation spectroscopy for creation of 
dynamic-mechanical master curves based on the 
time-temperature-superposition principle. The 
results will be discussed by referring to a thermal 
activation of  filler-filler bonds and the viscoelas-
tic response of  the filler network together with 
the glass transition gradient model introduced by 
(Long & Lequeux 2001) focusing on a qualitative 
understanding of  the filler induced changes in the 
dynamic-mechanical properties.

2 EXPERIMENTAL

2.1 Sample preparation

The samples have been prepared with the styrene-
butadiene rubber (VSL 2525-0, 25% styrene con-
tent, 25% vinyl content, Lanxess, Germany), 
which was filled with different loadings of silica 
(Ultrasil GR 7000, Evonik Degussa GmbH, BET 
surface area) and carbon black (N339). For the 
silica filled samples the content of silane TESPT 
(Bis-(triethoxy-silylpropyl) tetrasulfane) was var-
ied between 1.7 and 6.7 phr in dependence of 
the filler content due to the changing amount of 
reactive silanole groups with increasing filler con-
tent. Furtheremore, 3 phr zinc oxide, 1 phr stearic 
acid, 2 phr N-isopropyl-N'-phenyl-p-phenylen-
diamine (IPPD), 2,5 phr n-cyclohexyl-2-benzo-
thiazole-sulfenamide (CBS) and 1,7 phr soluble 
sulfur were used as vulcanisation system.

The composites were prepared in an internal 
mixer rotating at 50 rpm in a multi-step-mixing pro-
cedure. At first the rubber and the silica were mixed 
in the internal mixer at 140°C. The silane was added 
for in-situ-silanisation at 150°C and the silanisation 
reaction was performed during 10 min. In second 
step after 24 hours the masterbatch was again mixed 
in the internal mixer at 130°C for 8 min to ensure the 
silanization reaction is completed. In a third step the 
rest of anti aging additives and curatives was added 
at 40°C on the two-roll mill. The curing study was 
carried out with the help of a rheometer (Monsanto 
ME 2000) at 160°C. The samples were cured under 
pressure at 160°C to 2 mm plates in dependence of 
the determined t90 vulcanization time.

2.2 Dielectric and DMA measurements

Dielectric investigations have been carried out 
in a wide temperature range (−100°C to +100°C) 
and at frequencies from 0.1 Hz to 10 MHz using a 
broadband dielectric spectrometer BDS 40 (Novo-
control GmbH, Germany). The temperature was 
varied in five-degree steps using the temperature 
control system Novocool. The temperature uncer-
tainty amounts to ±0.5°C. The measured geometry 
was a disc shaped plate capacitor with a diameter 
of 40 mm. The sample with a thickness of 2 mm 
was placed between two gold-plated electrodes. To 
provide an excellent contact between sample and 
electrodes thin gold layers have been sputtered 
onto the flat surface of the sample plate. A force-
limiting spring was used to ensure that always the 
same clamping force was exerted onto the test-
capacitor keeping thickness and electrical contact 
as comparable as possible between different sam-
ples. The dielectric permittivity and the dielectric 
loss have been recorded for each sample in depend-
ence of temperature and frequency.
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The dynamic-mechanical measurements were 
performed in the torsion-rectangular mode with 
strip specimen of 2 mm thickness and 30 mm 
length with an ARES rheometer (Rheometrix). 
The dynamic moduli were measured over a wide 
temperature range (−80°C to +80°C) at a frequency 
of 1 Hz and 0.5% strain amplitude for temperature 
dependent measurements. For creating dynamic-
mechanical master curves frequency dependent 
measurements have been performed at different 
temperatures between +60°C and −60°C in five 
degree steps varying the frequency between 0,01 Hz 
and 16 Hz. The strain amplitude was kept constant 
at 0.5%.

3 RESULTS AND DISCUSSION

Dynamic-mechanical measurements have been 
performed by varying the frequency at various 
constant temperatures. By applying the time-
temperature superposition principle for the unfilled 
polymer the different branches have been shifted 
horizontally to obtain viscoelastic master curves. 
The horizontal shift factors obtained in this way 
for the unfilled sample are plotted as a function of 
temperature in Fig. 1.

As reference temperature Tref = 293.5 K is cho-
sen. In addition, the horizontal shift factors for the 
unfilled and filled samples have been determined 
using dielectric relaxation spectroscopy by extract-
ing the local maxima of the dielectric loss of the 
glass transition process. Previous investigations 
have shown that this procedure is successful since 
the underlying cooperative processes causing the 
glass transition process are identical in both inves-
tigation measurement methods (Le Gal et al. 2005). 

The resulting shift factors for the unfilled sample 
and the samples filled with 40 phr and 80 phr of 
Silica are also included in Fig. 1.

Obviously, the location of the glass transition 
of the matrix, indicated by the loss maxima, is not 
affected by the presence of filler. Accordingly, all 
samples can be described by a single set of hori-
zontal shift factors. The solid line in Fig. 1 dem-
onstrates that all samples can be fitted by the well 
known WLF equation:

log
( )

a
C T T

C T TT
ref

ref
=

− −
+ −

1

2  
(1)

The horizontal shift factor is defined as the ratio 
of relaxation times aT = τ (T ) /τ (Tref). The result-
ing WLF-constants are found as C1 = 5.15 and 
C2 = 126.57°C. We point out that the identical set 
of horizontal shift factors for the unfilled and filled 
samples does not mean that the whole dynamics 
of the polymer matrix remains unchanged, since a 
broadening of the glass transition loss maximum is 
generally observed with increasing filler loading.

Figure 2 shows the constructed master curves 
for unfilled and filled samples by applying the 
single set of horizontal shifting factors obtained in 
Fig. 1 by the adaptation to Equ. (1). It demonstrates 
explicitly that the horizontal shifting leads to a well 
matching master curve for the unfilled samples. 
For the filled samples with increasing filler content 
a increasing discontinuity of the single branches 
at low frequencies is observed. Obviously in these 
cases the time-temperature superposition is not 
fulfilled. The data in Fig. 2 show that master curves 
for unfilled polymer networks or melts can be con-
structed on a broad frequency scale by applying 

Figure 1. Horizontal shift factors determined by dynamic-
mechanical spectroscopy (open symbol) and dielectric 
spectroscopy (filled symbols); The solid line represents a 
fit according to the WLF-Equ. (1).

Figure 2. Master curve of the unfilled sample and the 
samples filled with 60 phr and 80 phr of silica created 
with horizontal shift factors from Fig 1.
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the time-temperature superposition principle. This 
is based on the fact that all characteristic relaxa-
tion times, as e.g. Rouse relaxation- or tube repta-
tion time, can be traced back to the temperature 
dependent diffusion time of the monomer units on 
a molecular length scale. For polymer blends with 
different glass transition temperatures or filled 
elastomers with interpenetrating networks this is 
no longer the case, since the mechanical response 
results from additive network contributions with 
different dynamics. This kind of superposition of 
interpenetrating networks with different relaxation 
behavior implies that one network component is 
governing the mechanical response of the whole 
system in a certain temperatures or frequency 
regime and the other component in another.

In the case of filler reinforced elastomers the 
low temperature (high frequency) mechanical 
response mainly results from the glassy polymer 
matrix, while the high temperature (low frequency) 
response is dominated by the filler network, pro-
vided the filler network is significantly stiffer than 
the polymer matrix (Klüppel 2003). Accordingly, 
at low frequencies the Arrhenius like thermal acti-
vation of the filler network, resulting from the 
immobilized polymer bridges between adjacent 
filler particles, can not be compensated by the 
WLF-like horizontal shifting factors of the poly-
mer matrix and discontinuous branches are found 
for the filled samples in Fig. 2. Fair overlapping 
of the branches can only be obtained at high fre-
quencies beyond the glass transition of the matrix, 
which then dominates the mechanical response of 
the system.

Since it was demonstrated that the horizontal 
shift factors are independent of the filler content 
it was necessary to use vertical shift factors to 
compensate the mismatches. An Arrhenius-plot 
of the vertical shift factors necessary to obtain G′ 
master-curves for the silica filled samples is shown 
in Fig. 3. For all filled samples a fair linear behav-
ior of the vertical shift factors is found in the tem-
perature range above the glass transition of the 
matrix indicating a thermally activated process 
causes the deviation in the master curves. The slope 
can be interpreted as an apparent activation energy 
of the filler network, resulting from glassy-like 
polymer bridges between adjacent filler particles 
which form the filler-filler bonds (Klüppel 2003, 
Heinrich & Klüppel 2004, Klüppel & Heinrich 
2005, Meier et al. 2007, Meier & Klüppel 2008).

The so obtained activation energies are sum-
marized in Table 1. They increase almost linearly 
with increasing filler loading, indicating that there 
is a change of the dynamics of the glassy bridges 
resulting either from an decreasing gap size of 
filler-filler bonds or from an increasing influence 
of overlapping regions of adjacent filler particles 

with rising filler concentration. This correlates 
with the experimental observation that the glass 
transition temperature of ultra-thin films between 
attractive walls decreases strongly with film thick-
ness if  the thickness falls below 20 nm (Hartmann 
et al. 2003, Soles et al. 2004, Grohens et al. 2002). 
The gap size between adjacent filler particles of the 
filler network typically lies in the range of a few nm 
(Meier et al. 2007, Meier & Klüppel 2008), imply-
ing strong effects of the gap spacing on mechani-
cal properties of filler-filler bonds, e.g. stiffness, 
strength or activation energy.

The final dynamic-mechanical G′ master curves 
of the silica filled samples after applying hor izontal 
and vertical shifting are shown in Fig. 4. An 
increasing frequency dependence of  the master 
curves at low frequencies is observable with increas-
ing filler loading. Since the filler network is domi-
nating the mechanical response in the low frequency 
regime we can conclude that this behavior is due to 
an increasing stiffness of the filler network. Accord-
ingly, the observed frequency dependence is due to 
the frequency response of the glassy-like polymer 
bridges between adjacent filler particles form-
ing the filler-filler bonds. Nevertheless, with rising 

Figure 3. Arrhenius dependence of the vertical shift 
factors necessary to obtain G′ master-curves for the silica 
filled samples.

Table 1. Comparison of the activation energies deter-
mined by temperature dependent measurements of G′ 
(Fig. 6) and vertical shifting to obtain G′ master-curves 
for the silica filled samples depicted in Fig. 3.

Temperature sweeps Vertical shifting

 0 phr  0.03 ± 0.02 kJ/mol 0 kJ/mol
20 phr  0.93 ± 0.10 kJ/mol 0.66 ± 0.12 kJ/mol
40 phr  3.26 ± 0.06 kJ/mol 2.62 ± 0.36 kJ/mol
60 phr  6.66 ± 0.18 kJ/mol 5.15 ± 0.2 kJ/mol
80 phr 11.22 ± 0.20 kJ/mol 8.67 ± 0.2 kJ/mol
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frequency just below the glass transition frequency 
an additional effect results from the growing polymer 
shells with slowed-down dynamics around the filler 
particles. This effect becomes more pronounced for 
large loadings, since the amount of polymer matrix 
forming a gradient of reduced mobility in the vicin-
ity of the filler surface is increasing with filler con-
centration. Furthermore, for large filler loadings 
an overlap of regions with slowed down dynam-
ics of different filler particles has to be taken into 
account. The sum of these effects can be related 
to the observed broadening of the glass transition 
regime on the low frequency side with increasing 
filler loading.

The role of filler-filler bonds, on the one side, 
and the slowed-down dynamics close to filler par-
ticles, on the other side, in dynamic-mechanical 
properties can be analyzed on different time scales 
by referring to the relaxation time spectra depicted 
in the inset of Fig. 4. They have been calculated 
from the master curves of G′ according to the itera-
tive approximation method of Williams and Ferry 
(Williams & Ferry 1953, Ferry 1980):

H AG d G d p( ) log / logτ ω ω τ= ′ ′ <=1 1for

with A p p p= − −⎛
⎝⎜

⎞
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+⎛
⎝⎜

⎞
⎠⎟

( )2 2 2
2

1
2

Γ Γ  (2)

Here p is the local slope of H at τ = 1/ω, which 
must be smaller than one, and Γ is the gamma 
function. The inset of Fig. 4 demonstrates that 
the presence of fillers modifies the behavior of the 
relaxation time spectrum during the glass transi-
tion, i.e. a less pronounced drop of relaxation time 
contributions is found. On time scales 10–8 to 10–3 s 
a power law behavior H ∼ τ –m is more or less real-
ized and the scaling exponent increases from about 

Figure 4. G′ master curves of the silica filled samples 
after application of horizontal and vertical shifting; 
Inset: Relaxation time spectra of the samples calculated 
according to Equ. (2).

Figure 5a. G′ master curves of the carbon black filled 
samples after application of horizontal and vertical 
shifting.
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Figure 5b. G″ master curves of the carbon black filled 
samples after application of horizontal and vertical 
shifting.

m = 0.6 to 0.4 with increasing filler loading. This 
is related to the observed broadening of the glass 
transition in Fig. 4. It is expected to result from 
the slowed-down dynamics close to filler particles. 
Nevertheless, a full theoretical understanding of 
the modified power law exponent due to confined 
polymer shells around filler particles is outstand-
ing so far. Furthermore, one observes a consider-
able contribution of relaxation times larger than 
10–3 s which also increases with filler loading. This 
relaxation at longer time scales is attributed to the 
filler network.

The dynamic-mechanical master curves of 
both, G′ and G″, for the carbon black filled sam-
ples after applying horizontal and vertical shifting 
are depicted in Figs. 5a and 5b, respectively. Fig. 5c 
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shows the relaxation time spectra obtained with 
Equ. (2) from the G' master curves at various filler 
content. The results are similar to the behavior of 
the silica filled samples depicted in Fig. 4. Again, 
the observed frequency dependence in the low 
frequency regime can be related to the frequency 
response of the filler network or more precisely the 
filler-filler bonds, consisting of glassy-like polymer 
bridges between adjacent filler particles (primary 
carbon black aggregates). At intermediate frequen-
cies, a broadening of the glass transition regime 
with increasing filler loading is observed due to 
the growing polymer shells with slowed-down 
dynamics around the filler particles. This effect 
results in a less pronounced drop of the relaxation 
time spectra during the glass transition on time 
scales 10–8 to 10–1 s, where a power law behavior 
H ∼ τ –m is observed. As depicted in Fig. 5c, the 
slope m decreases systematically with filler loading 
due to the increasing amount of interphase. The 
additional contribution at relaxation times larger 
than 10–1 s is attributed to the filler network.

The impact of the filler network with thermally 
activated filler-filler bonds can also be observed for 
the temperature dependent viscoelastic data. An 
Arrhenius-plot of the storage modulus G′ measured 
at 1 Hz is shown in Figs. 6 and 7 for the silica 
and carbon black filled samples, respectively. As 
indicated by the inserted regression lines one 
observes a thermal activation of G′ in the high tem-
perature range, which becomes more pronounced 
with increasing filler content. This effect is typical 
for elastomers filled with highly reinforcing fillers 
(Heinrich & Klüppel 2002, Heinrich & Klüppel 
2004). In a plot of log G′ as a function of the inverse 
temperature the differences in this behavior with 
increasing filler content can be quantified calculat-

ing the value for the slope n in a defined temperature 
range following an Arrhenius like behavior. The 
slope n = –EA/R, where R is the gas constant, cor-
responds to an activation energy which is physically 
related to the thermal activation of the filler-filler 
bonds. In analogy to the vertical shifting factors 
depicted in Fig. 3, this slope is increasing with 
increasing filler content, resulting in an increas-
ing activation energy of the glassy bridges. But as 
slightly visible in Figs. 6 and 7, the linear function 
dominates the behavior of log G′ in dependence 
of the inverse temperature but do not describe the 
behavior of G′ completely. An underlying potential 
function, introduced in (Berriot et al. 2002, Berriot 
et al. 2003) describes the change of the elastical 
modulus due to the increase of the thickness of a 
glassy shell around the filler particles with decreas-
ing temperature (Long & Lequeux 2001). Both 
effects are difficult to separate, though the most 
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Figure 5c. Relaxation time spectra of the carbon 
black filled samples calculated according to Equ. (2). 
The inserted regression lines correspond to a power law 
behavior H ∼ τ –m.

Figure 6. Arrhenius plot of the temperature dependent 
measurements of the storage modulus of the silica filled 
samples; Inset: Schematic view of modified polymer 
dynamics in the vicinity of filler particles.

Figure 7. Arrhenius plot of the temperature depend-
ent measurements of the storage modulus of the carbon 
black filled samples.
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significant contribution of the growing shells results 
close to the glass transition temperature Tg leading 
to the observed broadening of the glass transition 
on the high temperature side. For temperatures 
higher than about Tg + 30°C the Arrhenius-fits in 
Figs. 6 and 7 represent a reasonable description of 
the experimental data, confirming the conclusion 
from the frequency dependent data (Fig. 3) that the 
filler network is dominating the behavior of G' in 
the low frequency or high temperature regime. The 
systematic deviations from the Arrhenius behav-
ior at higher temperatures can be explained by 
an increase of the cross-section of the glassy-like 
polymer bridges (filler-filler bonds) with decreasing 
temperature as indicated in the inset of Fig. 6.

A comparison of the activation energies resulting 
from vertical shifting and temperature dependent 
measurements of the silica filled samples is shown 
in Tab. 1, giving slightly higher values for the acti-
vation energies obtained by temperature depend-
ent measurements. Furthermore, with increasing 
filler content the difference between the activation 
energies is increasing. This can be related to the 
stronger incline of the frequency dependent modu-
lus with increasing filler content observed in Fig. 4, 
indicating a more pronounced stiffening of filler-
filler bonds. Accordingly, the horizontal shifting 
compensates larger parts of the thermal activation 
of filler-filler bonds as derived from the tempera-
ture dependent measurements in Figs. 6 and 7. We 
finally point out that the detected characteristic 
load dependence, i.e. the increase of the activa-
tion energy and the stronger frequency response 
of glassy-like polymer bridges indicate that the 
bond length or gap distance decreases slightly with 
increasing filler concentration leading to filler-filler 
bonds with different mechanical properties and 
relaxation dynamics.

4 CONCLUSIONS

It has been shown that the viscoelastic response of 
the viscoelastic moduli, G′ and G″, of  filler rein-
forced elastomers at high temperatures (low fre-
quencies) is due to a combination of two effects: 
On the one hand side, the slowing down of the 
dynamics of the polymer matrix close to the filler 
surface leads to a broadening of the glass transi-
tion on the high temperature (low frequency) side. 
This may be considered by an underlying potential 
function, which describes the thickness of a glassy 
layer around filler particles. On the other hand side, 
due to its higher stiffness compared to the polymer 
matrix, the filler network governs the dynamic-
mechanical properties of the composites in the 
high temperatures (low frequency) regime. Accord-
ingly, the viscoelastic response is due to glassy-like 

polymer bridges between adjacent filler particles. 
In a plot of log G′ against the inverse temperature 
an Arrhenius like behavior is obtained, which 
describes the thermal activation of filler-filler 
bonds (Figs. 6 and 7).

Since the viscoelastic response of the filler net-
work, i.e. glassy-like polymer bridges, differs from 
that of the polymer matrix, the time-temperature 
superposition principle is not fulfilled. This implies 
a failure of the master procedure making the intro-
duction of vertical shift factors necessary (Fig. 2). 
The vertical shift factors show an Arrhenius like 
behavior, which can again be related to the acti-
vation energy of  glassy-like polymer bridges 
(Fig. 3). At low frequencies, the resulting master 
curves of  the storage modulus reflect the increas-
ing stiffness of  filler-filler bonds with rising fre-
quency. At intermediate frequencies just below 
the glass transition, an additional stiffening of  the 
composite results due to an increasing thickness 
of  the glassy polymer layers around filler particles 
(Figs. 4 and 5).
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Simulation of self-heating of dynamically loaded elastomer 
components
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ABSTRACT: Heat generated by internal dissipative processes results in high temperatures within 
thick-walled rubber components, because of the low heat conductivity of elastomeric materials. However, 
temperature strongly influences the mechanical properties and is a crucial factor for lifetime and fatigue. 
It is therefore of vital interest, to predict operating temperatures inside of dynamically loaded elastomer 
components as well as their mechanical response at operating temperature. We present a method to 
simulate the stationary temperature distribution within elastomeric components on the basis of a weak 
coupling of a stationary heat-transfer with a visco-elastic loading analysis. It takes into account the tem-
perature dependency of the material properties on one hand and the inhomogeneous heat generation by 
visco-elastic dissipation on the other. An iterative scheme is implemented, utilizing ABAQUS as Finite-
Element-Solver for the mechanical and thermal problems. The simulation is compared to an analytical 
solution and the application to an inhomogeneous loading of a rubber component is presented.

1 INTRODUCTION

Rubber is a living material of high complexity. 
Todays applications however demand for high 
accuracy in the estimation of the behavior of 
elastomeric components by numerical simulation 
through the whole life-cycle. Therefore, a large 
number of models deals with the description of 
the mechanical behavior of rubber under different 
loading conditions, and their change in time due 
to fatigue and ageing. Even when the focus is set 
on the mechanical properties, it must not be for-
gotten, that the underlying mechanisms are driven 
by physical as well as chemical processes. This is 
why all properties of rubber are highly tempera-
ture dependent and constitutive models for rubber 
are either temperature dependent, or only valid 
for certain constant temperatures. Therefore, the 
knowledge of the temperature and its distribution 
throughout the volume of a component is essen-
tial for a highly accurate prediction of its behavior. 
Examples of test specimen have shown, that the 
self-heating can change from un critical to destruc-
tive in the same experimental setup, when the rub-
ber hardness is changed by only 5 ShA.

There are three possible sources of temperature 
development in rubber components: First, heat 
flowing through the surface of the rubber volume, 
i.e. by convection or radiation from the environ-
ment or by heat flow to or from attached parts. 
Second, heat can be generated by external radia-
tion in the bulk. Both heat sources are controlled 
externally. In a heat-transfer analysis they appear 

as boundary or loading conditions. This is different 
for the third source, which is the heat production by 
internal dissipation. This dis sipation is due to vis-
cous hysteresis and internal friction in the material. 
It couples mechanical and thermal processes and 
cannot be captured as easily as the other sources 
of heat mentioned above. High temperatures result 
from heat production on the one hand and from 
low heat conductivity on the other. Rubber materi-
als are known for their low heat conductivity. There-
fore, in the case of dynamical loading, this can lead 
to considerably high temperatures, especially in 
compo nents with large rubber bulk volume, even 
when the dissipation is held at a low level.

This work is dealing with the estimation of the 
selfheating by dynamical loading in a visco-elastic 
framework. The focus is set on the evaluation of 
stationary temperature distributions in the case of 
periodic deformation. The presented method pro-
vides a tool for the practical analysis of temperature 
distributions in elastomer components as precon-
dition for a more efficient use of all temperature-
dependent mechanical material models and a further 
reduction of product development time and costs.

2 SELF-HEATING MODEL

2.1 Coupling of mechanics and heat-transfer

The description of self-heating requires the consid-
eration of mechanical and thermal fields and the 
coupling between both. The mechanical part of the 
problem deals with motion and deformation and 
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the connected forces. The second field concerns the 
flow of heat within a volume by heat-transfer. There 
are many constitutive models for the mechanical 
behavior of various materials. Their application in 
numerical simulation by the finite element method 
(FEM) is state of the art. Similarly, the theory of 
heat-transfer is well established (Baehr & Stephan, 
1994). Our interest is aimed at the combination of 
both in a coupled analysis.

There are two mechanisms of coupling: During 
mechanical processes energy is lost due to dissipa-
tion. Dissipated energy is transformed into heat 
and must therefore appear in the heat-transfer 
problem as local power of heat. On the other hand, 
the mechanical properties of materials—especially 
of rubber—depend on the temperature. Therefore, 
the temperature distribution within the structure 
influences the mechanical response.

A possible strategy for the solution of the cou-
pled problem could be the simultaneous solution of 
the complete set of equations. This would require 
a numerical tool that provides all necessary inter-
faces. This is not straight forward and possible only 
with deeper involvement in the architecture of the 
numerical tool. A different approach is a so-called 
weak coupling of both types of analysis. It has the 
advantage to combine the perfectly well established 
solutions of the two related subproblems, provided 
by most FEM-software packages. The mechanical 
and the heat-transfer problems are solved sepa-
rately from each other. However, they are coupled 
by an iterative scheme, where the average power of 
dissipation is taken from the mechanical simulation 
result and entered into the heat-transfer analysis 
as local power of heating. On the other hand, the 
temperature distribution resulting from the latter 
is introduced into a new mechanical simulation in 
the next iteration step as initial condition, allowing 
for a correct description of the mechanical mate-
rial behavior at every point of the model due to 
the local temperature and thermal expansion. The 
result is a new distribution of power of dissipation, 
and so on. This scheme is repeated in a loop until 
all fields have converged, see Figure 1.

2.2 Mechanical constitutive model

The dynamical material properties are often meas-
ured by dynamic-mechanical analysis (DMA) for 
a fixed amplitude and a range of  temperatures 
and frequen cies. The results of  this analysis e.g. 
in the form of master-curves for storage and 
loss moduli, G´ and G˝ resp., and temperature-
frequency shift-functions describe a combination 
of  viscous and frictional dissipative effects. The 
latter are often associated to the fracture and 
recombination of  filler-clusters, while the former 
are assumed to trace back to the gliding of  poly-

mer chains in the rubber compound. It is difficult 
to distinguish both from each other. Therefore 
it is common practice to model the dynamical 
constitutive behavior of  rubber as linear visco-
elastic—well aware of  the fact, that certain effects 
like amplitude-dependency (Payne) or static hys-
teresis cannot be reproduced by such a model and 
that limits of  linearity must be checked in the spe-
cific case, see e.g. (Schwarzl, 1990).

We follow this simplified approach, assum-
ing, that the viscous dissipation predicted by the 
visco-elastic model is representative for the total 
dissipation in the material. Then, the average local 
dissipation density can be calculated by a visco-
elastic analysis of a complete stationary loading 
cycle from time t0 to t1 as

d
t t

t
t

t

=
−

⋅∫
1

1 0
0

1

σ ε� d
 

(1)

In a uniaxial loading situation the integral in 
equation (1) yields the area inside one stationary 
hysteresis loop in the σ over ε plot.

2.3 Heat-transfer problem

The thermal subproblem is described by Fouriers 
law

q
T
xi

i
= −

∂
∂

λ ,
 

(2)

where qi are the components of the heat flux vector, �q T xi, /∂ ∂  is the temperature gradient, and λ is the 
heat conductivity of the material under considera-
tion. The connected boundary conditions are

q
T
x

n T Tn
i
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∂
∂

⋅ = −λ α α( ),
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Figure 1. Iteration scheme—weak coupling of mechan-
ical and heat-transfer analysis.
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T Ts= ,  (4)

with the heat-transfer coefficient α, the surface and 
ambient temperatures, Ts and Ta, respectively and 
the prescribed surface temperature, Ts. The com-
ponent of the heat flux vector, along the surface 
normal, 

�n, i.e. the heat flux through the surface, is 
denoted by qn. It must be mentioned that the heat-
transfer coefficient is an unknown that is usually 
difficult to catch because it depends not only on 
the material and surface but also on the ventilation. 
Additionally, the ambient temperature is generally 
inhomogeneous and often influenced by the tem-
perature of the component itself. If  radia tive 
heat-transfer on the surface is to be considered, it 
follows the Stefan-Boltzmann law

q T
x

n T T T Tn
i

i s= ∂
∂

⋅ = − − − ⋅λ ς α∈[( ) ( ) ]0
4

0
4

 
(5)

The absolute zero temperature is denoted by 
T0, ς is the Stefan-Boltzmann constant and ∈ is 
the emissivity of the surface. For rubber it can be 
set to one in a first estimate, which is the emissiv-
ity of a full radiator. For simplicity, in the exam-
ples shown in this paper, all thermal constants as 
well as the ambient temperature are assumed to be 
constant.

3 IMPLEMENTATION

The proposed scheme has been implemented using 
ABAQUS/STANDARD as solver (VISCO and 
HEAT-TRANSFER, STEADY STATE analysis) 
and ABAQUS/VIEWER as post-processor. The 
iterative scheme is realized by a number of user-
implemented shell-, and Python scripts, including 
load step regulation, job and convergence-control 
and results-processing. Note, that the representa-
tion of master-curves by Prony-series, as used by 
ABAQUS, may differ significantly from the orig-
inal ones. Great care must be taken, to keep this 
error small. However, these issues will not be pre-
sented in detail here. Convergence is defined to be 
reached, when the maximum change of temperature 
in the model between two following iteration steps 
remains below a threshold value of one percent.

4 CYLINDRICAL SPECIMEN UNDER 
UNIAXIAL CYCLIC LOADING

For a demonstration of the methods capability 
to predict the temperature development within a 
component, we turn to a simple example, where a 
largely analytical solution is possible. This solution 

is then compared to the results of the proposed 
method. Furthermore, the influence of additional 
features not present in the analytical solution, like 
surface radiation and inhomogeneous heating is 
shown.

4.1 Analytical solution

A cylindrical rubber specimen of Radius R and 
length l is subjected to cyclic tension/compression 
loading. Viscous dissipation in the volume causes 
a rise in temperature. The ends of the cylinder in 
axial directions are assumed to be perfectly insu-
lated. Then heat flux is possible only in radial direc-
tion and in the stationary case, all heat generated 
in the interior leaves the specimen as flux through 
the outer surface. In other words, the heat-transfer 
problem becomes one-dimensional and the model 
resembles an infinitely long cylinder. The average 
dissipation density during one loading cycle Δt can 
be roughly estimated from DMA-data for a tem-
perature T  and the loading frequency f by

d uF
lR t

≈ sin .2Δ
δˆˆ

 
(6)

Here, u
 and F
 are the displacement and force 
amplitudes and δ denotes the loss angle accord-
ing to tanδ = ′′ ′G G/ . For the deformation-
controlled setup considered here, the force can 
be approximated from the master-curve data as 
a function of the displacement, using the storage 
modulus ′G  at the current temperature T  and fre-
quency f in a Neo-Hooke an hyper-elastic consti-
tutive law

0 2
1ˆ1

ˆ(1 )
F G A ε

ε
⎛ ⎞

≈ ± −′ ⎜ ⎟⎝ ⎠±  
(7)

Figure 2. Cylindrical rubber specimen—geometry and 
boundary conditions.

R

l
wh , T Q
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in tension and compression, where A0 is the unde-
formed crossection area of the cylinder and ε� �= u l/  
denotes the nominal strain amplitude. A force 
amplitude can be defined accordingly.

To make things as simple as possible, the 
visco-elastic material properties—and therefore 
the power of  heating wh—are assumed to be con-
stant in the whole volume. Because of  the tem-
perature dependency of  the visco-elastic law, this 
is in contradiction to the expected result of  an 
inhomogeneous temperature distribution T. The 
error resulting from this inconsistency is propor-
tional to the maximum temperature deviation 
T T− . It is shown below, that in the special case 
of  the infinite cylinder, this error remains very 
small. To minimize it, T  must be chosen close 
to the volume average of  T. This can be done 
by trial and error or by a simple optimization 
scheme.

In the case of the simplified cylinder model 
problem with constant power of heating wh, the 
total amount of heat generated within the speci-
men of outer radius R and length l per unit time is

Q R lwtot h= π 2 .  (8)

Accordingly, the amount of heat produced inside 
a smaller cylindrical sub-volume of radius r is

Q r r lwh( ) .= π 2
 (9)

In the stationary case, it is equal to the amount 
of heat flux leaving this volume in radial direction 
through its respective surface of A(r) = 2rlπ. Thus, 
the flux density at every point inside of the speci-
men is

q r rwh( ) .=
1
2  

(10)

with this result, integration of (2) yields the tem-
perature distribution

T r
w

R r Th
s( ) ( ) ,= − +

1
4

2 2

λ  (11)

where Ts is determined from the convection bound-
ary condition (3) and (8) as

T T
Rw

s
h= +0

2
α

.
 

(12)

Again, for the sake of simplicity, surface flux due 
to radiation is not considered here. The mechani-
cal properties used for the calculation are those of 
a natural rubber compound with a hardness of 
55 ShA. The model parameters are given in Table 1. 
The model is loaded by a relative displacement of 
the cylinders ends by a sine-function in time.

The results of different iteration steps of the 
calculation are given in Table 2 and shown in 
Figure 3(a). The temperatures in the center and 
on the surface and the average temperature in 
the cylinder volume are denoted by Tc, Ts and Tv, 
respectively. Initially, a temperature of T = 50ºC is 
assumed in order to estimate the power of heat-
ing by (6) to be 0.368 mW/mm3. Then, the surface 
temperature is 112°C and the temperature at the 
core is 121°C. Clearly, the first ‘guess’ of 50°C 
was much too low. Because of this, the dissipation 
is overestimated and high temperatures are the 
result. For the second try, the volume average tem-
perature from the first solution, 116°C, is taken as 
new value of T . After repetition of this procedure a 
converged solution is achieved. The resulting core-
temperature of the cylinder is 93°C with a power 
of heating of 0.267 mW/mm3.

For this example, the analytical solution works 
very well. There is a maximum temperature differ-
ence of 3.9 K between the assumed temperature T  
and the result, such that the visco-elastic properties 
do not vary strongly in the volume and the assump-
tion of constant heating power is in acceptable 
agreement with the result. Because of this, the 
result is very close to the numerical one presented 
below. This cannot be expected, when the range of 
temperatures in a component is much larger.

4.2 Numerical solution

The above analytical solution describes the simpli-
fied cylinder model problem discussed here very 

Table 1. Model parameters.

Parameter Dimension Symbol Value

Radius mm R 5
Length mm I 20
Displacement 

amplitude
mm u� 1

Frequency Hz f 50
Heat-transfer 

coefficient
mW/mm2/K α 0.01

Heat conductivity mW/mm/K λ 0.26
Ambient temperature °C Ta 20

Table 2. Analytical solution, compare to Figure 3(a).

Step
T
°C

wh 
mW/mm3

Tc
°C

Ts
°C

Tv
°C

1  50 0.368 121 112 116
2 116 0.237  84.8  79.2  81.7
3 81.7 0.287  98.6  91.7  94.8
4 94.8 0.258  90.7  84.5  87.3
8 90.1 0.267  93.0  86.7  89.5
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well. However, for general geometries, multiaxial 
loading and heat transport, and when more com-
plex boundary conditions are required, the need 
for a numerical scheme becomes evident. In this 
section, the numerical solution is presented. In 
addition to this, the influence of radiative heat 
transport will be discussed. For the FEM-solution, 
an axial-symmetric model with ten linear elements 
in radial direction is used.

In Figure 3(b), the results of the different itera-
tion steps of the numerical scheme are shown. 
Iteration starts with an initial temperature of 50°C. 
There is a rapid convergence of the solution, see 
Figure 4. The iteration is terminated after the third 
step, when the maximum change in temperature is 
less than one percent. The maximum and minimum 
temperatures in the center and on the surface of 

Figure 3. Self-heating of infinitely long cylinder.
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(a) Analytical solution–Initial temperature, first three it
erations and result; compare to Table 2.
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(b) Numerical solution–Iteration steps.
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Figure 4. Convergence of solution.
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the cylinder, respectively, in the converged solution 
are 92.7°C and 86.4°C. A comparison of the first 
iteration steps of the analytical and the numeri-
cal solutions is worthwhile because the power of 
heating is homogeneous for both. However, its 
value is estimated from the master-curve by (6) in 
the former and it is calculated by the FEM-solver 
and post-processing in the latter. The nu merical 
simulation yields a value of 0.364 mW/mm3. The 
deviation between both solutions is below 1%. The 
direct comparison of the analytical and numeri-
cal results is given in Figure 3(c). The difference 
between both solutions is negligible.

For the simulation with radiative surface heat 
transport, an emissivity of the surface of ε = 1 has 
been chosen. This results in a drop of the tempera-
ture by about 19.5°C. This may seem a comparably 
large drop. However, the current model problem 
is dominated by the heat flux through the surface. 
The heat loss due to radiation in the presented case 
is about one third less than the heat loss due to 
convective heat transfer.

5 EXAMPLE: SHEAR TEST-SPECIMEN

For the demonstration of the application of 
the presented method to a non-homogeneous, 
multi-axial loading situation we consider a com-
parably massive test specimen, used for fatigue 
experiments at Freudenberg Schwingungstech-
nik Industrie, GmbH & Co. KG, Velten. The 
axisymmetric design has an elastomer volume of 
a hight of 7.5 cm and an approximate diameter 
of 15 cm. The material parameters used in the 
simulation are those of a 55 ShA natural rubber 
compound. Loading is applied by displacement-
controlled relative shearing of the metal plates 
with an amplitude of ±10 mm and a frequency of 
5 Hz. Thermal boundary conditions are chosen as 
for the cylindrical specimen above, including radia-
tive and convective heat-transfer. Temperatures 
are prescribed on the outside surfaces of the metal 
plates to be 30°C and 41°C. Using symmetries, the 
component is discretized as half-model.
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Convergence of  the solution is achieved in 
three steps. The rate of  convergence is similar 
to the one observed in the cylinder-simulation 
presented in the previous chapter, see Figure 4. 
The maximum resulting temperature in the inside 
of  the specimen is found to be approximately 
70°C, while the surface temperatures remain in a 
moderate range. In Figure 5, the surface tempera-
tures are plotted along the y-axis for two paths 
which resemble the edges of  the quarter-model 
depicted in Figure 6.

6 CONCLUSIONS

A scheme for a coupled analysis of  visco-elastic 
material behavior including the effect of  self-heat-
ing due to internal dissipation is presented. The 
method is compared to the analytical solution of 
the model problem of  an infinite cylinder with 
homogeneous heating, and found to be in excel-
lent agreement. Furthermore the application to 
general inhomogeneous and multi-axial loading 
situations is demonstrated for the example of  a 
massive shear test specimen, known to exhibit 
very high temperatures in the experiment. The 
uncertainties of  the method lie in the linear visco-
elastic description of  the mechanical material 
behavior and in the representation of  the master-
curves in terms of  Prony-series. The validity of 
temperature-shift function must be checked. Fur-
thermore the thermal boundary conditions are 
difficult to handle and may call for inverse engi-
neering methods. For this reason, the comparison 
to experimental results is not straight forward and 
subject to ongoing research at Freudenberg For-
schungsdienste KG.
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Figure 5. Surface temperature of shear test-specimen.
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Efficient dynamic modeling of rolling tyre tread blocks

P. Moldenhauer & M. Kröger
Institute of Machine Elements, Design and Manufacturing, Technical University Freiberg, Germany

ABSTRACT: The dynamic behaviour of a tyre tread block is described by a modularly arranged model 
with a high numerical efficiency. Special emphasis is laid on the interaction between structural dynamics 
and contact mechanics. Furthermore, the model includes the rolling process of the tyre: The tread block 
follows a trajectory which is obtained from the deformation of the tyre belt. The results from simulations 
with a single tread block provide a deeper insight into highly dynamic processes that occur in the contact 
patch such as tyre squeal, run-in or snap-out effects.

1 INTRODUCTION

Tyre tread blocks are permanently subjected to 
different driving states such as acceleration or ABS 
braking as well as cornering. Even for a constant 
vehicle velocity the tread blocks experience an 
excitation resulting from the tyre deformation in 
the contact patch and from friction induced vibra-
tions. The contact time of a tread block for a vehi-
cle velocity of 100 km/h takes about 10 ms. During 
this contact the tread block passes a sticking and 
a sliding phase and finally snaps out. This leads to 
an unsteady dynamic behaviour of the tread blocks 
which has to be covered in models to achieve a real-
istic simulation.

On the one hand present tread block mod-
els usually show a high grade of complexity. For 
example, in (Hofstetter 2004) a three-dimensional 
finite element approach with non-linear material 
description and thermo-mechanical coupling is 
applied. Such models are only applicable within 
limits for dynamic calculations because of the 
computational effort. On the other hand there are 
models that treat the tread block as a simple elas-
tic beam (Bschorr et al. 1981) or a time-dependent 
viscoelastic spring model (Liu et al. 2008). Here, 
the block geometry or important structural effects 
are neglected.

The aim of this approach is to compromise 
between these concepts to calculate dynamic proc-
esses and vibrations of tyre tread blocks. This 
means to model the geometric and dynamic prop-
erties of the tread block and its interaction with 
the road surface including the frictional contact 
as well as the rolling contact without the loss of 
numerical efficiency.

2 TREAD BLOCK MODEL

The basic idea is to model the structural dynam-
ics and the complex contact mechanics at first 
separately, see Figure 1. Each mechanical or physi-
cal effect is described by one module whereas the 
single modules are linked and interact with each 
other during the simulation. At present the model 
consists of four modules:

− Dynamic description of tread block
− Friction characteristic
− Non-linear contact stiffness
− Wear

The single modules are described in the follow-
ing subsections.

2.1 Dynamic description of tread block

This module considers the tread block geometry 
and mechanical properties e.g. density, elasticity or 
damping.

For this purpose a finite element model of the 
tread block has to be generated in advance. The 

Figure 1. Modular tread block model.
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model includes velocity dependent damping which 
is assumed to be proportional to the stiffness matrix. 
In order to achieve a high numerical efficiency it is 
necessary to reduce the model with respect to its 
degrees of freedom by an adequate method.

Here, the Craig/Bampton transformation is 
applied, cp. (Craig & Bampton 1968). The system 
equation with the mass, stiffness and damping 
matrix of the system is subjected to this reduction 
method. It has originally been developed for appli-
cations in the field of structural dynamics and can 
be interpreted as the combination of a static and 
a modal condensation. Important degrees of free-
dom, which are here the contact nodes, are explic-
itly retained in the reduced system.

Therefore, point contact elements can be cou-
pled to the contact nodes of the reduced model 
which represent the contact layer where the con-
tact mechanics are considered.

2.2 Friction characteristic

Rubber friction can be divided according to dif-
ferent effects: Hysteresis, adhesion, cohesion and 
viscous friction, see (Kummer 1966). In technical 
applications these effects always occur in combina-
tion resulting in a complex friction characteristic. 
It depends on many parameters like relative veloc-
ity, normal pressure, temperature, surface rough-
ness, lubrication and wear. As a consequence many 
types of friction characteristics can be observed for 
rubber contacts. To determine a local friction char-
acteristic it is possible to use mathematical models 
(Persson 2004), (Heinrich 2007), simulations or 
experiments. The adequacy of the single methods 
for a given application depends on the respective 
problem. The advantage of an experimental inves-
tigation is that all physical effects of rubber friction 
are considered with their interactions.

A friction characteristic of a local rubber sample 
made of tread material on a corundum surface grit 
400 has been measured in dependence of the rela-
tive velocity and the normal pressure on a tribom-
eter test rig, cp. Figure 2.

The local friction characteristic shows a maxi-
mum with respect to the relative velocity and a 
decreasing friction coefficient with increasing 
normal pressure which is typical also for real road 
surfaces such as asphalt or concrete. The measured 
friction characteristic has been approximated with 
a function that consists of an exponentially decreas-
ing velocity dependent term and an exponentially 
decreasing pressure dependent term. For numeri-
cal reasons the friction characteristic is smoothed 
by an arc tangent function to avoid the distinction 
between sticking and sliding and to comprise the 
maximum at low sliding velocities. The approxi-
mated friction characteristic is shown in Figure 2 

and is applied to every point contact element. The 
input parameters relative velocity and normal con-
tact pressure at the respective point contact ele-
ments are calculated within the simulation for each 
time step.

2.3 Non-linear contact stiffness

The non-linear contact stiffness covers the normal 
contact properties between the soft rubber block 
and the rough solid surface. When both bodies 
contact each other only the highest asperities of 
the rough surface penetrate the rubber leading to a 
small contact stiffness. With increasing penetration 
depth the contact stiffness increases because of the 
larger number of contact points, cp. (Gäbel 2008).

This non-linearity is considered by non-linear 
springs that are coupled to the reduced finite ele-
ment model. Figure 3 depicts the comparison 
between measurement and simulation for the static 
normal force-displacement characteristic of the 
whole tread block on the same corundum surface 
grit 400 which has been used for the experimental 
identification of the friction characteristic.

The experimental investigation is described in 
detail in (Kröger 2007). Because the friction char-
acteristic and the properties of the rough surfaces 

Figure 2. Measured (grid) and approximated (semi-
transparent) local friction characteristic.

Figure 3. Measured and simulated normal force-
displacement characteristic.
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are described with the point contact elements of 
the contact layer it is now possible to model the 
road surface as smooth. This approach and a fast 
contact algorithm lead to a further reduction of 
the computational effort.

2.4 Wear

Rubber wear which occurs due the sliding friction 
in the tyre contact patch changes the tread block 
shape. Although a significant tread wear does not 
appear after one single revolution the shape gener-
ally influences the frictional and dynamic behav-
iour, see (Moldenhauer 2008). The effect of wear 
is covered in the model by allowing the lengths 
of the non-linear springs from the contact layer 
to decrease. The reduction of the spring lengths, 
which represent a certain rubber wear volume, 
obeys a wear law, see (Kröger 2007).

The present wear law depends linearly on the 
relative velocity, the normal pressure and the fric-
tion coefficient. The implementation of a non-
linear wear can easily be realised but usually many 
coefficients have to be identified with a high exper-
imental effort to realistically to simulate rubber 
wear, see e.g. (Viswanath 1994). Wear effects are 
neglected in this work because the focus is laid on 
the rolling contact.

3 ROLLING CONTACT

For the implementation of rolling contact some 
assumptions are made: The stiff  steel belt deter-
mines the kinematics of the soft rubber tyre tread. 
Hence, the single tread block passes a displacement-
controlled trajectory within the simulation.

Gyroscopic and centrifugal forces acting on 
a single tread block are neglected because they 
are small compared to the normal and tangential 
contact forces. Furthermore, they act evenly on 
the whole tread block and therefore only margin-
ally influence processes in the contact area and 
dynamic effects.

With these assumptions the rolling motion can 
be applied to the tread block model without los-
ing numerical efficiency which is one of the basic 
requirements. The tread block is then still simulated 
with a fixed support. However, the contact forces 
of a tread block performing the rolling motion of 
the tyre are applied to the model.

This approach has the advantage that the above 
described model with the reduced system matrices 
as well as the nodal coordinates remain unchanged. 
Figure 4 depicts the concept of the rolling contact 
implementation: The fixed system gets as input 
parameter the trajectory yTr(xTr) of the tyre belt for 
the translatory motion of the tread block.

The angle β(xTr) describes the gradient of the 
trajectory and considers the rotatory motion of 
the tread block. The combined motion of trans-
lation and rotation is superposed with the system 
coordinates xred of the reduced system. Therefore, 
also the algorithm for the detection of contact is 
the same. The point contact elements Pi provide 
the normal and tangential contact forces which are 
transformed in the fixed tread block system and 
act on the respective contact nodes.

Additionally, the relative velocity vrel,g between 
tyre belt and road enters the simulation and signifi-
cantly influences the frictional behaviour due to the 
velocity and pressure dependent friction character-
istic. This relative velocity has to be defined prior to 
the simulation and represents the tyre slip velocity.

The distance between steel belt trajectory and 
road surface defines the normal load due to the 
displacement-controlled motion of the tread block 
on the steel belt trajectory. This distance has to 
be adjusted according to the respective tyre load 
conditions. The steel belt deformation is calcu-
lated in advance by finite element calculations of 
a whole tyre.

Here, FE calculations for a truck tyre under 
stationary rolling conditions are used in the fol-
lowing, see (Näser 2005). In order to conform the 
3D FE tyre data to the 2D tread block model the 
centerline in circumferential direction of the outer-
most belt layer has been extracted.

Due to the discretisation of the FE model it 
is necessary to smooth the belt data in order to 
obtain a continuous rolling motion. A polynomial 
approximation leads to good fitting results in the 
vicinity of the contact patch, cp. Figure 5. The 
approximated function directly enters the simula-
tion as trajectory coordinates, see Figure 4.

4 SIMULATION RESULTS

4.1 Instationary effects

The following simulations are conducted with the 
contact parameters and the friction characteristic 

Figure 4. Rolling contact algorithm.
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shown in Figure 2 and Figure 3 and represent a 
corundum surface as contact partner.

The relative velocity between tread block and 
rough surface is vrel,g = 1 m/s which is a typi-
cal slip velocity for braking conditions. The dis-
tance between the steel belt trajectory and the 
surface has been adjusted so that a nominal nor-
mal pressure of  pN = 0.8 N/mm2 is applied to the 
tread block in the middle of  the contact patch 
(x = 350 mm). This normal load corresponds to 
truck tyre conditions.

The tread block has a length and width of 15 mm 
and a height of 10 mm. The elasticity modulus is 
E = 12 N/mm2 and Poisson’s ratio has been set to 
ν = 0.49 according to the incompressibility of the 
rubber material. The damping matrix is assumed 
to be proportional to the stiffness matrix. The 
proportionality factor β has been determined by 
an experiment of free vibration decay of the tread 
block to β = 1.5 10–4 1/s.

During the run-in phase, the tread block contacts 
the surface with the leading edge which is depicted 
in Figure 6 with the corresponding contact pressure 
distribution. In this state the leading edge experi-
ences a high contact pressure peak whereas the trail-
ing edge lifts off and is not in contact with the rough 
surface. Here the tread block is stressed at most.

Then a sticking phase follows where the lead-
ing edge has no relative velocity to the surface. 
The tread block shears until the structural restor-
ing forces exceed the friction forces and the tread 
block comes to the sliding phase. Here, the tread 
block performs a pure translatory motion where 

Figure 6. Deformation of tread block entering the contact 
patch and corresponding contact pressure distribution.

Figure 7. Chronological view of tread block deformation.

Figure 5. Polynomial approximation of finite element 
tyre belt deformation.

the normal pressure still shows a peak at the lead-
ing edge which is lower than in the run-in phase. 
Finally the block snaps out and returns to its unde-
formed configuration. A chronological view of the 
deformation behaviour during passage of the con-
tact page depicts Figure 7.

For further investigations the relative velocity 
of  the leading edge is shown in Figure 8 where 
the different phases with sticking; sliding and 
snap-out can be identified. At the transition from 
sticking to sliding the tread block is dynamically 
excited.

4.2 Vibrational effects

Within a second simulation the nominal pressure 
is reduced to pN = 0.25 N/mm2 which is a typical 
value for passenger cars. All other parameters are 
unchanged. Then another phenomenon is observed: 
Due to the decreasing friction characteristic with 
respect to the relative velocity friction induced 
vibrations occur in this parameter range. The 
displacement of the leading and the trailing edge 
show the typical saw tooth behaviour, see Figure 9. 
The whole tread block performs oscillations which 
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are known as stick-slip vibrations. For these condi-
tions there is only a very short sticking phase at 
the beginning of the contact zone which can be 
explained by the comparably small nominal nor-
mal contact pressure.

The stick-slip frequency is at 3500 Hz which is 
in the squeal regime. From a safety-related point of 
view these vibrations are unwanted. They lead to 
changing contact conditions that influence with a 
high frequency the contact area of the tread block 
and the frictional behaviour. This reduces the brak-
ing deceleration and the potential cornering forces.

5 CONCLUSIONS

The presented model covers the dynamics of a tyre 
tread block with a focus on numerical efficiency. 
The computational time for one passage of the 
contact zone on a standard personal computer is 
about 30 seconds including backward transforma-
tion of the reduced degrees of freedom into the 
original finite element degrees of freedom. The 
modularly arranged model considers structural 
effects, the local friction characteristic, the non-
linear contact stiffness and wear effects.

To include the rolling contact the tread block 
model follows the trajectory of a steel belt. Simu-
lations show four different phases during passage 
of the contact patch: run-in, sticking, sliding and 
snap-out. The model simulates tyre tread block 

squeal effects in a certain contact parameter range 
which result from friction induced vibrations.

The model furthermore delivers the reaction 
forces to the fixed support which represents the 
coupling to the tyre belt. The results can be used 
in global tyre models as excitation forces from the 
tread blocks without modeling them. This concept 
allows the realistic and numerically efficient calcu-
lation of tyre dynamics.
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Fitting a viscoplastic time-domain model to equivalent viscoelastic 
materials data

A.H. Muhr
TARRC, Hertford, UK

ABSTRACT: An attempt is made to capture comprehensive “dynamic properties” data, including 
effects of filler loading, amplitude, frequency and temperature, using a simple viscoelastic-elastoplastic 
overlay model with a small number of parameters. The source of the data is the values of dynamic shear 
modulus and phase angle for a range of natural rubber formulations, most including carbon black as a 
filler, tabulated in TARRC’s Natural Rubber Engineering Data Sheets.

1 INTRODUCTION

Traditionally, the “equivalent viscoelastic approach” 
has been used to characterise the “dynamic proper-
ties” of filled rubber. This characterisation is done 
in the frequency domain by subjecting the rubber to 
a series of forced sinusoidal strain tests covering a 
range of amplitudes, frequencies and temperatures, 
and tabulating the linearised dynamic properties, ie 
the storage G′ and loss G″ moduli (or alternatively, 
dynamic modulus G* and phase angle δ). Although 
the dependence of the data on amplitude, ie the 
Fletcher-Gent or Payne effect, is in conflict with 
the linear viscoelastic assumption in the interpreta-
tion, the approach has served many designers of 
rubber components very well in the achievement of 
appropriate response to quasi-periodic excitations. 
For this reason, comprehensive data on material 
properties are available in this form.

Progress has been described elsewhere on devis-
ing time-domain models that can capture the ampli-
tude effect and are compatible with 3D non-linear 
finite element packages (Ahmadi et al, 2005–2009; 
Austrell et al. 2001; Lion & Kardelky, 2004).

This paper addresses the further challenge of cap-
turing all of the tabulated “dynamic properties” using 
a small number of parameters for one such model, 
being a simple viscoelastic-elastoplastic overlay. The 
emphasis is on covering a wide range of temperatures, 
as tabulated in TARRC’s Natural Rubber Engineer-
ing Data Sheets (EDS; TARRC, 1979–1986), but the 
dependence of the parameters on the volume frac-
tion of reinforcing black is also considered.

2 MODEL

Filled rubber is modelled here as a linear hyper-
viscoelastic matrix (the crosslinked polymer) in 

parallel with a load-bearing filler “structure” that 
exhibits partial breakdown and healing during 
each deformation cycle. The total stress τ is the 
sum of hyperviscoelastic (hve) and elastoplastic 
(ep) terms:

τ τ τ= +hve ep  (1)

Only simple shear will be considered here. The 
proposed model has full time-domain capability 
but is fitted to the frequency-domain EDS data. 
It does not cover the Mullins effect, and the data 
also refer to the scragged material. In the EDS, and 
here, the harmonic method is used to express G′ 
and G″ in terms of Fourier integrals of the stress 
response to a forced sinusoidal strain history:
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This has the advantage over secant and skeleton 
linearisations (Ahmadi & Muhr, 1997) that the 
modulus functionals are linear, so that

G G G
G G G
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hve ep

′
″
= ′ + ′
= ′′ + ′′  

(3)

The hyperviscoelastic time-domain model is

τ γhve

t

t G t s s ds( ) ( ) ( )= −∫
0

�  (4)

where the relaxation modulus G(t) has four param-
eters being G∞, H0, Hm and m:
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where Γ, the gamma function, is a generalization 
of the factorial function to non-integer arguments, 
and t0 = 1 s, and tmax sets the upper time limit of 
applicability of the model.

For numerical evaluation, Equation 4 was dis-
cretised as a Prony series, and this latter form also 
enables the effect of time-temperature correspond-
ence to be incorporated:
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ie G∞ and the Gi are proportional to absolute tem-
perature T and all the relaxation times τi are sub-
ject to the same temperature dependent shift factor 
aT, which could for example be estimated from the 
empirical WLF equation
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where Tg is the glass transition temperature. If Tref 
is some value other than Ts, then aT in Equation 5 
needs to be replaced by a aT Tref

/ . The same princi-
ples were used to plot experimental data for unfilled 
NR on a mastercurve using a value of Ts = 253 K 
(see Muhr, 2009). Values of G′ and G″ were calcu-
lated from the model using the standard expressions 
derived from Equations 3 and 5.

The elastoplastic stress contribution, in simple 
shear, is calculated (Ahmadi et al, 2007; Ahmadi & 
Muhr, 2009), after the first loading cycle, from an 
incremental relationship:

Δ Δ
Δτ τ γ τ γ

≡ = ⎛
⎝⎜

⎞
⎠⎟epR epL( ) 2

2  
(8)

where R stands for retraction and τepL(γ ) is the 
stress for the primary loading. Equation 7 is valid 
until the next reversal in the direction of straining, 
when the increments are rezeroed. As a working 
hypothesis, it may be generalised to 3D general 
deformations by using a suitable elasto-plastic 
model. A start has been made to show that this 
provides at least a fair description of the multiax-
ial behaviour of filled rubber (Ahmadi et al, 2005); 

appropriate plasticity models in ABAQUS are 
discussed by Ahmadi et al. (2009). For the present 
purposes a 3-parameter expression for the loading 
function in simple shear is used:
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where Gep,0 ≡ Ac–b is the elastoplastic shear modu-
lus contribution in the small strain limit. Alterna-
tive expressions may be used, and one possibility 
is to use the Kraus equation, designed to fit the 
strain-dependence of the dynamic modulus, for 
the elastoplastic loading curve.

An Arrhenius temperature dependence may be 
incorporated into the elastoplastic contribution, 
following Kraus and Payne:

A T A
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296
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K
 

(10)

where R is the gas constant and it has been assumed 
that b and c are independent of T.

A spreadsheet was written to implement the 
models; for the elastoplastic contribution the tra-
pezium rule was used to evaluate Equations 1. 
Details are given elsewhere (Muhr, 2009).

3 MATERIALS

Attention is focused on the set of  NR-based mate-
rials summarised in Table 1. Their full formula-
tions and many Standard properties are provided 
in the original publication (TARRC, 1979–1986); 
the cure system is the same for all these materials. 
The unfilled NR, designated EDS19, is assumed 
to contribute the hyperviscoelastic contribution, 
augmented by the strain amplification factor 
1 + 2.5ϕ from Einstein’s equation, to the models 
used for the materials filled with different loadings 
of  N330 carbon black. The filler loading is quan-
tified on the basis of  parts per hundred of  rubber 
(phr) and volume fraction ϕ = (phr/ρf)/(100/ρr + 
phr/ρf) where ρf and ρr are the densities 1820 and 
966 kgm–3 of  filler and rubber respectively.

Table 1. Selected natural rubber materials from the EDS.

Material N330/[phr] ϕ 1 + 2.5ϕ

EDS19 0 0 1
EDS14 15 0.074 1.185
EDS15 30 0.137 1.318
EDS16 45 0.193 1.483
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4 FITTING THE PARAMETERS

Figure 1 shows the fit achieved to the data set at 
10% amplitude for EDS19 using the 4-parameter 
viscohyperelastic model; values of the parameters 
used to achieve this fit are shown in Table 2.

To fit the data for the filled materials to Equa-
tion 9 we need first to subtract off  the contribution 
of the unfilled NR matrix from the measurements 
for the filled rubber to give G′ep, and then seek to 
find E from a plot of log(G′ep) versus 1/T, as shown 
in Figure 2. It was found possible to achieve a good 
fit to the EDS15 and EDS16 data using a common 
value of E, and the same value of E could be used 

to give a fair fit to the EDS14 data, taking the view 
that the filler loading for it is rather low so the 
resolution of the magnitude of the reinforcement 
is poor. Values of E and A(296 K)(0.12 + c2)−b/2, 
obtained from the straight line fits in Figure 2, are 
given in Table 3.

b and c were chosen, using Figure 3, to fit the 
amplitude dependence of the moduli, and this fit 
also provides an additional check on the value of 
A(296 K). In fact, the same values of A were used 
in both Figures  2 and 3, resulting in a slight com-
promise on fits that might have been made inde-
pendently. A reasonable fit was achieved using the 
same values of b and c for all the loadings of filler. 
Values of A, b and c are given in Table 3.

5 DISCUSSION

The individual parameters used in the model have 
distinctive effects and their physical significance 
will be explored here.

The behaviour of the matrix material, EDS19, 
at higher temperatures (the “rubbery plateau”—
ambient and above, for natural rubber) is dominated 
by two parameters: the shear modulus G∞, which 
may be estimated from the crosslink density using 
the statistical theory of rubber elasticity, and the 
relaxation parameter H0 which may be estimated 

Table 2. Parameters for the EDS19 matrix.

Hyperviscoelastic parameters
WLF 
parameter

G∞/MPa H0 /MPa Hm /MPa m Ts /K

0.4 0.0043 0.0002 0.57 203
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Figure 1. Fit to EDS19 data for all temperatures and 
frequencies (shear amplitude 10%) presented as a mas-
tercurve at 296 K; see Table 2 for parameters. · · · · model 
with H0 set to zero; - - - model with Hm set to zero.
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Figure 2. Arrhenius plot of G′(1 Hz, 10%) data minus 
(G′hve) calculated according to the 4-parameter model for 
EDS19, amplified by factors 1 + 2.5ϕ; fits according to 
Equation 9; parameters are given in Tables 2 and 3.

Figure 3. Fitting of elastoplastic parameters to Gep = G 
(1 Hz, 296 K) where Ghve is calculated from (1 + 2.5ϕ)G(model, 
EDS19), the latter being the fit from Figure 1. In all cases, 
b = 0.35, c = 0.006.
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Table 3. Fitting parameters used for the elastoplastic 
contribution.

Material
E/R 
(K)

A(0.01 + c2)–b/2 
(MPa)

A(296 K) 
(MPa) b c

EDS14 1000 0.003052 0.04 0.35 0.006
EDS15 1000 0.019075 0.25 0.35 0.006
EDS16 1000 0.03815 0.50 0.35 0.006
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from the rate of stress relaxation, expressed as % 
reduction per tenfold increase in time.

The shear moduli of EDS19 show a stronger 
dependence on temperature (or high equivalent 
rate), below ambient, than expected from the mod-
est viscoelasticity quantified by H0. However, by 
introducing the two viscoelastic power law param-
eters, Hm and m, this effect can be fitted reasonably 
well. These two parameters are needed to model the 
region of the viscoelastic master curve at tempera-
tures (or frequencies) between those corresponding 
to the rubbery plateau and the transition to a glass. 
Referring to the portions of mastercurve given in 
Figure 1, G∞ only affects the low frequency G′ fit, 
and Hm and m only affect the high frequency end 
of the two master curves. The 2-parameter rubbery 
plateau model (dashed lines) fits the data quite well 
at low equivalent frequency, and the power law 
model (dotted lines) fits quite well at high equiva-
lent frequency, but only by using the 4-parameter 
combination (thick solid lines) can a good fit be 
achieved over the entire range of the results.

Figures 4 and 5 assess the quality of fit achieved 
over a wide range of temperature and frequency 
for the full set of materials. G′ is quite well cap-
tured as a function of amplitude, but the capture 
of G″ is less satisfactory (Figure 4). The filled rub-
bers show a much greater effect of frequency than 
described by the model (Figure 5).

The “matrix” model for EDS19 was augmented 
using the hydrodynamic reinforcing factor due to 
Einstein to account for the basic stiffening effect 
of non-interacting rigid spherical inclusions. 
Extensions of the hydrodynamic theory to include 

Figure 4. Amplitude dependence of shear moduli 
(shear strain 10%) a) G′(248 K) b) G″(248 K) c) G′(296 K) 
d) G″(296 K) e) G′(373 K) f  ) G″(373 K).
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effects of interaction and departure from spheri-
cal shape exist and may be justified, but will not 
capture the additional mechanism (breakage and 
recovery) needed to explain the hysteresis intro-
duced by reinforcing filler.

As details of geometry and dispersion of the 
filler are at best complicated, if  known at all, it 
seems more appropriate to retain the simplest pos-
sible hydrodynamic modulus enhancement and 
add to it a phenomenological extra mechanism, 
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given by Equations 7 to 9, which we will refer to as 
the “extra effect of reinforcement”.

Two of the parameters needed to model the 
extra effect of reinforcement, b and c, describe the 
effectiveness of strain to break it down, and A, 
the third, describes the magnitude of the effect. 
It appears to be justified on the basis of the EDS 
results in Figure 3 to regard b and c as independent 
of filler loading; the dependence of A is shown in 
Figure 6.

The extra reinforcing effect depends non-linearly 
on the filler volume fraction, and is very small until 
a threshold loading is reached that corresponds 
approximately to that used in EDS14. This may 

relate to the percolation phenomenon: above a 
threshold volume fraction the electrical conductiv-
ity of rubber loaded with carbon black rises sharply, 
suggesting formation of a carbon black “structure” 
at higher loadings. Payne (1965), though, pointed 
out that the extra reinforcing effect depends on 
degree of dispersion of the black, not just on its 
loading; this too seems consistent with the idea 
that A measures the effectiveness of black-black 
interaction in a “structure” embedded in the rubber 
matrix.

The activation energy E describes the effective-
ness of increased temperature in reducing the mag-
nitude of the extra reinforcing effect. A single value, 
independent of filler loading, enables a reasonable 
fit to be made for all the materials over the range 
of temperatures. However, Equations 7 to 9 do not 
incorporate any effect of rate, or temperature-rate 

Figure 5. Frequency dependence of storage moduli 
(shear strain 2%) a) 248 K b) 373 K.
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Figure 6. Dependence of elastoplastic modulus A on 
filler volume fraction. The line is just a guide for the eye.
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correspondence. This is a major weakness of the 
model, as seen in the relatively poor fits to the effect 
of frequency on the dynamic properties of filled rub-
ber (Figures 5). It may also be seen in Figures 5 that 
even if the EDS19 results for G″ versus frequency 
were scaled up to reach a similar magnitude to that 
for EDS15 or EDS16, the effect of frequency would 
still be too weak. It thus appears that the extra 
reinforcing effect introduces higher frequency and 
temperature dependences to the material. The time-
domain model used cannot include rate dependence 
of the extra effect of reinforcement, although in a 
frequency domain form such dependence could be 
imparted to A, eg by fitting it to the WLF equation, 
using a higher value of Ts than used for the matrix 
rubber. Such a frequency domain model could be 
implemented in FE software using the methodol-
ogy developed by Rabkin (2007).

Figures 7 serve to emphasise that the proposed 
model is time-domain; and used as such to cre-
ate the hysteresis loops, to which Equations 1 are 
applied to find the equivalent viscoelastic dynamic 
properties parameters. Thus we have gone behind 
the EDS data, to resurrect a general stress-strain 
behaviour that is broadly consistent with the tables 
of dynamic properties.

6 CONCLUSIONS

For each material, EDS tabulates the results of 117 
dynamic tests, each test delivering two values, G* 
and δ. The fit has been achieved using all data for 
EDS19 (Figure 1) to fit the four parameters for the 
hyperviscoelastic contribution (G∞, H0, Hm and m), 
27 datapoints to fit the activation energy E for the 
elastoplastic contributions (Figure 2) and 39 addi-
tional datapoints to fit the 5 remaining elastoplas-
tic parameters, A(EDS14), A(EDS15), A(EDS16), 
b and c; 300 datpoints in all. Since both the hyper-
viscoelastic model and the elastoplastic contribu-
tions are modeled in such a way that the parameters 
yield both G′ and G″, the fit would have differed lit-
tle if  made only on the basis of the subset of 162 
G′ datapoints. The final model, using 8 parameters, 
only one of which depends on the filler loading, 
gives a reasonable capability of regenerating all 
936 datapoints from the EDS.

The model thus seems to be a reasonably effi-
cient way to capture all the data. The approach 
of  applying it to a set of  materials differing only 
in the quantity of  filler has the merit that it has 
emerged as reasonably justifiable that only A, the 
magnitude of  the extra reinforcing effect, need 

be varied, and it must, from a physical point of 
view, vary smoothly and systematically with the 
filler loading. The process of  fixing values to 
the parameters may thus also serve to identify 
imperfections in the data, as judged by physical 
implausibility.
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Figure 1. In-phase and out-of-phase response α ′ and α″ 
of the coefficient of thermal expansion in a harmonic 
experiment with polystyrene (from Bauer & Boehmer 
2000).
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ABSTRACT: The material behaviour of elastomers is characterized by a frequency dependence and 
therefore a glass transition not only in its mechanical but also in its thermal properties. In this contribu-
tion an approach is presented, by which not only the frequency dependence in the mechanical properties 
in the sense of linear viscoelasticity can be described but also in addition in the coefficient of thermal 
expansion. For this purpose, the state space known from thermostatics is enlarged by internal varia-
bles to allow for the description of non-equilibrium states as well. The free energy function is chosen as 
thermodynamic potential. It is expanded into a Taylor-series of 2nd order. A set of contained material 
parameters is identified as contribution of each internal variable to the effective coefficient of thermal 
expansion. The results obtained from the numerical simulation agree with observations made in experi-
mental investigations.

1 INTRODUCTION

The frequency dependence of the coefficient of 
thermal expansion can be investigated in experi-
ments in which a sinusoidal temperature load is 
applied. As a result, a complex coefficient of ther-
mal expansion is obtained. In Figure 1 results are 
shown from an investigation of Bauer & Boehmer 
(2000) in which capacitive scanning dilatometry 
was employed. A thin film made of polystyrene 
was subjected to a harmonic temperature loading 
with an amplitude of less than 1 K at a frequency 
of 4 mHz in the temperature range depicted. While 
in the in-phase response α ′ a transition from a 
lower “glassy” value to a higher “relaxed” value 
occurs as the temperature is increased, the out-of-
phase response α ″ runs through a maximum as the 
transition in α ′ occurs. Thus the results are simi-
lar to the ones obtained in a dynamic-mechanical 
analysis in which the storage and loss modulus are 
determined. Just as there exists a shift property in 
the mechanical case, by which the data obtained for 
one temperature can be related to that at another 
temperature by the well known time-temperature 
shift principle (Ferry 1980), the same is true for the 
thermal properties, as can be seen from Figure 2. 
Here, results from a harmonic experiment with 

polybutadiene are depicted for two different fre-
quencies of the sinusoidal temperature input.
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2 BASIC EQUATIONS

For the derivation of constitutive equations describ-
ing the frequency and hence temperature-dependent 
material behaviour of polymeric materials, the 
specific free energy function ψ is an adequate 
thermodynamic potential (e.g. Haupt 2002, Mueller 
1985). It is related to the internal energy u and the 
entropy s, both given as quantities per unit mass, by

ψ = u − θs, (1)

where θ is the thermodynamic temperature. Sub-
stituting the material time derivative of u obtained 
from (1) into the first law of thermodynamics

ρ � �u = −T E q: div ,  (2)

where ρ is the mass density, T the Cauchy stress 
tensor, �E  the time rate of change of the infinitesi-
mal strain tensor, and q the heat flux vector,

ρθ ρψ ρ θ� � � �s s= − + − −T E q: div  (3)

is obtained as the local form of the energy balance. 
With the balance equation for the specific entropy s

ρθ θ
θ

ρθγ�s = − +div q ,
 

(4)

where γ is the specific entropy production, and the 
equality

θ
θ θ

θdiv div gradq
q q= − ⋅

1 ,
 

(5)

an equation for the entropy production γ in the 
form

ρθγ ρψ ρ θ
θ

θ= − + − − ⋅� � �T E q: s 1 grad
 

(6)

is obtained. The second law of thermodynamics 
states, that the entropy production γ has to be non-
negative. Hence, from (6) the so-called Clausius-
Duhem inequality results

− + − − ⋅ ≥ρψ ρ θ
θ

θ� � �T E q: .s 1 0grad
 

(7)

As in the following the derivation of the consti-
tutive equations is restricted to the one-dimensional 
case to reduce mathematical complexity and focus 
on the general ideas, the one-dimensional form of 
(7) is stated as well. In this case T reduces to the 
scalar Cauchy stress σ and E to the strain ε in the 
corresponding direction:

− + − − ⋅ ≥ρψ σε ρ θ
θ

θ� � �s
1 0grad q .

 
(8)

3 CONSTITUTIVE MODEL

The first constitutive assumption posed in this 
model is taken from irreversible thermodynamics 
(e.g. Keller 1977). The free energy ψ is said to not 
only depend on deformation ε and temperature θ, 
but also a set of so-called internal variables ξk

ψ ψ ε θ ξ ξ ξ= =( , , ) ( , , , , ).ξ ξwith 1 … …k n  (9)

The internal variables are to describe the devia-
tion from equilibrium. Hence, in equilibrium their 
value depends on the independent variables ε and θ 
known from thermostatics, while in the non-equi-
librium case their time evolution is governed by a 
set of differential equations still to be specified.

From (9) the material time derivative �ψ  is 
obtained as

� � � �ψ ψ
ε

ε ψ
θ

θ ψ
ξ

ξ= + +
=

∑∂
∂

∂
∂

∂
∂ k

k
k

n

1  
(10)

and with (8)

σ ρ ψ
ε

ε ρ ψ
θ

θ

ρ ψ
ξ

ξ
θ

θ

−⎛
⎝⎜

⎞
⎠⎟

− +⎛
⎝⎜

⎞
⎠⎟

− ⋅ ≥
=

∂
∂

∂
∂

∂
∂

� �

�

s

k
k

k

n
− 1 0

1
grad q .∑∑

 

(11)

Just to avoid any misunderstanding: The sum-
mation convention according to Einstein is not 
made use of in this paper. A product between two 
parameters with matching indices therefore does 
not imply a summation. Equation (11) has to be 

Figure 2. In-phase and out-of-phase response Δ′ and Δ″ 
of  the coefficient of thermal expansion in a harmonic 
experiment with polybutadiene for two different frequen-
cies (from Bauer & Boehmer 2000).

temperature T (K)
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satisfied for arbitrary thermo-mechanical processes 
such that two potential relations and a remaining 
inequality result

σ ρ ψ
ε

= ∂
∂

,
 

(12)

s = − ∂
∂
ψ
θ

,
 

(13)

− − ⋅ ≥
=

∑ρ ψ
ξ

ξ
θ

θ∂
∂ k

k
k

n
� 1 0

1
grad q .

 
(14)

If  the free energy ψ is independent of gradθ 
and a special process with gradθ = 0 is assumed,

− ≥
=

∑ρ ψ
ξ

ξ∂
∂ k

k
k

n
� 0

1  
(15)

alone must hold. If  further the internal variables 
are taken to be independent,

− = ≥ = − ∂
∂

ρ ψ
ξ

ξ ξ ρ ψ
ξ

∂
∂ k

k K k k
k

A A� � 0 with ,
 

(16)

where Ak is the affinity associated with each inter-
nal variable k, must hold for any of the k internal 
variables. The simplest ansatz for the evolution 
equations of the internal variables fulfilling (16) is

�ξ
ε θ ξ

ε θ ξk
k k

k k k kz
A z= >1 0

( , , )
( , , ) .with

 
(17)

Hence, the second law of thermodynamics poses 
a restriction on the choice of the evolution equa-
tions for the internal variables.

For the explicit form of the free energy func-
tion ψ in (9) the following approach is used. It is 
expanded into a Taylor-series of 2nd order about 
the undeformed (ε0 = 0) and hence stress-free state 
as a reference state with a reference temperature of 
θref , such that

Δε = ε − ε0 = ε,     Δθ = θ − θ0 = ϑ,

Δξ = ξ − ξref = ξ, k = 1…n, 
(18)

where ξref = 0 has been set for all k internal vari-
ables. Performing the Taylor-series expansion, the 
following expression is obtained

ρψ ρψ ε εϑ ϑ ε ϑ

ε ϑ

= + + + + +

+ ⋅ + ⋅ + ⋅ + ⋅

ref a b c d e
1
2

1
2

1
2

2 2

ξ ξ ξ ξ ξf g h k .
 

(19)

The n × n matrix f with f = fT contains the second-
order derivatives of ψ with respect to the internal 
variables and in its most general form allows for 

a coupling between internal variables. This aspect 
is not made use of in the following such that f is 
taken as a diagonal matrix. Evaluation of (12), (13) 
and (17) yields

σ ε ϑ ξ= + +
=

∑a b gk k
k

n

1
,
 

(20)

ρ ε ϑ ρ ξs b c s hk k
k

n
= − − + −

=
∑0

1
,
 

(21)

�ξ ξ ε ϑk
k

kk k k kz
f g h= − + +

1 ( ),
 

(22)

where σ (0,0,0) = 0 and ρs (0,0,0) = ρs0 have been 
applied. Equations (20) to (22) resemble the com-
plete set of constitutive equations for this model. 
Before the determination of the material param-
eters is discussed, the internal variables are rescaled 
according to

��ξ ξ= −
f
g
kk

k
k

 
(23)

to give

σ ε ξ

ε ξ ϑ

= − +
⎡

⎣
⎢

⎤

⎦
⎥

= − +
⎡

⎣
⎢

⎤

⎦
⎥

=

=

∑

∑

a
g

af
b
a

a e
b
a

k

kk
k

k

n

k k
k

n

2

1

1

�

� ,
 

(24)

ρ ε ξ ϑ ρs b
h g
f

c sk k

kk
k

k

n
= − − − +

=
∑ �

1
0,

 
(25)

�� �

�

ξ θ ξ ε ϑ

τ θ
ξ ε α ϑ

k
k

kk

k
k

k

k
k k

z
f

h
g

= − − −
⎛
⎝⎜

⎞
⎠⎟

= − − +

1

1

( )

( )
( ).

 

(26)

4 PARAMETER IDENTIFICATION

In order to start with the identification of the 
material parameters contained in the constitutive 
equations, (24) and (26) are considered for the case 
of θ = θref , hence ϑ = 0, first. It turns out that in 
this case the equations correspond with the equa-
tions obtained for the standard linear-viscoelastic 
solid. Therefore, a can be identified as the modulus 
in the glassy state E0, and ek and τk as relaxations 
strengths and corresponding relaxation times. As zk 
according to (17) can be a function of the abso-
lute temperature θ, the temperature dependence of 
the relaxation times τk(θ ) is inherent in the model. 
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It can be included by the standard procedure of 
invoking a shift-factor according to WLF- or 
Arrhenius-type equations (Ferry 1980).

It remains to identify a set of parameters (b/a; 
αk = −hk/gk, k = 1…,n) which, looking at the units, 
are of a type of a coefficient of thermal expansion. 
Hence, it suggests itself  to obtain these parameters 
from dilatometric experiments. For the case of an 
unrestricted thermal expansion the thermal strain 
εth can be obtained from the constitutive equations 
by setting σ = 0

ε ϑth k k
k

n
e

b
a

= −
=

∑ �ξ
1

,
 

(27)

�� �ξ
τ θ

ξ ε α ϑk
k

k th k= − − +1
( )

( ).
 

(28)

If  in a thought experiment a temperature step 
is applied starting from the reference state with 
�ξref = 0 for all k, the internal variables at first 
remain zero such that

ε ϑ α ϑth
b
a

= − = 0  
(29)

is the initial response. Since the system is expected 
to react with the value of the coefficient of thermal 
expansion in the glassy state α0, the factor −b/a can 
be identified as α0. 

In order to identify the remaining parameters αk, 
it is instructive to evaluate the model response again 
for a dilatometric experiment, this time with a har-
monic temperature input in the form

ˆ .iwteϑ ϑ=  (30)

Here, ω is the angular frequency, i = −1  the 
imaginary unit, and ϑ̂  the amplitude of the excita-
tion. The system responds with the same frequency 
but shifted in phase such that

ˆ( ) ( ) ,iwt
th th eε ω ε ω=  (31)

ˆ ( ) iwt
k k eξ ξ ω=� �

 (32)

hold, where ˆ ( )thε ω  and ˆ ( )kξ ω�  are the complex 
amplitudes of thermal strain and internal variables, 
respectively. Substituting equation (30) through 
(32) into the constitutive equations (27) and (28), a 
relation between strain amplitude and temperature 
amplitude can be established

0
*1

1

1( ) ( ),ˆ
1

1

n
k

k
kth k

n
k

kk

e
i

e
i

α α
τ ωε ω α ω

ϑ
τ ω

=

=

−
+

= =
−

+

∑

∑
 

(33)

which can be interpreted as complex coefficient of 
thermal expansion α*(ω). Hence, the model indeed 
shows a frequency dependence of the coefficient of 
thermal expansion. Splitting up (33) into real and 
imaginary part according to α*(ω) = α′(ω) − iα″(ω), 
the following results are obtained
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The αk therefore can be interpreted as individual 
contribution of each relaxation process, charac-
terized by one of the k evolution equations of the 
internal variables, to the total thermal expansion. 
Evaluating (34) and (35) for high frequencies

′ → ∞ = ′′ → ∞ =α α( ) , ( )ω α ω0 0  (36)

are obtained as can be expected. For low frequen-
cies the same result is obtained for α″ while with the 
relation for α′ a connection between the coefficient 
of thermal expansion in the glassy state α0 and the 
coefficient in the relaxed state α∞ is obtained

′ → =
−

⎛

⎝⎜
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(37)

It should be noted at this point, that with the 
approach presented, a frequency dependence of 
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the heat capacity at constant deformation can also 
be established and that the material parameters not 
yet discussed are associated with this heat  capacity. 
For the case of the heat capacity at constant stress 
a  corresponding investigation was published by 
Lion & Yagimli (2009).

5 NUMERICAL RESULTS

In order to illustrate the capability of the model 
presented, some results from simulations, in which 
only on internal variable is used, are collected in 
this section. Numerical values have been assigned 
to the material parameters on the basis of typical 
values for rubber materials. The value of the coef-
ficient of thermal expansion in the glassy state α0 
has been set to 100 · 10−6 1/K, the modulus in the 
relaxed state to α∞ = 200 · 10−6 1/K such that with 
a value of e1 = 0.998 for the relaxation strength, 
a values of α1 = 99.86 · 10–6 1/K is obtained accord-
ing to (37). The relaxation time τ1 has been set to a 
value of 1.2 s for the glass transition temperature 
of θg = −20°C. The temperature dependence of the 
relaxation time is included by evaluating the shift 
factor a(θ,θg), relating the relaxation time at the 
glass transition temperature to another tempera-
ture, via

τ θ θ θ τ θ1 1( ) ( , ) ( )= a g g  (38)

according to the WLF-equation (Williams, Landel & 
Ferry 1955)

log ( , )
( )

.a
C

Cg
g

g
θ θ

θ θ
θ θ

=
− −

+ −
1

2  
(39)

C1 and C2 have been set to the universal values 
of 17.44 and 51.6 K, respectively.

5.1 Frequency domain

With the established material parameters, the real 
and the complex part of the coefficient of ther-
mal expansion can be calculated over a range of 
temperature as a function of frequency employing 
(34) and (35). The results are depicted in Figure 3. 
The real part passes from the value in the glassy 
state α0 = 100 · 10−6 1/K to the value in the relaxed 
state α∞ = 200 · 10−6 1/K as the temperature is 
increased. The imaginary part runs through a 
maximum as the glass transition occurs in the real 
part. Hence, the numerical results qualitatively 
depict the results obtained from measurements as 
depicted in Figure 1. As the frequency at which the 
temperature sweep is performed is increased, the 

transition shifts to higher temperatures just as in 
the experimental data depicted in Figure 2.

5.2 Time domain

With the derived model, simulations in the time 
domain can be performed as well. As an example 
for a time domain simulation, the step response 
of  the system is calculated employing equa-
tions (27) and (28). If  a temperature step is applied 
starting from the glass transition temperature θg 
as reference temperature, the results depicted in 
Figure 4 are obtained.

Here, the effective coefficient of thermal expan-
sion αeff (t) is plotted as a function of time. It is 
defined as

α ε
ϑeff ( )
( )

.t
tth=  (40)

At first, the value of the effective coefficient of 
thermal expansion αeff corresponds with the value in 
the glassy state, such that αeff = α0 = 100 · 10−6 1/K. 
Later, as the simulation time reaches the order of 
the effective relaxation time, the transition to the 

Figure 3. Temperature dependence of the real and the 
imaginary part α′ and α″ of the complex coefficient of 
thermal expansion α* for two frequencies with ω1 = 1 mHz, 
ω2 = 4 mHz, hence ω2 > ω1.
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thermal expansion αeff after a temperature step ϑ with 
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relaxed value of αeff = α∞ = 200 · 10−6 1/K occurs. 
As the effective relaxation time is smaller with higher 
temperature, the transition occurs earlier in the case 
where the higher temperature step is applied.

6 CONCLUSION

It could be shown that with the approach pre-
sented in this paper not only the glass transition in 
the mechanical properties of polymeric media but 
also in thermal properties such as the coefficient 
of thermal expansion can be modelled. For this 
purpose, the state space known from thermostat-
ics, which consists of a measure for deformation 
and the absolute temperature, was enlarged by so-
called internal variables to also allow for a consid-
eration of non-equilibrium states. The free energy 
was chosen as the thermodynamic potential and 
expanded into a Taylor-series. It remains to vali-
date the derived relations and the numerical results, 
which could ‘only’ show, that the experimentally 
observed behaviour can be depicted qualitatively 
by the model, as there is a lack of experimental 
data which resemble the glass transition in the 
mechanical and the thermal properties of single 
rubber compounds.
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Experimental determination of the mechanical properties 
of naturally aged rubber

I. Petrikova & B. Marvalová
Technical University of Liberec, Czech Republic

ABSTRACT: The aging effects on the dynamical and tribological properties of naturally aged segments 
of Polyisoprene/Polybutadiene Rubber Blend (IR/BR) with a different service history were investigated 
experimentally. Specimens sliced from segments were subjected to a series of static and relaxation tests, to 
dynamic mechanical analysis, and to hardness and friction measurements. Rubber becomes harder in the 
course of aging, loses its damping capability, and the properties determining its friction behaviour change 
and friction coefficient are reduced in comparison with the virgin state.

1 INTRODUCTION

Isoprene/Butadiene rubber segments used in resil-
ient wheels effectively reduce vibrations and noise 
in transportation. Beside their damping function, 
the rubber segments have to transmit considerable 
alternating shear force and to sustain a large cyclic 
compressive load superposed on large static pre-
strain. Their material is degraded owing to severe 
operational conditions such as heavy mechani-
cal loading, thermal loading due to the internal 
dissipative heating and to external temperature 
variation. In addition, permeation of oxidative, 
photolytic and hydrolytic agents causes deteriora-
tion in the material properties particularly of the 
outside surface. Rubber ages and becomes harder, 
it loses its damping capability and those properties 
determining its friction behaviour change. A long-
lasting compressive load changes the segment 
shape and dimensions and produces a permanent 
set. After a certain period, slips between the wheel 
and rubber segments occur and the segments fail 
to perform their function without any apparent 
damage. The aging effects on the dynamical and 
tribological properties of naturally aged segments 
with different service history were experimentally 
investigated. Estimates of service life can then be 
made by extrapolating the degree of degradation 
after a given time of functioning.

Samples sliced by water jet from segments were 
subjected to a series of static and relaxation tests, 
to dynamic mechanical analysis, as well as to hard-
ness and friction testing.

The experimental measurement of  the time 
dependent response and of damping properties 
of viscoelastic materials consists of performing 
uniaxial creep and stress relaxation tests which are 

suitable for studying the material response over a 
long period of time.

We previously investigated the quasistatic rate-
dependent behaviour of virgin segments of isoprene-
butadiene rubber in compression regimes. The 
behaviour at different strain levels was examined 
in detail through quasistatic cyclic tests and in sim-
ple and multistep relaxation tests. The viscosity-
induced rate-dependent effects were described 
and parameters of the material model were deter-
mined. The model was implemented into FE code 
(Marvalova 2007). The present paper is focused 
on the dynamic mechanical analysis of virgin and 
aged segments.

The dynamic mechanical analysis (DMA) is well 
suited for the identification of the short-time range 
of polymer response. DMA consists of dynamic 
tests, in which the force resulting from a sinusoidal 
strain controlled loading is measured.

The dynamic behaviour of filler-reinforced rub-
ber has been investigated by many material scien-
tists. The dependence of the storage and dissipation 
modulus on the temperature, the predeformation, 
the deformation amplitude and the frequency 
were all investigated. It was demonstrated that the 
moduli also depend on the type of filler material. 
Payne (1965) first pointed out that the moduli of 
carbon black filled rubber lessen with increasing 
deformation amplitudes. By means of further tests 
he reached the conclusion that this behaviour must 
be attributed to a thixotropic change. Lion (1998) 
observed that both the storage and the dissipation 
modulus depend on the frequency of the deforma-
tion process. This variation is weakly pronounced 
and in a good approximation of power-law type. 
In terms of the theory of linear viscoelasticity this 
behaviour corresponds to a continuous relaxation 
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time distribution. With increasing temperatures, he 
observed both a decrease in moduli and a lessen-
ing of the frequency dependence. The dependence 
of the dynamic moduli on the filler content and 
the static predeformation has been investigated in 
detail by Namboodiri and Tripathy (1994). When 
a viscoelastic material is subjected to a sinusoi-
dally varying strain, after some initial transients 
the stationary stress-response will be reached in 
which the resulting stress is also sinusoidal, hav-
ing the same angular frequency but advanced in 
phase by an angle δ. Then the strain lags the stress 
by the phase angle δ. The axial displacement u(t) 
consists of a static predeformation u0 under com-
pression which is superimposed by small sinusoidal 
oscillations:

u t u u ft( ) sin( ).= + Δ0 2π  (1)

Stresses and strains are calculated with respect 
to the reference geometry of the pre-deformed 
specimen:

ε ε0 0 0 0 0 0= + Δ = Δ +u L u u L u/( ), /( ),  (2)

where L0 is the undeformed length of the speci-
men. The force response F(t) of the specimen is a 
harmonic function and can be written as:

F t F F ft( ) sin( ).= + Δ +0 2π δ  (3)

F0 is the static force depending only on the 
pre-deformation u0. The force amplitude ΔF and 
the phase angle δ depend, in general, on the pre-
deformation, the frequency and the strain ampli-
tude (Lion & Kardelky 2004, Hofer & Lion 2009). 
If  the incompressibility of  the rubber is assumed 
A0L0 = A(L0 + u0), where A0 is the cross-sectional 
area of  the undeformed specimen, we can relate 
the force to the cross-sectional area A of  the pre-
deformed specimen:

σ σ
σ δ π δ π

( ) ( )

[cos( )sin( ) sin( )cos( )].

t
F t

A
ft ft

= =

+ Δ +
0

2 2  

(4)

The dynamic stress-response σ(t) normalised by 
the deformation amplitude Δε  can be written:

σ σ ε ε ε π
ε ε π

( ) ( , , )sin( )
( , , )cos( ) ,

t G f ft
G f ft

= + Δ ′ Δ
+ ′′ Δ

0
0

2
2

[
]

0  (5)

where

′ Δ
Δ
Δ

G f( , , ) cos( ),ε ε σ
ε

δ0 =  (6a)

and

′′ Δ
Δ
Δ

G f( , , ) sin( )ε ε σ
ε

δ0 =  (6b)

are the storage and dissipation moduli respectively, 
and δ is the phase angle. In general, carbon black-
reinforced rubber has fairly a weak frequency 
dependence in conjunction with a pronounced 
amplitude dependence (Hofer & Lion 2009). If  the 
strain amplitude Δε increases, the storage modulus 
G´ lessens and the dissipation modulus G˝ shows 
a more or less pronounced sigmoidal behaviour-
Payne effect. If  the material is linear viscoelastic, 
then these two moduli depend neither on the defor-
mation amplitude nor on the static predeforma-
tion. The damping factor or loss tangent (tan δ ) 
which is the ratio G˝/G´ is the measure of mechani-
cal energy dissipated as heat during the dynamic 
cycle. If  the dynamic strain amplitude is constant 
in time, we can observe time-independent moduli 
(Lion 1998). These phenomena are frequently 
interpreted as a dynamic state of  equilibrium 
between breakage and recovery of physical bonds 
linking adjacent filler clusters. The most common 
model of this state is the Kraus model (Kraus 
1984, Ulmer 1996) which describes the amplitude 
dependence of dynamic moduli. The influence of 
static pre-deformation ε0 is included in the models 
of Kim et al. (2004), Cho & Youn (2006) and the 
uniaxial form of the frequency, amplitude and pre-
strain dependent dynamical moduli are proposed 
by Lion (2004).

The purpose of this present paper is to summa-
rise the results of experimental research into the 
behaviour of  rubber samples with different serv-
ice history under dynamic loading conditions. We 
carried out harmonic strain-controlled tests under 
compression and studied the dependence of the 
storage and dissipation moduli on the frequency, 
on the deformation amplitude and on the static 
pre-strain.

2 EXPERIMENTAL

The sample is a rectangular parallelepiped whose 
width, depth, and height are 15, 15, and 20 mm 
respectively. The specimens were cut by water jet 
from segments that have been in operation for dif-
ferent times. Since the operating conditions are 
not known, the only measure of segment fatigue is 
the number of kilometres travelled. This number, 
in thousands of kilometres is shown in Table 1, 
together with the hardness values. Specimens 
marked R are all from one producer, the specimen 
marked G is of unknown provenance.
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The tests are performed at room temperature 
using an electrodynamic Instron testing machine. 
In the preconditioning process applied, the pre-
strain was about λ0 = 0.65 under compression and 
the amplitude Δε about 0.08.

Subsequent to this preconditioning process, three 
different constant compressive pre-strains λ0 = 0.85, 
0.75 and 0.65 were applied, and for each of them, 
five ascending amplitudes of the superimposed 
harmonic strain varied between 0.01 and 0.06. The 
frequencies varied in 5 steps between 1 and 10 Hz 
for all of strain amplitude. The process was strain-
controlled. The test setup repeated for every static 
pre-strain is obvious from Figure 1.

Raw test data sampled at 1 KHz were recorded 
by PC and evaluated in the Matlab Signal Process-
ing Toolbox. The discrete Fourier transform was 
used to determine the frequency content of force 
and head displacement signals and to calculate the 
phase lag between them.

Furthermore, we determined the complex 
dynamic modulus as the ratio between the ampli-
tudes of  stress and strain and dynamic moduli 
were calculated according to the relation (6).

3 RESULTS OF MEASUREMENT

3.1 Dynamic properties of virgin samples

The influence of  the static pre-deformation (λ0 
increasing from 0.85 over 0.75 to 0.65) on the loss 

angle and dynamic moduli were monitored for 
virgin samples.

The evolution of loss angle δ of  virgin material 
for the three compressive pre-deformations is evi-
dent from the Figure 2. The loss angle decreases 
markedly with increasing pre-strain and the storage 
modulus increases as is evident from the Figure 3.

In the measured range of amplitudes and fre-
quencies the graph of the loss angle resembles a 
horse saddle. The frequency dependence of the 
loss angle δ is weak; it passes through a moderate 
minimum between 1 and 3 Hz.

By contrast, the amplitude dependency is pro-
nounced, the loss angle reaches its maximum 
approximately in the middle of the interval of 
amplitude.

The storage modulus of virgin specimens on Fig-
ure 3 increases notably with increasing static pre-
stretch λ0. The storage modulus increases slightly 
with increasin g frequency and significantly decreases 
with increasing amplitude. Both dependencies are 
monotonous in the range of frequencies and ampli-
tudes applied.

Table 1. Hardness of samples and the path in thousands 
of km.

Sample 0 R 1 R 2 R 3 G 4 R 5 R 6 R
[km] 0 175 255 172 75 473 146
ShoreA 70.3 82.4 86.1 85.4 83.6 83.5 88.3

Figure 1. Dynamic mechanical analysis test setup.

Figure 3. Variation of  storage modulus of  virgin 
specimens with amplitude and frequency at different 
pre-strains λ.

Figure 2. Variation of loss angle of virgin specimens 
with amplitude and frequency at different pre-strains λ.
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The loss modulus of virgin specimens on the 
Figure 4 follows similar trends with the difference 
that it does not depend significantly on the static 
pre-stretch λ0.

3.2 Dynamic properties of aged samples

The main task of this experimental work was to 
investigate how the natural aging and fatigue affect 
mechanical properties of rubber segments.

Dynamic properties were measured by means of 
the DMA on 6 sets of aged samples. In each set, 
there were 5 samples with the same operational his-
tory which is evident from the Table 1.

3.2.1 Loss angle δ
Comparison of loss angles of samples with a dif-
ferent service history is on the Figure 5. The graph 
represents the dependency on amplitudes at the 
static pre-strain λ0 = 0.75 and the  frequency 5 Hz.

We see that the loss angles of aged and virgin 
samples have a similar trend. The loss angle values 
of aged specimens are lower than the loss angle of 
virgin specimens. The only exception is the set of 
samples G172, which is from a different producer.

3.2.2 Storage modulus
Comparison of storage moduli of specimens with 
different service history is on Figure 6. We see a 
considerable fall of storage moduli of all samples 
with increasing values of amplitude. An analysis of 
the measured data shows that the dependence of 
storage moduli on frequency is weak for all sam-
ples in the applied frequency interval.

The majority of the storage moduli of aged sam-
ples are bigger than the storage modulus of virgin 
material. The sample R473 that has been in the long-
est operation shows the largest storage modulus.

3.2.3 Loss modulus
A comparison of loss moduli of aged and virgin 
samples is on Figure 7. Loss moduli diminish with 
increasing amplitude. The difference of their values 
is small, nevertheless, the loss modulus of virgin 
material is lower than most of the other values.

3.3 Hardness of segments and permanent set

The permanent set and the hardness of all aged 
segments were measured prior to being sliced into 
samples by water jet.

3.3.1 Permanent set
The average thickness reducing permanent set in 
the direction of main compressive working load 
is about 11.5%. The extending permanent set is 
about 16.2% in the circumferential direction of the 
wheel. In this direction the segments are subjected 

Figure 4. Variation of loss modulus of virgin specimens 
with amplitude and frequency at different pre-strains λ.

Figure 5. Comparison of loss angles of specimens with 
different service history at λ0 = 0.75 and at frequency 5 Hz.

Figure 6. Comparison of  storage moduli of  speci-
mens with different service history at λ0 = 0.75 and at 
frequency 5 Hz.

to shear due to the torque transmission, and they 
are also enlarged owing to the compression in a 
perpendicular direction.
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3.3.2 Hardness
Hardness Shore A of rubber segments is listed in 
the Table 1. The hardness on the surface of the 
worn segments is 10–15 ShA more than hardness 
of virgin segments. The reason for such a differ-
ence is probably the enhanced degradation of 
 surface layers.

4 CONCLUSION

DMA tests were conducted under strain- controlled 
loading condition at room temperature to prove 
assumed difference of dynamical properties amongst 
IR/BR samples prepared from naturally aged seg-
ments with a different service history. Based on the 
test results we can draw some conclusions:

− All samples show the Payne effect—as the strain 
amplitudes of the load increase, storage and loss 
moduli decrease.

− The frequency dependence of observed dynamic 
quantities is weak in the experimental frequency 
range.

− The loss angle decreases and the storage modulus 
increases with the increasing static pre-strain.

− The loss angles of virgin rubber samples are 
larger than of worn ones.

− Storage moduli of  samples from worn seg-
ments are greater than storage moduli of virgin 
samples.

− The segments become harder and stiffer dur-
ing their service life and lose their damping 
capability.

− Dimensions of segment change markedly due to 
the permanent set.

For all these reasons segments can fail to perform 
their function which is quite unusual for a rubber 
element. In addition to the vibration damping they 

have to transmit the driving torque by means of 
friction. Usually the slip between the wheel disc 
and rim put an end to segment life. The main pur-
pose of this study was to examine this one aspect 
of the segment failing. An exhaustive study of seg-
ment reliability remains a future endeavour.
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Modelling and simulation of dynamically loaded elastomer-mounts 
under predeformation

J. Retka & A. Lion
University of the Federal Armed Forces, Neubiberg, Germany

ABSTRACT: The article deals with the formulation of a frequency-dependent material model in order to 
describe the combined static and dynamic load of elastomer-mounts. First the authors outline the require-
ments on the model and second deduce an appropriate description of the process. The proceeding results 
in a frequency-dependent constitutive model. Finally a proposal to implement the model is discussed.

2 MATERIAL BEHAVIOUR

The used material is normally a nonlinear viscoe-
lastic elastomer and therefore it is necessary to 
discuss the influence of the four parameters fre-
quency, temperature, predeformation and ampli-
tude of the harmonic excitation. With respect to 
the mentioned load case it is necessary to describe 
the material in the frequency domain. Hence the 
experiments have to be carried out in the frequency 
domain. Elastomers show typically a frequency-
dependent behaviour as shown in Figure 1. 
In this context, the concept of thermo-rheological 
simplicity is used, in order to generate the master 
curve.

During the entire loading process the tempera-
ture is assumed to be constant at room temperature. 
Due to the low glass transition temperature of the 
tested material an exponential relation can be used 
to describe the technical interesting range of fre-
quency from 1–1000 Hz. The dependences of the 

1 INTRODUCTION

In the course of further development of compu-
tational predictions of component properties the 
demand for predictions of the material-response 
to dynamic loads is increasing. The mounting of 
vibrant structures is realized by elastomer-materials 
on a big scale. Examples are engine mounts in the 
automotive industry. The vibration behaviour and 
the resulting acoustic emissions affect directly the 
driving comfort. Current methods to construct 
such mounts are based upon experiences and pos-
sible malfunctions are assessed late. Therefore a 
computational simulation is useful to influence the 
development as early as possible.

At the beginning this article motivates the 
description of the material properties in the fre-
quency domain. The considered load case is 
divided into two parts: First a static finite prede-
formation results from the weight of the mounted 
structure. Second the structure superimposes 
vibrations which are small in comparison with the 
predeformation.

The presented approach bases on an exist-
ing constitutive model of finite viscoelasticity, 
described at first by Haupt and Lion (2002), which 
is enhanced to describe the material behaviour in 
the frequency domain as proposed by Lion, Retka 
and Rendek (2009). The used constitutive model 
is characterized by its variability based on a ther-
momechanical consistent theory. In addition this 
procedure is applicable to arbitrary constitutive 
models.

With the derived frequency-domain formulation 
the implementation in a FE-program is possible 
following a proposal by Morman und Nagtegaal 
(1983). In this case the constitutive equations are 
implemented in the program MSC.Marc and the 
results are discussed.

Figure 1. Master curve of an elastomer with the shore 
hardness shore-A 55. 
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overstress. Subject to the viscosities ηk of the 
 dashpots, the springs with the elasticities Ck show 
relaxation until the equilibrium stress remains on 
its own.

This approach can be enhanced to a three dimen-
sional model. The proceeding consists of three 
parts: development of kinematic relations, evalu-
ation of the balance principles and derivation of 
constitutive equations.

Figure 2. Storage and loss modulus as function of the fre-
quency and different predeformations at room temperature. 

storage and the loss modulus on the predeformation 
and on the amplitude of the harmonic excitation 
are shown in Figure 2 and Figure 3. Thereby one 
can see the pronounced dependence on the prede-
formation. For small amplitudes in comparison 
with the predeformation Δε << ε0 and Δε < 0,1% 
the influence on the material behaviour is negligi-
ble as diagrammed in Figure 3.

If  the amplitude-dependence of the material 
should be considered, time-domain simulations 
must be carried out.

3 MODELLING

A proved model to describe viscoelasticity is the 
Maxwell-model.

A one dimensional model is shown in Figure 4. 
The model consists of a spring with the elasticity 
modulus E and one or more Maxwell-elements 
which are connected in parallel. If the structure is 
deformed, e.g. one pulls an end, the model generates 
a stress which is composed of two parts. The spring 
with the modulus E adds an equilibrium part and 
the Maxwell-elements result in a rate-dependent 

Figure 3. Storage and loss modulus as function of the 
amplitude of the harmonic excitation at a frequency of 
10 Hz and room temperature. 

c

E

η

Figure 4. Maxwell-model. 
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First of all the kinematics will be considered. 
The deformation gradient F maps the reference 
configuration R to the current configuration C 
and is decomposed into a volume deformation F  
and an isochoric part F̂  (Figure 5).
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For the further calculation only the history of 
the isochoric deformation is taken into account. 
For this reason a relative isochoric deformation 
gradient ( )

ˆ
t sF  is introduced. It maps tangent vec-

tors from the current isochoric configuration at the 
time t to a previous isochoric configuration at the 
time s. Further introduced measures for the defor-
mation are the Right Cauchy Green tensor C = FTF 
and the Piola strain tensor e = 1/2(C–1–1) which can 
be calculated for each configuration.

The next step is the selection of an appropri-
ate ansatz for the free energy density which satis-
fies the dissipation principle. With respect to the 
conception of the Maxwell-model the free energy 
density functional consists of  a hyperelastic equi-
librium part and a rate-dependent non-equilibrium 
part. The second part is a functional of the his-
tory of the isochoric relative Piola strain tensor. 
In comparison with the Maxwell-model the free 
energy represents the elastic energy stored in the 
springs.
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ρR is the mass density of the material in the 
 reference configuration and G(t) is a scalar-valued 
relaxation function which is the sum of decreasing 
exponentials.

The evaluation of the dissipation principle
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in case of isothermal conditions and in the mate-
rial description results in the constitutive equations 
and leads to the following stress-strain relation
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with the time-dependent fourth order projection 
tensor
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which follows from the kinematics.
Analogous to the Maxwell-model the 2nd Piola 

Kirchhoff stress tensor contains an equilibrium 
stress and an overstress.

In order to linearize the relation geometrically 
around a predeformation F0 the ansatz
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is chosen and the incremental strain tensor
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is defined. Now the geometrically linearized ver-
sion of the stress-strain relation can be calculated.
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with the predeformation-dependent fourth order 
projection tensor
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Finally it is necessary to deduce the dynamic 
modulus tensor. The assumption of  harmonic 
incremental deformations is represented by the 
incremental strain tensor

E h h Elin(t) lin= + =
1
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Figure 5. Volumetric-isochoric split of the deformation
gradient. 
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with the amplitude ΔElin and the angular frequency 
ω of  the harmonic excitation.

The evaluation of equation (8) for large times 
respectively the stationary solution results in the 
following expression for the 2nd Piola Kirchhoff 
stress tensor
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with the frequency-dependent dynamic modulus 
tensor of fourth order G

4
( )ω  which is related to the 

reference configuration.

4 IMPLEMENTATION

Based on the mentioned proposal by Morman und 
Nagtegaal (1983) the FE-program MSC.Marc has 
an interface for the implementation of constitutive 
models and its frequency-range formulations.

Provided that the material is incompressible 
and under isothermal conditions one can enter a 
dynamic modulus tensor referred to the prede-
formed configuration.

With the push forward transformation F TF0 0
� T  

of  equation (11) and the assumption of incom-
pressibility the predeformed stress-strain relation
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is obtained and the associated fourth order dynamic 
modulus tensor is
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This is the required form for the interface. 
It is possible to implement the derived fourth order 
dynamic modulus tensor completely at the pro-
gram. The simulation is carried out analogue to the 
proceeding shown above. First the predeformation 

is calculated in the time-domain and thereafter 
linearized in the neighbourhood of the predefor-
mation. At the end the material response to incre-
mental harmonic excitations is calculated in the 
frequency-domain.

The hyperelastic material behaviour can be 
described for example with a Mooney-Rivlin-
model. Furthermore the use of  other constitutive 
models of  viscoelasticity seems to be possible.

5 OUTLOOK

It is intended to introduce the results in industrial 
processes. The aim is the prediction of the behav-
iour of elastomer-mounts at the beginning of the 
development process. With respect to this certain 
elastomers are analysed and first calculations are 
carried out.

Further steps are the enhancement of the consti-
tutive model to different environmental influences. 
Of particular interest are the temperature and 
aging phenomena generated by different effects.
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The visco-elastic behaviour of elastomers at large pre-strains

N. Suphadon, A.G. Thomas & J.J.C. Busfield
Department of Materials, Queen Mary University of London, London, UK

ABSTRACT: Kuhn and Kunzle (1955) explained that the reduction in loss angle for small oscillations 
with increasing pre-strain resulted from the molecular rearrangement of the polymer. In contrast, Suphadon 
et al. (2009) showed that the loss angle decreased due to changes in geometry alone and that the loss modulus 
was constant for a wide range of unfilled materials up to quite large strains. They also found that for a range 
of unfilled rubbers that a pre-strain, of up to 100% strain, did not induce any anisotropy in the loss modulus 
behaviour when measured using small strain oscillations superimposed on the larger pre-strain. From this 
work it was clear that the energy dissipation depended only on the geometric shape of the sample and not on 
the pre-strain. This paper extends the previous work to larger pre-strains for SBR (styrene butadiene rubber) 
and NR (natural rubber) compounds some of which incorporate fillers. The results show for materials that 
with 25 phr of carbon black filler, the loss modulus is still independent of the pre-strain for normal working 
strains but at filler contents of 50 phr, the loss modulus increases with pre-strain at extension ratios lower 
than 2. This probably results from the significant effect of the strain amplification which arises at higher 
filler volume fraction. Additional experiments to investigate the effect of the load history and anisotropy in 
the loss modulus with pre-strain are also described.

tensile oscillation. The dimensions were 80 mm 
in length, 5 mm in width and 2 mm in thickness. 
A compression moulded rubber cylinder was used 
to examine a tension superimposed with a small 
torsional oscillation. The bonded cylindrical rod 
had a diameter of 12.2 mm and a length of 75 mm. 
Table 1 summarises all the different rubber compo-
sitions and the processing conditions.

The dynamic behaviour of rubber can be repre-
sented by a complex shear modulus, G*.

G G G∗ = +′ ″i  (1)

Here G′ is the storage shear modulus (elastic 
component) and G″ is the loss shear modulus (dis-
sipated energy component). All experiments in this 
work have been conducted using a free vibration 
set up, where the dissipated energy is expressed in 
terms of the log decrement, Δ,

Δ =
⎛
⎝⎜

⎞
⎠⎟+

1
n

x
x

i

i n
ln , (2)

where xi is the amplitude of cycle and n is the 
number of free oscillations being measured.

The elastic behaviour of each material was also 
measured using dumbbell shaped specimens of 
2 mm thickness and 3 mm width in the gauge length 

1 INTRODUCTION

In engineering applications rubber materials are 
often subjected to a combination of complex 
dynamic loads. Hence, the viscoelastic behaviour 
of the materials under complex loading is impor-
tant. Busfield et al. (1999), Busfield et al. (2000) 
and Davies et al. (1996) studied the dynamic behav-
iour of pre-strained strips of rubber subjected to a 
tensile oscillation. Suphadon et al. (2009) used a 
similar approach to study anisotropy in the viscoe-
lastic behaviour. For a range of unfilled rubbers, 
at pre-extension ratios below 2 the loss modulus is 
independent of the pre-strain and the energy dissi-
pation depends upon the change in geometry only. 
In this work larger prestrains to an extension ratio 
above 2 are observed using both unfilled and filled 
rubbers. The anisotropy in the loss modulus with 
strain can be examined by loading a pre-strained 
rubber sample with a superimposed torsion oscil-
lation or a additional tension oscillation.

2 EXPERIMENTAL

Styrene-butadiene (SBR) and natural rubber (NR) 
compounds were used in this experiment. A com-
pression moulded rectangular rubber strip was 
used to examine a tension superimposed with small 
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which were tested in a screw driven Instron 5550 
using an optical strain measuring device. Each spec-
imen was loading at the rate 500 mm/minute until 
break.

The pre-strained sample superimposed with 
a torsion oscillation has been examined previ-
ously by several researchers (Kuhn and Kunzle 
1955), (Mason 1959), (Mohsin 1987), (Mooney 
and Gerke 1941) and has more recently been 
adopted by Suphadon et al. (2009). A suitable 
schematic for the test is shown in Figure 1. The 
base of  the rubber cylinder was fixed and the top 
was mounted to a torsion inertia bar. The cylin-
der was pre-strained by pulling an inelastic string 
attached above the inertia bar. After each pre-
strain has been applied the sample was allowed to 
relax for 3 minutes to reduce the effects of  stress 
relaxation on the measurements. A torsion oscil-
lation was established by tapping the torsion bar. 
The period of  oscillation and the decay in the 
oscillation amplitude were measured using a non-
contacting displacement sensor and recorded on 
PC oscilloscope.

In our case the definitions of G′ and G″ are 
expressed in terms of the undeformed geometry 
(Suphadon et al. 2009)

G I l
r
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where I is moment of inertia of the rectangular 
bar, ω is angular frequency, l0 is the length of the 
specimen, r0 is the radius of the specimen and λ is 
extension ratio.

A schematic for the apparatus used for the static 
tensile tests superimposed with an additional ten-
sile oscillation is given in Figure 2. The inertia bar 
in this case was supported by a knife-edge and 
was also clamped at the centre of a rubber speci-
men. The specimen was extended to a specified 
pre-strain and then also kept in this extension for 
3 minutes. The beam was set in motion by releas-
ing an electromagnet. As the beam oscillates, the 
reduction in the oscillation amplitude was meas-
ured using the same method as during the torsion-
tension experiment. In this case, G′ and G″ are also 
expressed in terms of the undeformed geometry 
as defined by Busfield et al. (1999), Busfield et al. 
(2000) and Davies et al. (1996) as,

G I
a

l
A

′ =
⎛

⎝⎜
⎞

⎠⎟
⎛
⎝⎜

⎞
⎠⎟

ω λ
2

2
0

0

2

6
, (5)

Table 1. Rubber formulations and processing conditions.

SBR0 SBR25 SBR50 NR0 NR25 NR50

Ingredient
NR (SMR 

CV-60)
0 0 0 100 100 100

SBR (JSR 1500) 100 100 100 0 0 0
Carbon black 

(HAF*)
0 25 50 0 25 50

Stearic acid 2 2 2 2 2 2
Zinc oxide 5 5 5 5 5 5
HPPD* 

(antioxidant)
1 1 1 1 1 1

CBS* 
(accelerator)

0 0 0 1.5 1.5 1.5

DPG* 
(accelerator)

1 1 1 0 0 0

Sulfur 1.5 1.5 1.5 0.5 0.5 0.5
Moulding condition
Curing time 70 70 70 15 15 15
Temperature 160 160 160 160 160 160

HPPD* = N-(1, 3-dimethyl butyl)-N-phenyl-p-
phenylenediamine

CBS* = N-Cyclohexy-2-benzothiazole sulfenamide
DPG* = diphenyl guanidine
HAF* = High abrasion furnace

Figure 1. A schematic for a prestrain superimposed 
with a torsion oscillation.

Figure 2. A schematic for a pre-strain superimposed 
tension oscillation.
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I is the moment inertia of the beam, a is the dis-
tance from the knife edge to the clamped rubber, l0 
is the original test piece length and A0 is the unde-
formed cross-sectional area of the test piece.

3 RESULTS AND DISCUSSION

Suphadon et al. (2009) found for unfilled rubbers 
the loss modulus was independent of pre-strain for 
pre-strains below 2 and the loss modulus was the 
same whether measured using the torsion oscilla-
tion (out of plane with the pre-strain) or the ten-
sion oscillation (in plane with the pre-strain). This 
work extends this work to larger pre-strains greater 
than 2 and also to filled rubbers.

The incorporation of fillers made the materials 
much stiffer and stronger as shown in Figures 3(a) 
and 3(b). All the rubbers showed an elongation at 
break above 400% strains which meant that all the 
tests were done up to a maximum extension ratio 
of 3.8 for all the compounds. Equations 3 and 4 
were used to determine G′ and G″ respectively for 
the static pre-strain superimposed with torsion 
oscillation. Equations 5 and 6 were used to calcu-
late G′ and G″ respectively for the static pre-strain 
superimposed with a tension oscillation.

Figures 4 and 5 show the graph of the loss 
modulus as a function of a large pre-strain meas-
ured using both experiments. The dependence of 
loss modulus with pre-strain is modest at exten-
sion ratios below 3.0 for NR0 and SBR0 but above 
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Figure 3(a). Tensile stress against extension ratio for 
different NR compounds.

Figure 3(b). Tensile stress against extension ratio for 
different SBR compounds.
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that an upturn is observed. Suphadon et al. (2009) 
 suggested at these large extensions molecular ori-
entation and finite extensibility might have started 
to have an effect on the viscoelastic behaviour. The 
orientation of the monomer units, as distinct from 
the chain segments between crosslink, is probably 
the controlling factor in any change in G″ with 
strain. The statistical theory suggests that the ori-
entation of the chain segments between crosslink 
is modest until the polymer chains are extended 
by a substantial fraction of their contour length. 
For SBR25 and NR25 the change in loss modu-
lus with pre-extension is modest up to extension 
ratio of 2, but the upturn is clearly more marked 
than was the case for the unfilled rubber. This is 
probably due to the effect of strain amplification 
(Busfield et al. 2005), (Guth and Gold 1938). For 
highly filled rubber, the loss modulus of SBR50 
and NR50 is clearly dependent on the pre-stain. 
The graphs upturn when the pre-extension ratios 
are lower than 2. These clearly show the significant 
effect of the strain amplification on G″.

Figure 4 for the SBR and Figure 5 for the NR 
compare the loss modulus measured using both 
tests. The loss modulus measured using both tor-
sion and tension oscillations give the same result 
for the loss modulus for the unfilled NR and SBR 
compounds. Over a very wide range of strains 
it is clear that the loss modulus is isotropic with 
strain. For the filled materials the loss modulus 
was isotropic at smaller pre-strains, but at larger 
pre-strains the loss modulus diverges indicating an 
anisotropy in the behaviour.

One possible explanation for this is that one vis-
coelastic dissipation mechanism frequently attrib-
uted to filled elastomers typically occurs as a result 

of frictional sliding of the polymer over the filler 
interface. In this case a small oscillation in the 
direction of pre-strain may more readily result in 
slippage and hence more energy dissipation in the 
loading direction.

Figures 6 and 7 show that the loss modulus of 
unfilled and lightly filled rubber is virtually inde-
pendent from the loading history of the pre-strain. 
With the difference between the data being meas-
ured when the pre-strain is increased and the data 
measured when the pre-strain is reduced being 
only modest, with the loss modulus in the load-
ing direction being higher than during unloading 
(Asare et al. 2009).

4 CONCLUSIONS

The effect of  a large pre-strain on the dynamic 
behaviour of  the rubber has been investigated 
using both in-plane and out-of-plane oscillations. 
At lower pre-strains the loss modulus is independ-
ent of pre-strain in contrast to larger pre-strains 
there is a slight dependence with pre-strain. The 
pre-strain did not induce any anisotropy in G″ at 
a lower pre-strain. However at larger pre-strains 
it is possible that the constraint in the monomer 
units in the rubber network might effect the vis-
coelastic behaviour. Unfilled rubbers show that 
the independence of the loss modulus with pre-
strain is present to a greater pre-strain than is the 
case for the filled rubber, probably as a result of 
strain amplification effects of the filler. Also the 
loss modulus of both experiments is isotropic 
for unfilled rubber but the incorporation of filler 
introduces an anisotropy at larger pre-strains. 

Figure 6. Comparison of G″ measured from pre-tension 
superimposed torsion oscillation and pre-tension super-
imposed tension oscillation test, plotted as a function of 
pre-strain for the NR compounds.
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This probably being due the frictional sliding at the 
filler boundaries being dependent upon the direc-
tion of the stress field around the filler. Addition-
ally, these experiments confirm that all compounds 
tested are independent of the loading history. The 
results in this work are useful for general engineer-
ing applications such as rubber using in vibration 
damping where a complex loading is applied to a 
component and the designer wishes to predict the 
energy dissipation per cycle. The introduction of 
a single term for the loss modulus for a range of 
geometries, pre-strains and loading cycle means 
that it should be much easier to design compo-
nents using finite element analysis.
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Dynamic characterization of elastomers using impact testing
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ABSTRACT: Dynamic characterization of elastomers, i.e. laboratory testing and fitting of constitutive 
models, is quite complicated. The demands on the laboratory equipment and the skill of the personal 
handling the test equipment are high. Stationary harmonic testing is an established method for evaluating 
dynamic properties of elastomers. However, it is demanding experimentally when it comes to high fre-
quencies. The purpose of this investigation is to evaluate theoretically if  impact testing can be an alterna-
tive to the harmonic test method. The impact behavior of an elastomer showing both rate and amplitude 
dependence is evaluated numerically. It is shown that the stress-strain behavior during impact show simi-
larities to the stationary harmonic behavior of the material. Quantities comparable to the dynamic stiff-
ness and phase angle can be derived from the impact behavior. It is also shown that amplitudes of 1–15% 
strain and frequency/rate dependence in the range 30–200 Hz, can be resolved with velocity and mass of 
the impacting body having realistic values. Moreover, a schematic experimental setup is also discussed. 
Impact testing has a potential to be a very simple method to obtain dynamic data for elastomers, to use 
in calibration of constitutive models. Alternatively it can be used as a simple quality control of dynamic 
properties in various elastomeric materials.

and the losses during the contact with the rubber 
is taken from the difference in potential energy 
of  the impacting mass. This can be used to give a 
rough estimate of  the stiffness and damping prop-
erties of  the tested elastomer. However, the pur-
pose here is to look at the dynamics of  the impact 
with higher resolution. The method proposed here 
requires the displacement of  the mass and the 
force in the rubber to be measured as functions of 
time during the contact (which is in the order of 
10 ms).

Other applications where impact testing can be 
used is for obtaining hyper-elastic properties in 
FE-analysis of rubber components at high strain 
rates. As for example in development of shock 
absorbers (Austrell et al, 2004) and in the ongoing 
work (Centeno Gil O.J. 2009) on rubber bushings 
in car crash simulations.

Impact testing for the purpose of obtaining 
constitutive models has been done before by other 
researchers for example (Hoo Fatt & Al-Quraishi 
2007) and (Yang et al, 2000). They used impact 
testing to model hyper-viscoelastic behavior.

Impact testing is particularly useful when it 
comes to simultaneous high strains and high strain 
rates.

This was explored in a previous work concern-
ing a so called “bump stop” in a car suspension 

1 INTRODUCTION

This theoretical study investigates the possibilities 
and limitations of using impacting bodies of dif-
ferent velocity and mass as a means to characterize 
the dynamic behavior of elastomers.

Using the harmonic test method in a fixed rig 
is quite complicated and demanding. This method 
imposes extreme requirements on the stiffness and 
stability of the test equipment for high frequencies 
and the equipment is very expensive. Also, heat 
generation by hysteresis work might be a problem. 
The question assessed here is, if  the impact test 
method can be used to replace the more common 
stationary dynamic testing method. The impact 
test method is much less demanding experimen-
tally. It is easy to achieve high strain rates without 
using a very stiff  rig. Also, for testing at varying 
temperatures a climate chamber built round the 
test rig is not necessary. The specimen is simply 
heated to the required temperature and tested by 
impacting weights. Moreover, pre straining of the 
specimen can also be obtained, as schematically 
discussed in Section 5.

Impact testing is used as a standard test for 
determination of rebound resilience (ISO 1767 for 
example) using a pendulum hammer. The initial 
and final position of the pendulum is measured 
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(Austrell P-E. & Wirje A. 2007). However, the main 
purpose here is to compare the impact test method 
with the more established method of using station-
ary dynamic harmonic testing in a range of moder-
ate strain levels where the amplitude dependence 
of many elastomers is pronounced.

Two possible specimens are considered in the 
next section; impact on a double shear specimen, 
or impact on a lubricated compression test speci-
men. Using both covers the two fundamental load 
cases for rubber units. In Section 3 concerning val-
ues of mass and velocity and in Section 4 where the 
numerical simulation of the impact is discussed, 
a compression specimen is assumed. In practise the 
impact can be accomplished by free falling weights, 
an impact pendulum, or similar arrangements. In 
section 5 a schematic experimental setup is discussed. 
It is assumed that corresponding values of force and 
displacement versus time can be measured.

2 PRELIMINARIES

In this section, some basic equations are presented 
using the assumption that the material is purely 
elastic. A simple linear spring model is used for 
basic understanding of how parameters such as 
maximum compression and pulse time depends on 
the impacting velocity and mass in connection to 
the modulus of the rubber.

The purpose here is as mentioned, to compare 
the impact test method with the stationary har-
monic test. This involves comparing the pulse 
duration time tp with the period time T. Figure 1 
shows schematically the displacement versus time 
for the two cases.

In order to get approximately the same loading 
rate and level in the two methods it should hold 
that tp = T/2 and that the maximum displacement 
umax and the amplitude u0 is of the same value, 
according to Figure 1.

For the purpose of obtaining some basic approx-
imate formulas, the rubber specimen to be tested is 
as mentioned simply considered as a linear spring 
with stiffness k. At time t = 0 a mass m hits the 
specimen at a certain velocity. In this simple linear 
elastic case the pulse according to Figure 1 will be 
a half  period sine function according to

u t u
k
m

tmax( ) =
⎛

⎝⎜
⎞

⎠⎟
sin

 
(1)

giving the pulse time tp dependent on the impacting 
mass m and the stiffness as

t m
kp = π .

 
(2)

In the linear elastic case the deformation histo-
ries are completely equal in shape for the impact 
test and for the stationary harmonic test (looking 
at comparable time intervals).

The maximum deformation umax, according to 
Figure 1, of the spring can be found by a simple 
energy balance where the kinetic energy of the 
impacting mass is put equal to the strain energy in 
the maximum deformed position of the specimen, 
giving

u m
kmax = υ0

 
(3)

where v0 is the velocity of the impacting mass.
Now, if  the impact test specimen is of the dou-

ble shear type the stiffness can be expressed as

k
G A

Hs
dyn= 2  (4)

because two rubber parts are being sheared. Gdyn is 
some dynamic shear modulus of the material, A is 
the area of one part exposed to shear stress, and H 
is the thickness of one part. For the compression 
specimen the stiffness is

k
G A

Hc
dyn=

3

 
(5)

for “small” strains in the range of say 0 to 15%, 
because the initial elastic modulus E = 3G for an 

Figure 1. Comparison of displacement versus time for 
the harmonic and the impact test method. Pulse time tp 
and the period time T are shown.



163

incompressible material. A is the area exposed to 
compressive stress, and H is the height of the speci-
men. In order to obtain a homogeneous compres-
sive stress it is assumed that the contacting surfaces 
are lubricated.

From these expressions some important basic 
relationships can be derived. First the pulse dura-
tion time can be found by putting Eq. (4) or Eq. (5) 
into Eq. (2) giving the expression

t mH
G Ap

dyn
= π

3
 

(6)

for the compression specimen and similar for the 
shear specimen. It can be seen that the pulse dura-
tion time (corresponding to half  the period time 
in stationary harmonic testing) is only dependent 
on the mass of the impacting body for a given test 
specimen.

The maximum strain in the test specimen can be 
derived from Eq. (3) and Eq. (2), giving

ε υ
πmax

max pu
H

t
H

= = 0  (7)

for both specimens. The conclusion here is that 
for a given impacting mass (yielding constant tp) 
the maximum strain will be dependent only on the 
velocity of the impacting body.

3 RANGE OF APPLICATION

This section considers the possibilities and limi-
tations with the impact method compared to the 
harmonic method. A typical (medium stiff) rubber 
material of about 60 Shore units will be consid-
ered as a reference for estimating roughly values of 
impacting masses and velocities.

In a previous work (Olsson A.K., Austrell P.-E. 
2001) several materials were characterized using 
harmonic shear test data in the range 1–12% shear 
strain and frequencies from 1 to 180 Hz. The 
dynamic modulus of some materials varied a lot 
with amplitude, but a rough mean value for the 
given range of frequencies and amplitudes can be 
estimated for use in the approximate expressions 
derived in the previous section. For this purpose 
the dynamic modulus of the example material used 
here is set to Gdyn = 3 MPa.

Moreover, a compression specimen in form 
of a cylinder with equal diameter and height 
D = H = 25 mm will be considered here. However, 
the ordinary double shear specimen with 25 × 6 mm 
rubber discs will have approximately the same 

 stiffness as the compression specimen considered 
and the values below are therefore approximately 
valid also for the shear test.

The purpose here is to investigate if  the same 
range of amplitudes and strain rates as the ones 
mentioned above can be covered by using the 
impact test method. The connection between the 
frequency in the harmonic test and the pulse durat-
ion time in the impact test is f = 1/T = 1/(2tp) giv-
ing the translation between pulse time and fre quency 
as tp = 1/(2f). This is used to obtain the required 
mass from Eq. (6) giving the connection

m
G A

H f
dyn=

3
4

1
2 2π

.
 

(8)

Numerical values of the impacting mass using 
this equation are shown in Figure 2.

The velocity required to reach a certain strain 
level is according to Eq. (7). By using tp = 1/(2f) the 
velocity is expressed as

υ ε π0 2= max H f .  (9)

By using Eq. (9), values of velocity correspond-
ing to frequency are shown in Figure 3 as straight 
lines for some selected strain levels.

From these two figures it can be seen that fre-
quencies below say 30 Hz are hard to evaluate with 
this particular specimen. The mass is increasing 
asymptotically and the velocity of the impacting 
body is getting impractically low. In the other end 
of the frequency rang e it is seen that increasing 
the corresponding frequency causes the impacting 
mass to become very small.
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Figure 2. Impacting mass vs equivalent frequency 
f = 1/2tp in an harmonic test.
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4 EVALUATION BY NUMERICAL 
EXPERIMENTS

The similarities between the impact test and the sta-
tionary harmonic test are explored further in this 
section. The motivation for pursuing this is that 
if  the material is purely elastic, the stress and the 
strain pulse are both sinusoidal for impact loading 
as was mentioned in the introduction and shown 
in Eq. (1).

Here the impact test method is numerically evalu-
ated using a material with three main branches hav-
ing elastic, visco-elastic, and elasto-plastic properties. 
The model used is the same as in (Olsson & Austrell 
2001). The material is fictive but it is arranged to 
be realistic for a material with an overall modulus 
corresponding roughly to a 60 Shore material hav-
ing both amplitude and frequency dependence of 
dynamic modulus and phase angle.

A Matlab program was developed to evaluate 
the effects of a mass impacting on a compression 
specimen. The rectilinear motion of the mass is 
obtained from Newton’s second law by using a 
contact force generated by the visco-elastic elasto-
plastic model cited above, also shown in Figure 4.

In Figure 5 the impact strain and stress histo-
ries are shown together with the composed stress 
strain curve. The dashed line in the strain history is 
the part where the mass loses contact with the test 
specimen (the contact force is zero) and bounces 
of. Moreover, an extension of the pulse to a full 
loop is also shown in the figure (with a dashed 
line). By using the full loop in the figure, quantities 
that are comparable to the stationary harmonic 
test can be derived as

E t
t

f
tdyn

eq max

max

eq

p

eq

p
= = Δ =σ

ε
δ π 1

2
 

(10)

Figure 4. Visco-elastic elasto-plastic model used in the 
evaluation.

σ + + σfve= σσ

elastic part

ε

frictional part

viscous part

Figure 5. Evaluation of dynamic properties comparable 
to the harmonic test method.

Figure 3. Velocity of impacting body vs equivalent fre-
quency. Maximum strain εmax from below 1, 4, 8, and 12%.
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The dynamic modulus is simply the quota 
between maximum stress and maximum strain. 
The damping properties are assessed by the com-
parable phase angle δ eq, also obtained from the 
same figure by extension to a full loop. The com-
parable frequency is found from the extrapolated 
strain history in the figure.

Using the Matlab program and choosing mass 
and velocity according to the previous section, a 
comparison to the harmonic behavior was obtained 
using the expressions in Eq. (10). In Figures 6 and 7 
the impact version of dynamic modulus and phase 
angle are shown together with actual modulus 
and phase. In the evaluation, Δt in  Figure 5 was 

 estimated using a linear extrapolation in the force 
free part of the strain history. This gave an over-
estimation of the phase angle δ eq. By using 75% 
of the linearly extrapolated Δt the values according 
to Figure 7 was obtained. The resemblance is quite 
good, indicating that by the simple comparison 
proposed here the stationary dynamic properties 
can be estimated.

The simulations show that frequency/rate and 
amplitude dependence in the considered range can 
be resolved by use of impacting bodies with easy 
achievable masses and velocities. Although no fit-
ting routine for the constitutive parameters has yet 
been established for the impact test, it is clear that it 
is equally possible to distinguish between rate and 
amplitude effects as in the harmonic test method.

5 SCHEMATIC LABORATORY SETUP

Impact testing can be arranged in several ways as 
discussed in the introduction. A simple way is to 
use free falling weights of different mass, falling 
from different heights. In the range of amplitudes 
and equivalent frequencies considered (1–15% and 
30–200 Hz), the velocities are from 0.05 m/s to 5 m/s 
and the masses are from 0.2 kg to 5 kg roughly. The 
highest velocity (5 m/s) corresponds to a weight 
falling from about 1.3 m. For the lowest velocities 
an arrangement with free falling masses may be 
impractical due to the very small heights required.

A test setup making it possible to control the 
velocity of the impacting mass is shown in Fig-
ure 8 a). A motor with weights hanging in a light 
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Figure 6. Comparison of dynamic modulus evaluated 
by sinusoidal loading (solid lines) and evaluation with 
impacting mass (dotted lines). Maximum strain ampli-
tude from above 1,4, 10, and 15%.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (Hz)

P
ha

se
 a

ng
le

 (
ra

d)

Figure 7. Comparison of phase angle evaluated by sinu-
soidal loading (solid lines) and evaluation with impacting 
mass (dotted lines). Maximum strain amplitude from 
below 1,4, 10, and 15%.

Figure 8. a) Possible experimental setup for impact test-
ing b) also including pre-strain.
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flexible wire sets the speed of impact. The force is 
measured by a load cell and the displacement is 
measured by some form of contact free device. It is 
assumed that stress and strain can be measured 
synchronously with good resolution (as functions 
of time).

In many cases it is desirable to be able to include 
pre-strain. Schematically this can be accomplished 
by hanging a weight according to Figure 8 b). 
In practice one might use a light plate connected 
to flexible wires that can be tightened to obtain the 
pre strain.

6 CONCLUSIONS

The impact method is, as mentioned in the intro-
duction, very useful for evaluating high strain rates 
and large strain levels occurring simultaneously. 
However, this theoretical evaluation of the impact 
test focused on smaller strain levels. It was shown 
that the impact method can be a much simpler and 
less costly alternative to stationary harmonic test-
ing for frequencies above say 30 Hz. It was shown 
that dynamic rubber properties can be evalu-
ated with the same resolution as in the harmonic 
method. Other advantages is that testing at differ-
ent temperatures is easy to accomplish, without 
interference of heating by hysteresis work.

A schematic experimental setup including the 
possibility to include pre-straining of the speci-
men, was also proposed.

Apart from being used as a means to produce 
data for calibration of constitutive models it could 
also be used as a quality control for dynamic prop-
erties of various rubber materials.
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ABSTRACT: The viscoelastic behavior of an industrial solid propellant, belonging to the class of highly-
filled elastomers containing nonreinforcing fillers, is compared with propellants with modified sol fraction. 
The sol fraction is the part of the binder which is unlinked to the global network and therefore not contrib-
uting to elastic response. Dynamic Mechanical Analysis (DMA) tests are performed, superimposing a static 
tensile strain with small oscillating deformations. The percentage and the chemical composition of the sol 
fraction influence significantly the observed nonlinearity, corresponding to an increase in complex modu-
lus and a decrease in loss tangent beyond a deformation threshold. Mathematical formulae are proposed 
to model the observed non linear behaviour. This behaviour could be explained assuming that the applied 
static deformation stretches the network until maximum extensibility is reached, leading to an important 
increase in complex modulus with increasing deformation. Elongation and orientation of the network con-
strains the sol fraction, reducing its molecular mobility and modifying measured loss tangent.

This procedure has been previously discussed on 
unfilled rubber in tensile mode, (Mason 1959, 
Davies et al. 1996), on filled elastomers with car-
bon black or silica fillers in tensile and shear 
mode, (Meinecke and Maksin 1981, Sullivan 
and Demery 1982, Arai and Ferry 1986, Voet 
and Morawski 1974, Dutta and Tri-pathy 1990, 
Busfield et al. 2000, Warley et al. 2007) and on 
highly-filled elastomers in torsion mode (Adi-coff  
and Lepie 1970). The results highlight new aspects 
of  the nonlinear viscoelasticity exhibited by these 
materials.

It is important to point out that in these studied 
materials, the binder/filler systems are either rein-
forcing or nonreinforcing, depending on whether 
or not the fillers strongly interact with the binder 
and improve the system rupture strength (Stacer 
et al. 1990). Nonreinforcing fillers, while suppos-
edly weakly interacting with the binder, strongly 
influence the viscous properties of the material. 
The previous observations of the dynamic proper-
ties of filled elastomers, containing reinforcing fill-
ers, according to temperature, frequency and strain 
amplitude were attributed to an evolution of a filler 
network within the material (Payne and Whittaker 
1971, Medalia 1978, Wang 1998). In nonreinforc-
ing systems, the non linearity of viscoelastic prop-
erties appears to depend on binder behaviour and 
filler-binder interactions (Stacer et al. 1990).

1 INTRODUCTION

Adding fillers to a polymer fundamentally modifies 
its viscoelastic properties. Highly-filled polymers 
have a filler volumic fraction up to 80%, imply-
ing that a small quantity of binder ensures cohe-
sion. The modelling of the nonlinear viscoelastic 
mechanical behavior exhibited by these materials is 
hardly accessible. Local deformation mechanisms 
are not clearly determined because of complex 
binder-fillers interactions. The aim of this work is 
to understand the links between solid propellant 
microstructure and its macroscopic mechanical 
properties.

Molecular mobility of polymer chains in the 
binder appears to be directly dependent on the 
microstructure and strongly influences mechani-
cal properties. Molecular mobility is defined as the 
ability of a polymer chain to diffuse in the viscous 
medium consisting of the surrounding polymer 
molecules. As segments of a chain molecule move 
in response to an applied stress, viscous forces from 
the medium delay the motion and some energy is 
dissipated as heat. The global motion delay in the 
sample is directly measured by the phase angle δ 
in a Dynamic Mechanical Analysis (DMA) experi-
ment. Therefore, the study focuses on DMA tests.

A particular procedure is used, superimposing 
a tensile static strain with small strain oscillations. 
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The DMA test is achieved on solid propellants 
with modified sol fraction. The sol fraction is the 
part of the binder unlinked to the global network 
and not contributing to the elastic response. The 
comparison between these propellants behav-
iour demonstrates that the observed non lineari-
ties can not be solely attributed to the fillers. The 
work focuses on understanding the role of the sol 
fraction in the macroscopic deformation of the 
composite.

The tested materials are presented in section 2. 
Section 3 describes the experimental procedure. 
In section 4, the results of DSC and prestrained 
DMA are reported and a mathematical model is 
considered. The discussion in section 5 suggests a 
local deformation mechanism explaining the test 
results.

2 MATERIALS

All samples are prepared from the same propellant 
formulation consisting of ammonium perchlorate 
and aluminium fillers and a hydroxy-terminated 
polybuta-diene (HTPB) based binder. The total 
filler mass fraction is 88%wt. The polyurethane 
rubber is made by curing a HTPB prepolymer with 
a methylene diicy-clohexyl isocyanate (MDCI). 
NCO/OH ratio is 0.8, which implies that part of 
the HTPB molecules remains unlinked to the net-
work. Plasticizer dioctyl aze-late (DOZ) is also 
added. The sol fraction contains the plasticizer 
and the unlinked HTPB molecules. More precisely, 
unlinked HTPB molecules are partially cross-
linked between them but not connected to the glo-
bal network. The material is then thermally cured 
for 2 weeks at 50°C.

Extraction of sol fraction by swelling in a sol-
vent allows its substitution by swelling again in dif-
ferent blends. Weight loss after extraction indicates 
the quantity of sol fraction in the initial formula-
tion and weight gain after swelling measures the 
quantity of substituted blend in the final sample. 
The modified compositions are described in the 
following paragraph.

1. Sample I: Reference material, non modified 
propellant,

2. Sample E: extraction of  sol fraction, no 
substitution,

3. Sample P: substitution by HTPB prepolymer,
4. Sample PC: substitution by cross-linked HTPB,
5. Sample D: substitution by plasticizer DOZ,
6. Sample PD: substitution by a blend of HTPB 

and DOZ.

The composition and percentage of each sam-
ple sol fraction is given in Table 1.

Several difficulties arise from this procedure. 
First the diffusion of HTPB molecules in the sample 
is not possible unless the temperature is elevated at 
60°C during a month. The swelling into plasticizer 
causes the sample to inflate and end up with a sol 
fraction about four times superior to the initial one. 
Finally swelling into a mixture of HTPB molecules 
and plasticizer implies the ratio of each constituent 
into the added sol fraction is unknown.

3 EXPERIMENTAL PROCEDURE

The glass transition temperature Tg is determined 
by a Differential Scanning Calorimetry test (DSC). 
DSC studies are performed using a Mettler Toledo 
DSC 30. The samples are submitted to two cycles 
of temperature, cooling from 20°C to –120°C with a 
cooling rate of –20°C/min and heating from –120°C 
to 100°C with a heating rate of 5°C/min. Tg tem-
perature is measured on each cycle in the heating 
phase. Measurement takes place in nitrogen atmos-
phere, with a flow rate of 40 ml/min. Reported Tg 
values are the mean values at inflexion points.

Dynamic Mechanical Analysis (DMA) experi-
ments are achieved using a Metravib Viscoanaly-seur 
VA3000 at room temperature. The frequency is 5 Hz. 
Different levels of static strain are applied, from 
0.0001% to 10% or sample break. At each static level 
(Fig. 1), a sinusoidal strain of single strain amplitude 
(SSA) 0.01% is superimposed and complex modulus 
E* and loss tangent tanδ are measured.

Table 1. Sol fraction composition and mass fraction.

Sol fraction

Sample Nature Mass fraction

I (Reference) HTPB DOZ 6.8%wt
E – 0.0%wt
P HTPB prepolymer 2.4%wt
PC cross-linked HTPB 2.5%wt
D DOZ 29.5%wt
PD HTPB DOZ blend 2.6%wt

Figure 1. Strain versus time during a prestrained DMA 
test.

Strain

Time
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4 RESULTS

4.1 Glass transition temperature

The results of DSC experiments are given in 
Table 2. The glass transition temperature of each 
material is compared with the ones of the HTPB 
prepolymer and of the plasticizer.

4.2 Prestrained DMA

The results of DMA experiments are given on 
Figures 2 and 3. Complex modulus E* and loss 
tangent tanδ are found to evolve according to 
mathematical functions (1) and (2).

E A B log m* ( ) ,= + − ε  (1)

tanδ = − −C D log n( ) .�  (2)

The constants A, B, C, D, m and n are obtained 
thanks to a leastsquares optimization algorithm in 
Matlab®. Samples E and D present respectively a 
different material behaviour and a highly scattered 
loss tangent measurement. Except for these sam-
ples, global error for each sample is less than 10% 
of measured value.

For each material, value at low static strain is 
directly given by parameters A and C. Non linear-
ity threshold and slope can be determined from 
constants B, C, m and n according to equations 
(3), (4), (5) and (6). �t and p represent deformation 
threshold and nonlinearity slope. Exponents e and 
δ stand for complex modulus and loss tangent. 
Results for each sample are given in Table 3.

log A Bt
e m� = −( . / ) /0 05 1

 (3)

p Bm log lne m= − − −( ) /( )ε ε1 10  (4)

Table 2. Glass transition 
temperatures.

Sample Tg

P –347.3 K
E –348.7 K
PC –348.7 K
HTPB –353.6 K
I –356.8 K
PD –358.3 K
D –376.6 K
DOZ –379.2 K
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Figure 2. Complex modulus according to static strain, at 
room temperature, frequency of 5 Hz and SSA of 0.01%.
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log C Dt
nεδ = −( . / ) /0 05 1

 (5)

p Dn log n lnδ εε( )( ) /− −1 10
 (6)

A nonlinearity threshold has not been found 
for sample E complex modulus. As noticed on 
Figure 2, this particular material undergoes dam-
age at very low static strain and the test ends with 
sample break at strain inferior to 10%.

Measured material D loss tangent is particu-
larly scattered (Figs. 3 and 4). Loss tangent value 
is too low to enable a clear measure and the strain 
amplitude is not high enough. At a single strain 
amplitude of 0.1%, the measure gets less scattered 
(Fig. 4). Test is still achieved at 0.01% single strain 
amplitude because sample E could not bear a 
larger strain amplitude without break.

5 ANALYSIS

5.1 Glass transition temperature

The glass transition temperature Tg is an indica-
tor of mobility of polymer molecules into the 
microstructure, therefore these results highlight the 
influence of sol fraction. The binder of the sample 
E is composed of cross-linked HTPB only. Its Tg 
is then 5 K superior to the one of the HTPB pre-
polymer (Table 2). Addition of cross-linked or non 
cross-linked HTPB molecules to the microstruc-
ture appears to leave Tg in the same range. This can 
be caused by the low amount of sol fraction added 
due to the difficult diffusion of HTPB molecules 
into the material.

The similarity between materials I and PD indi-
cates that ratio of HTPB and DOZ in sol fraction 
of sample PD could be close to ratio in the initial 
sol fraction of material I. It will be considered in 
this work that the ratio between HTPB and DOZ 
molecules in materials PD and I are identical.

Finally, material D exhibits a very low Tg, con-
firming that the quantity of plasticizer absorbed 
was very large compared to initial sol fraction.

5.2 Prestrained DMA—value at low static strain

As shown in previous work (Azoug et al. 2009), 
the complex modulus value at low static strain, 
A, depends on the filler fraction, the polymer 
network and the quantity of plasticizer in the sol 
fraction whereas the loss tangent value at low static 
strain, C, depends on the composition and quan-
tity of sol fraction. All studied materials contain 
the same amount of filler and the same polymer 
network, the sol fraction is the only variation.

These considerations are confirmed by the evo-
lution of the complex modulus value A according 
to sol fraction content. Indeed, the materials con-
taining plasticizer, D, I and PD, present the lowest 
values, respectively 0.46, 15 and 23 MPa (Table 3). 
Nevertheless, sol fraction quantity and interactions 
between sol fraction and polymer network seem to 
significantly influence the complex modulus value. 
Complex modulus variation from 23 to 15 MPa 
between materials PD and I is explained by the 
raise in sol fraction content from 2.6 to 6.8%wt 
(Table 1).

In non plasticized systems, complex modulus 
differences directly depend on molecular mobility 
in the substituted sol fraction. Since there is no sol 
fraction in material E, the mobility is low and A is 
the highest, 854 MPa (Table 3). In material PC, 
sol fraction mobility is improved but still low in 
consequence of HTPB molecules cross-linking. As 
mobility increases, A is lowered to 98 MPa. Finally, 
in material P, molecular mobility is considerably 
enhanced by the introduction of sol fraction and 
A decreases to 42 MPa.

Likewise, the evolution of loss tangent value at 
low static strain C can be explained by the differences 

Table 3. Optimization results.

Low static Threshold Slope

A 
MPa

C 
–

εt
e 

%
εδ

t  
%

pe

MPa
pδ

–

I  15 0.54 0.2 0.02  850 –2.1
E 854 0.15 – – –190 –0.5
P  42 0.29 0.1 0.13 1800 –2.5
PC  98 0.37 1.2 0.01  420 –2.6
D  0.5 0.07 1.3 3.65   8 –0.4
PD  23 0.33 0.5 0.43  450 –2.5 10−4 10−3 10−2 10−1 100
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Figure 4. Sample D loss tangent according to single 
strain amplitude (SSA).
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of microstructure. It appears that loss tangent value 
is null when the molecules are extremely mobile or 
totally immobile. Hence the loss tangent evolves 
with the amount of friction between the polymer 
chains.

Material D contains 29%wt of plasticizer (Table 1), 
molecules are extremely mobile and loss tangent 
value of 0.07 is low (Table 3). Contrary to material 
D, material E contains no sol fraction, mobility is 
extremely low, however C value is 0.15.

Materials P and PC sol fractions contain HTPB 
chains. Combination of absence of plasticizer and 
cross-linking of HTPB molecules (for material PC 
only) limits the mobility and causes friction between 
polymer chains. Loss tangent values are respective-
ley 0.29 and 0.37 (Table 3). Material PD contains 
HTPB molecules and plasticizer. Although the 
role of plasti-cizer is to diminish friction between 
chains, it seems the quantity introduced is not suf-
ficient to stop the phenomenon since loss tangent 
value is still 0.33. Finally, material I sol fraction 
represents 6.8%wt of the composite (Table 1) and 
its composition is similar to material PD sol frac-
tion. Consequently C equals 0.54.

5.3 Prestrained DMA—nonlinearity threshold

The threshold is an indication of the macroscopic 
state of deformation which has to be reached to 
engage the nonlinear mechanism. The first point 
is the extremely low threshold values at which non-
linear effects appear. Indeed, high filler content 
leads to high strain amplification (Mullins 1969). 
The same type of nonlinearity has been discussed 
in carbon black filled rubber systems at a threshold 
depending on the filler volume fraction (Meinecke 
and Maksin 1981).

The threshold value depends on filler content 
and extensibility of the polymer network. Maxi-
mum extensibility of the network is supposed to 
be reached at the threshold, explaining the com-
plex modulus increase beyond this value. Since, 
in this study, all materials have the same polymer 
network, the sol fraction composition appears to 
influence the threshold.

First, material PC thresholds εt
e  and εδ

t  are very 
distant, respectively 1.2% and 0.01% (Table 3). 
The high value of εt

e  and low value of εδ
t  are 

not explained yet. Material D exhibits thresholds 
for complex modulus εt

e  as well as for loss tan-
gent εδ

t  particularly superior to other materials, 
respectively 1.3% and 3.65%. This is a consequence 
of network swelling by plasticizer molecules. There 
is no friction within the network. Moreover, plasti-
cizer molecules being very mobile, they are able to 
move quickly according to network deformation.

Materials P, I and PD show that threshold value 
depends on sol fraction percentage and mobility. 

Indeed, the low mobility of HTPB molecules in 
material P makes them a constraint on the network 
and reduces the network maximum extensibility. 
Threshold is 0.1% for complex modulus and 0.13% 
for loss tangent. The more mobile the chains are, 
the less they take up space into the network. Mate-
rial I and PD thresholds should then be equal or 
superior to those found for material P. It is the 
case with one notable exception for material I εδ

t , 
which is 0.02%. Comparing the results (Fig. 3), it 
can be seen that the obtained low value is due to 
differences between model and experiment results 
at low static strain. Considering only experimental 
values, material I loss tangent threshold appears to 
be about 0.3%.

Furthermore, a lower sol fraction quantity lim-
its the constraint on the network and raises maxi-
mum extensibility. Hence material PD thresholds 
are higher than material I, respectively 0.5% and 
0.2% for εt

e  and 0.43% and 0.02% for εδ
t .

5.4 Prestrained DMA—nonlinearity slope

The supposed mechanism is that the polymer 
network reaches maximum extensibility at the 
threshold, although this extensibility depends on 
composition and quantity of sol fraction. Nonlin-
earity slopes pe and pδ give information about local 
deformation mechanisms beyond threshold and 
indicates that the sol fraction behaviour is part of 
the nonlinear mechanism.

The increase in complex modulus could be the 
consequence of maximum extensibility of polymer 
network due to strain amplification. However, loss 
tangent decrease suggests a diminution of friction 
between chains within the microstructure. It was 
shown in 5.2 that loss tangent value is a direct conse-
quence of sol fraction percentage and composition. 
Hence, although deformations are not transmitted 
to sol fraction, it suffers mobility loss as a result 
of static strain application. These considerations 
lead to the following supposed mechanism. Beyond 
threshold, the sol fraction, which is embedded in 
polymer network, is increasingly constrained and 
its molecular mobility is reduced. Sol fraction 
composition and percentage affect its ability to be 
hindered by the network. For instance, plasticizer 
allows the sol fraction to keep mobility in spite of 
increasing static strain whereas a lack of mobility 
in sol fraction in the absence of static strain makes 
the impact of deformation more limited.

Material P has the highest nonlinearity slope 
pe, 1800 MPa (Table 3), because of the absence 
of plasticizer and the relatively high molecular 
mobility of sol fraction HTPB chains, as discussed 
in 5.2. Materials PD and I exhibit a weaker slope 
pe, respectively 450 and 850 MPa. Plasticizer mol-
ecules in the formulation are limiting mobility loss. 
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The difference in slope between materials PD and 
I is attributed to variations in sol fraction quan-
tity, implying variations in network extensibility 
and sol fraction constraints. In material PC, the 
impact of static strain is restricted by reduced sol 
fraction mobility due to cross-linking of HTPB 
molecules. Consequently the slope pe, 420 MPa, 
is also weaker than material P slope. Eventually, 
material D contains a great quantity of plasticizer 
and the influence of static strain is weak. The slope 
pe is 8 MPa.

The results for pδ are less accurate. Slopes pδ of  
materials P, PC and PD are close and differences 
are within the model error, respectively –2.5, –2.6, 
–2.5 (Table 3). It is supposed that the low quantity 
of sol fraction prevents differentiation between the 
three materials regarding diminution rate of fric-
tion into the microstructure.

Comparing them with material I shows that, as 
discussed in 5.3, a large quantity of sol fraction 
constitutes an obstacle for the network. So while 
the slope pe increases with increasing sol fraction, 
the slope pδ decreases in the same case. pδ value is 
–2.1 for material I and represents the capacity of 
the network to constrain the sol fraction and hence 
decrease friction. The more sol fraction there is, the 
larger network deformation is needed to achieve 
sol fraction constraining.

Eventually, slopes pδ of  materials E and D are 
extremely low, respectively –0.5 and –0.4. This is 
easily explained by the absence of friction at low 
static strain. In addition, material E does not con-
tain any sol fraction and the loss tangent decrease 
is probably a consequence of network stretch-
ing and orientation. Material D sol fraction is 
too mobile to be significantly constrained in the 
explored strain range.

6 CONCLUSIONS

In this study, we discussed DSC and prestrained 
DMA experiments performed on solid propel-
lants with substituted sol fractions and proposed 
a mathematical functions to model the nonlinear 
behaviour. Although DSC results do not empha-
size sol fraction differences between materials con-
taining only HTPB molecules, prestrained DMA 
experiments are extremely sensitive to sol fraction 
composition. Results from DMA test and model-
ling allow to propose a local mechanism explaining 
the observed nonlinearity.

One can assume that at strain threshold, the 
polymer network reaches maximum extensibility, 
as previously (Mason 1959, Voet and Morawski 
1974, Davies et al. 1996). However, it is important 
to retain that the maximal extensibility depends 
on composition and quantity of sol fraction. 

Increasing chains mobility decreases their ability 
to form obstacle to network deformation.

Beyond the strain threshold, the sol fraction, 
which is embedded in the polymer network, is 
increasingly constrained and its molecular mobility 
reduces. The mobility loss rate is proportional to loss 
tangent non-linearity slope and depends on (i) filler 
fraction leading to strain amplification, (ii) polymer 
network since the cross-link density directly impacts 
sol fraction mobility, (iii) sol fraction composition 
and quantity as they affect its initial mobility and 
its ability to be hindered by the network.

While this local mechanism has not yet been 
proven, for example by using direct molecular 
mobility measurements, its ability to explain experi-
mental macroscopic behaviour is satisfying. A better 
understanding of these mechanisms could lead to a 
physically-based constitutive law in order to simu-
late dynamic behaviour of highly-filled elastomers.
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ABSTRACT: The present study deals with change in volume of stretched crystallizable cis-1,4 polyisoprene 
rubber. During deformation, natural rubber exhibits volume variation induced by both cavitation and stress-
induced crystallization. In this work, we propose to measure this volume variation by an original full-field 
measurement technique. The high resolution of this technique allows us to identify characteristic stretch 
ratios during mechanical cycles. More especially, the competition between cavitation and stress-induced 
crystallization is discussed related to stretch ratios at the beginning of crystallization and at the end of 
crystallite melting. Moreover, the addition of fillers significantly influences the volume variation response. 
They amplify the cavitation/decohesion phenomenon and allow the crystallization to begin at a lower stretch 
ratio. Results obtained with filled compound under cyclic loading conditions show that relative volume 
change is stabilized for a lower number of cycles than the stress-stretch response and that the crystallinity 
seems to be lower than for unfilled natural rubber. Finally, for the applied strain rate, the Mullins effect is 
found to have no influence on the value of stretch ratios at the beginning of crystallization and at the end 
of crystallite melting.

phenomena and to highlight the influence of 
fillers and repeated cycles on it. In the first sec-
tion, the experimental set-up is precisely detailed 
and in the second section the results obtained are 
presented by distinguishing filled and unfilled 
natural rubbers.

2 EXPERIMENTAL SET-UP

2.1 Materials and sample

All the samples contain 3 g stearic acid, 9.85 g zinc 
oxide, and 3 g sulphur, per 100 g of natural rubber. 
Some of them are filled with carbon black (34 g per 
100 g of natural rubber). The unfilled compound is 
heated to 160°C for 10 min, the filled compound is 
heated to 160°C for 7 min. In the following, unfilled 
and filled compounds will be referred to as NR 
and F-NR respectively. The degree of crosslink-
ing, characterized by the number ν of  moles of 
crosslinks per g, was estimated using the Mooney 
elastic coefficient C1, determined from experimen-
tal relations between tensile nominal stress π (force 
per unit of unstrained cross-sectional area) and 
stretch ratio λ:

π
λ λ λ2 2 1

2

( )−
= +− C

C  (1)

1 INTRODUCTION

Elastomeric materials are subjected to significant 
change in volume during their deformation. The 
first record of  this phenomenon dates back as far 
as 1884 in the works of  Joule (1884). The author 
observed that the specific gravity of  natural rubber 
decreased upon stretching it (about 0.15 per cent 
for a 100 per cent stretch). Later, while studying 
the nature of  the stress-strain curves for natural 
rubber containing different pigments in varying 
quantities, Schippel (1920) considered that possi-
bly when the rubber was sufficiently stretched that 
it might pull away from the particles of  pigment in 
their axes of  stress and cause vacua to be formed 
on both sides of  each particle and a consider-
able increase in the rubber body might therefore 
be observed. Moreover, at large deformations, 
the polymer chain network evolves and stress-
induced crystallization can occur (Feuchter 1925; 
Acken et al. 1932; Long et al. 1934; Thiessen and 
Wittstadt 1936). As fillers are added, the strain 
is amplified locally and the strain concentration 
in the filler vicinity is favorable to crystallization. 
These previous results seem to indicate that the 
occurrence and growth of  cavities and stress-
induced crystallization are the main phenomena 
involved in the deformation of  crystallizable rub-
bers. The aim of  the present study is therefore to 
investigate the competition between these two 
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From the simple kinetic theory of  rubber 
elasticity (Treloar 1975):

v
C
RT

= 2 1  (2)

where R is the gas constant and T is absolute tem-
perature. In the case of unfilled compound, ν is 
found to be equal to 11.3 mol/g × 10−5. To over-
come aging problems, samples are frozen at −18°C 
48 h after their molding. They are then thawed out 
24 hours before testing. The sample dimensions 
are 30 × 4 mm2 and 2 mm thick.

2.2 Loading conditions

Mechanical cycles are performed under prescribed 
uniaxial displacement with a 50 N Instron 5543 
testing machine. Hygrometry is equal to 34% 
and the temperature of the room is set at 23°C. 
The corresponding stretch ratio varies between 
1 and 4.7 for unfilled NR samples and between 
1 and 2.55 for filled NR samples. The strain rate is 
set to 1.3 min−1 for each test.

2.3 Volume variation measurement

The change in volume is deduced from the dis-
placement fields on the sample surface obtained by 
the digital image correlation technique. It consists 
in correlating the grey levels between two different 
images of a given zone. Each image corresponds to 
different stretch ratio levels. To improve the image 
contrast, suitable white paint is sprayed on the sur-
face before testing samples. This leads to a black 
and white random gray field. This optical tech-
nique allows us to reach a resolution of 0.1 pixel 
corresponding to 5.9 μm and a spatial resolution 
(defined as the smallest distance between two 
independent points) of 10 pixels corresponding 
to 590 μm. The software used for the correlation 
process is SeptD (Vacher et al. 1999).

Figure 1 presents the overall view of the optical 
setup. It consists in a cooled 12-bit dynamic Sen-
sicam camera connected to a personal computer 
in order to process image acquisition and data 
treatment with the SeptD software. A uniform 
light at the sample’s surface is ensured by lamps. 
The charge-coupled device (CCD) of the cam-
era has 1.4 ⋅ 106 joined pixels (1376 × 1040). The 
camera is fixed on a multidirectional adjustable 
support and the distance between the sample and 
the CCD matrix is about 60 cm. In this configura-
tion, an area of 4 × 81 mm2 is within shot of the 
digital camera. The size of this zone is sufficient to 
calculate global displacement slopes in both hori-
zontal and vertical directions.

The previous full-field measurements are then 
considered to calculate the volume variation of the 
samples at each step of loading. For each mechani-
cal cycle test, 36 and 28 images are stored for NR 
and F-NR respectively. The first image is the ref-
erence one and corresponds to the undeformed 
state. The other images correspond to successive 
deformed states. Because of the large deformations 
undergone by the material, the displacement fields 
for each deformed state cannot be calculated by 
correlating images from the reference image. Thus, 
the following method has been developed:

1.  two successive images are correlated and the 
relative displacement fields are calculated with 
SeptD software. Between two images, a dis-
placement of 3 mm is imposed by the moving 
grip. Then, relative displacement slopes in the 
horizontal and vertical directions are deter-
mined from Matlab software. In the present 
work, the material behavior is assumed to be 
transversely isotropic. This assumption has 
been checked from displacement calculated 
on the front and the side faces of the samples. 
So, relative stretch ratios and relative volume 
change can be calculated;

2.  finally, stretch ratios and volume variations are 
obtained by successive multiplications of the 
relative ones. This method has been validated 
by correlating the reference image and the last 
image of the cycle.

3 RESULTS

First, volume variation measurements are pre-
sented for NR during the first mechanical cycle. 
Second, similar measurements are carried out 
with F-NR to determine the influence of carbon 
black fillers on volume variation, i.e. on cavitation/
decohesion and on stress-induced crystallization. 

Instron 5543 
testing machine

12 bit dynamic
Sensicam camera

Measurement
zone

F-SBR and
F-NR samples

Moving grip

Fixed grip

Load cell

Figure 1. Overall view of the optical setup.
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Finally, volume variations in the filled compound 
obtained under three cycles are presented and dis-
cussed in relation with the well-known stress sof-
tening occurring during the first cycles in such a 
material (Mullins 1948). It should be noted that 
each result presented in the present section has 
been validated by two other tests.

3.1 Volume variation in NR

Figure 2(a) presents the stress-stretch response of 
the material obtained during the first mechanical 
cycle and Figure 2(b) the corresponding volume 
variation. Figure 2(b) shows that the relative vol-
ume variation does not exceed 6.10−2 during the 
cycle. Here, the curve obtained can be modeled by 
four segments ([OA], [AB], [BC] and [CD]). The 
competition between cavitation and stress-induced 
crystallization can be described in relation with 
each segment:

1.  segment [OA]: the volume increases due to the 
occurrence and growth of cavities. As already 
reported in the literature, cavitation takes 
place around zinc oxide particles and at the 
poles of metallic oxide inclusions (Le Cam 
et al. 2004). The higher the stretch level, the 
higher the size of cavities;

2.  segment [AB]: from λA, the volume begins to 
decrease. Even if cavities continue to appear 
and grow, another phenomenon tends to reduce 
the volume. In fact, volume decrease in NR is 
well-known to be due to the reorganization of 
the polymer chain under stress, namely stress-
induced crystallization (Flory and Rehner 
1943; Gent et al. 1998). This phenomenon is 
of the first order compared to cavitation;

3.  segment [BC]: during the unloading, the sam-
ple volume at a given stretch ratio is smaller 
than during loading. This can be due to either 
the difference between the kinetics of crys-
tallization and of  crystallite melting or the 
anelas-tic deformation of cavities. To inves-
tigate the deformation processus of cavities, 
volume change is measured over one cycle for 
which the maximum stretch ratio is still infe-
rior to λA, i.e. the stretch ratio at which crys-
tallization is initiated. Figure 3(a) presents the 
stress-stretch curve obtained. The fact that 
the hysteresis loop is very small indicates that 
no crystallization occurs in the bulk material 
(Trabelsi et al. 2002). Figure 3(b) shows that 
the volume change is the same for loading and 
unloading. This indicates that the nucleation, 
the growth and the closure of cavities can be 
considered as an elastic process at the macro-
scopic scale.

   The kinetics of crystallization and crystal-
lite melting can be studied by stopping the 
displacement of the moving grip during the 
mechanical cycle. Here, the moving grip is 
stopped for 1 min every 3 mm during the third 
mechanical cycle, i.e. a stabilized mechanical 
cycle. The results are presented in Figure 4. 
During the stops, stress relaxes for the load-
ing but does not increase for unloading. That 
proves that contrary to crystallization, crystal-
lite melting is instantaneous. Thus, crystalliza-
tion initiated at a given stretch ratio continues 
during the extension test at a greater stretch 
ratio. This is in good agreement with the 
recent works of Trabelsi et al. (2002). These 
results prove that the hysteresis loop obtained 
for volume change curves is only due to chain 
crystallization. To finish, point C corresponds 
to the melting of the last crystallites;

4.  segment [CD]: the volume slightly decreases 
when the cavities close.

To summarize the previous results, relative vol-
ume variation does not exceed 6 ⋅ 10−2 in NR. No 
significant residual volume change is observed. 
This indicates that the deformation of cavities can 
be considered as an elastic process for uniaxial 
tensile loading. This in turn shows that cavitation, 
i.e. volume increase, does not take part into the 

Figure 2. The first mechanical cycle in NR: (a) stress-
stretch response, (b) volume variation.
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residual stretch obtained after the first mechanical 
cycle. Competition between cavitation and crystal-
lization has been highlighted. More particularly, 
crystallization is a first order phenomenon and 
tends to reduce the volume of the material even 
though cavities continue to grow. The difference 
in kinetics between crystallization and crystallite 
melting, more particularly, the fact that, contrary 
to crystallization, crystallite melting is an instan-
taneous phenomenon, explains that for a given 
stretch ratio, the volume variation is lower during 
unloading than during loading. The elongation 
at the beginning of crystallization and at the end 
of crystallite melting are found to be equal to 4.2 
and 2, respectively.

3.2 Influence of fillers

The previous material has been filled with 34 g 
of carbon black (N326) per 100 g of natural rub-
ber. The sample’s geometry remains the same as 
for NR. One cycle is performed under prescribed 
displacement. The maximum stretch ratio reached 
during the cycle is equal to 2.55.

The stress-stretch response of the material 
obtained during the first mechanical cycle is pre-
sented in Figure 5(a). As expected, fillers increase 
the material rigidity. Figure 5(b) gives the cor-
responding volume variation. In this figure, the 
relative volume variation reaches 24 ⋅ 10−2 at a 
maximum stretch ratio equal to 2.55. As explained 
above, fillers amplify the cavitation and the deco-
hesion phenomena. They also amplify the strain 
(Trabelsi et al. 2003). The obtained volume varia-
tion curve can be modeled by five segments ([OA], 
[AB], [BG], [GC] and [CD]). Similarly to the previ-
ous result, characteristic stretch ratios (A and C) 
are observed in this curve and a new characteristic 
stretch ratio G is also observed. Thus, it is possi-
ble to describe the competition between cavitation 
and stress-induced crystallization related to each 
segment:

1.  segment [OA]: from zero deformation, the 
volume increases due to the occurring and 
growth of cavities;

Figure 3. The first mechanical cycle in NR for pre-
scribed stretch ratio inferior to A: (a) stress-stretch 
response, (b) volume variation.

Figure 4. Tensile test stopped 1 min every 3 mm.

Figure 5. The first mechanical cycle in F-NR: (a) stress-
stretch response, (b) volume variation.
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2.  segment [AB]: from A = 1.64 the curve slope 
is lower than for segment [OA]. In fact, even 
if  cavities grow continuously, cavitation is still 
a first order phenomenon due to the addition 
of fillers, crystallization begins and is oppo-
site to the volume increase. The fact that crys-
tallization occurs at a lower stretch ratio than 
for NR is explained by the presence of fillers 
which amplify the local deformation;

3.  segment [BG]: at the beginning of the unload-
ing, the volume decreases as the cavity size 
decreases and the melting of crystallites starts. 
Similarly to the unfilled compound, the crys-
tallinity level obtained during unloading is 
superior to the one obtained in loading for a 
given stretch ratio and the volume variation is 
inferior during unloading;

4.  segment [GC]: the volume of cavities contin-
ues to decrease, and crystallites continue to 
melt, but with a higher rate. Consequently, the 
rate of volume variation is inferior;

5.  segment [CD]: melting of crystallites is com-
plete, and the volume decrease is only due to 
cavities closing.

To summarize, the addition of fillers increases 
the volume variation. The fact that from λ = 1.64, 
the volume variation does not decrease as in NR 
indicates that, even if  the elongation at crystal-
lization is lower than in NR, the addition of fill-
ers tends to minimize the level of crystallinity for 
a given stretch ratio. This is the reason why the 

hysteresis loop is smaller in F-NR than in NR. This 
is in good agreement with the results of Trabelsi 
et al. (2003). Finally, the influence of the kinetics 
of stress-induced crystallization on volume varia-
tion in both NR and F-NR can be summarized by 
the diagram in Figure 6.

3.3 Volume variation during cyclic loadings

To investigate the volume variation obtained dur-
ing cyclic loading, three mechanical cycles were 
performed. Figure 7(a) presents the stress-stretch 
response and Figure 7(b) the corresponding volume 

Figure 6. Influence of the kinetics of stress-induced 
crystallization on volume variation in both NR and 
F-NR.

Figure 7. The first three mechanical cycles in F-NR: (a) 
stress-stretch response, (b) volume variation.

Figure 8. The third mechanical cycle presented in 
Figure 7(b).
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variation. The second figure shows that the highest 
of the relative volume change and of the hyster-
esis area are reached during the first cycle. During 
the second and the third cycles, these quantities 
are lower. Contrary to the stress-stretch response, 
the volume variation is stabilized after the first 
cycle. This result shows that cavitation and decohe-
sion are not preponderant phenomena involved in 
the Mullins effect (Mullins 1948). Moreover, from 
the third cycle presented in Figure 8, the same 
characteristic stretch ratios as those of the first 
cycle are observed: crystallization starts at A = 1.64 
and the last crystallites melt at λ = 1.44.

4 CONCLUSION

Volume variation measurements performed in both 
unfilled and filled natural rubber highlight the com-
petition between cavitation and stress-induced crys-
tallization. Results show that the relative volume 
change does not exceed 6 ⋅ 10−2 in NR whereas it 
reaches 24 ⋅ 10−2 in F-NR. This is explained by the 
fact that fillers, which concentrate stress, are favora-
ble to cavitation. The fact that no significant residual 
volume change is observed indicates that the mech-
anisms involved in volume variation are different 
from those that induce residual stretch. The full-field 
measurement method used in this study allows us to 
identify characteristic stretch ratios at the beginning 
of crystallization and at the end of crystallite melt-
ing. The difference in the kinetics of crystallization 
and crystallite melting explains the volume varia-
tion hysteresis loop observed during cyclic loading. 
The higher the hysteresis loop, the higher the dif-
ference in crystallization and melting kinetics. Here, 
fillers are found to minimize this difference. Finally, 
volume variation is stabilized after the second cycle 
and cyclic loadings do not influence the character-
istic stretch ratios. The present work leaves some 
issues of importance unanswered, one of which is 
the comparison between the volume variation in 
crystallizable and uncrystallizable rubbers, espe-
cially under cyclic loadings. Further work in this 
field is currently being envisaged by the authors of 
this paper.
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ABSTRACT: Despite numerous studies dealing with rubber durability prediction, information about 
fatigue behavior versus temperature are still scarce. This could be explained by the difficulty to perform 
reliable tests at different temperatures. In this study, relaxing Wöhler curves have been achieved for a 
standard carbon black filled NR with a skin temperature ranging from 10°C to 102°C. During the setting 
of the experimental protocol, a so-called “thermal accommodation” was observed during the first thermal 
cycle. Creep and relaxation levels are well above the classical expected ones if  the sample is clamped before 
starting the thermal cycles. Moreover, at high temperatures both thermal and ageing brittle failures have 
been observed. The upper limit of the temperature range was therefore defined according to the cyclic 
stiffness evolution to set apart the results disturbed by an ageing induced during the tests. A continuous 
decrease of the duration life with the increase of the test temperature was finally observed, which is not 
a classical result.

1 INTRODUCTION

1.1 Industrial motivation

Even if  the design of anti-vibration parts for auto-
motive industry becomes easier thanks to recent 
improvements in durability prediction (Ostoja-
Kuczynski et al. 2003, Ostoja-Kuczynski et al. 2005 
for example), some key issues still have to be faced. 
According to the authors, the highest priority to 
enhance the predictions reliability is to take into 
account the temperature influence on elastomers 
durability properties.

It is well-known that some of the anti-vibration 
parts on vehicle are exposed to ambient tempera-
ture (the temperature variation could go roughly 
from −20°C to +40°C). However, other parts are 
close to heat sources like engine or exhaust line. 
For that parts, the maximum continuous tempera-
ture can reach 80°C or more and this maximum 
temperature will even increase according to new 
European anti-pollution norms. Measuring the 
Wöhler curve of one compound at room tem-
perature is consequently no more sufficient. It is 
mandatory to evaluate its durability properties for 
various temperatures, without knowing in advance 
what will be the temperature profile indicated in 
the oncoming carmaker specifications.

One strategy could be to measure the Wöhler 
curves of the compound every 10°C going from 

0°C to 100°C or more. Another approach would be 
to understand the effect of the temperature on the 
elastomer durability properties. The present paper 
deals with this second proposal.

1.2 Scientific background

Till now, scientific papers dealing with the vari-
ation of durability with temperature are few (we 
focus here on small cracks initiations, not on crack 
propagation). However, some interesting results 
have to be highlighted.

As usual for rubber durability, we first have 
to report the great work of Cadwell et al. (1940). 
The authors performed cyclic tests with enforced 
displacements on dumbbell samples made out 
of natural rubber. On Figure 1, X-axis gives the 
rubber temperature (from approximately −30°C 
to +60°C). Y-axis is the ratio of the duration life 
measured for a given rubber temperature and the 
one at 37°C. The two curves in black stand for the 
dispersion observed by the authors using different 
“stocks”. Does it correspond to different storage 
conditions or different batches, it is not so clear. 
One can observe that the durability dependence 
versus temperature is not continuously decreas-
ing and presents a maximum. According to the 
authors, in region A (low temperatures), the 
duration life decreases with a slope depending on 
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the “freezing characteristics of stock”. One can 
assume that quiescent crystallisation without load-
ing (about 20°C) is involved in this process. The 
authors analysed region B (high temperatures) tak-
ing into account ageing of the rubber coupled with 
a pure temperature effect on duration life.

Other important results were proposed by 
Lake & Lindley (1964). The plots of Figure 2 are 
very similar to the ones of Cadwell et al. (1940). 
In addition to NR results (the crosses), SBR dura-
tion lives are also available (circles). The ratio 
between the maximum and the minimum duration 
lives for the tested temperature range (from about 
0°C to 100°C) is equal to 4 for the NR and 10.000 
for the SBR.

Figure 1. Rubber temperature effect on NR durability 
according to Cadwell et al. (1940).

Figure 2. Temperature influence on fatigue duration 
life according to Lake & Lindley (1964). Crosses stand 
for NR results and circles for SBR one.

Figure 3. NR crack tip observed by Le Cam et al. 
(2005) during fatigue crack propagation.

Figure 4. SBR crack tip observed by Le Cam et al. 
(2005) during fatigue crack propagation.

The “low” temperature sensitivity of the NR is 
linked to its ability to crystallize. As demonstrated 
by Le Cam et al. (2005), the strain induced crystalli-
zation generates hard ligaments in the crack tip (cf. 
Figure 3) that limit the crack propagation. In the 
contrary, for SBR (cf. Figure 4), there is no “matrix 
reinforcement”, and the durability properties are 
strongly linked to the polymer visco-elasticity.

Looking carefully at the NR results in Fig-
ure 2, we can also observe that the “duration life 
versus temperature” curve exhibits a maximum 
close to 30–40°C, which is similar to the results of 
Cadwell et al. (1940). Finally, a sudden decrease 
of the duration life is noticeable at 75°C. Lake & 
Lindley do not provide any explanations about 
these variations.

To sum-up, for high temperatures, heat ageing 
and strain induced crystallization (cf. Figure 5), 
coupled with the visco-elasticity of the polymer, 
seem to be among the main factors influencing the 
durability. For lower temperatures, the durability 
decreases with temperature even if  the matrix is 
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2.2 Test protocol and “thermal accommodation”

Starting the test campaign, a basic question arose: 
the samples have to be screwed on the device but 
“when?” and “how?”. Some surprising results were 
obtained which lead to achieve specific prelimi-
nary tests. In the current section, we will present 
some of the obtained results without being able to 
explain all of them.

The test procedure consists in going from 20°C 
to 100°C two times with pauses of about 20 min-
utes at various intermediate temperatures. The 
mechanical load is either displacement or force 
controlled, imposing constant or cyclic values:

− First of all, we have enforced a constant 0 N force 
and measured the displacement reaction during 
the two thermal cycles (cf. Figure 8). When the 
temperature increases, the global displacement 
also rises due to thermal dilatation. Using a 
thermal dilation coefficient of 200 ⋅ 10–6 K–1 for 
the rubber and 25 ⋅ 10–6 K–1 for the aluminum 
device, we were able to predict the measured glo-
bal dilation during both thermal cycles includ-
ing the device and the sample (cf. Figure 8);

less visco-elastic. This could be linked to quiescent 
crystallization but still has to be investigated.

2 EXPERIMENTAL CONTEXT

2.1 Test rig and sample

The compound, the test rig and the samples used 
in this study are the ones already mentioned 
in the former papers presented at the ECCRM 
(Ostoja-Kuczynski et al. 2003, Ostoja-Kuczynski 
et al. 2005). We will only remind here that the 
oven temperature ranges from 0°C to 100°C. The 
shapes of  the two kind of  samples used are pre-
sented in Figure 6.

A schematic outlook of the testing device is pro-
posed in Figure 7. During the tests, at least three 
temperatures are measured:

− The oven temperature;
− The rubber skin temperature using Infra-Red 

sensor pointing out at the sample skin;
− The device temperature using a classical 

thermal-sensor.

To take into account the thermal losses is cru-
cial for tests achieved under several temperatures. 
A special care was taken here to assert that the 
aluminum inserts glued to the rubber sample and 
clamped on the device have the same temperature 
than the oven.

Moreover, it is important to underline that, 
during cyclic tests, the sample temperature increases 
due to heat build-up. Hysteresic losses depend on 
test amplitude and rubber temperature and the 
temperature rise is also directly linked to the test 
frequency. In order to measure Wöhler curves with 
several fixed targeted rubber skin temperatures and 
for a large strain amplitude range, we have used 
FEA simulations to define the testing frequen-
cies (Le Chenadec 2007). We can therefore ensure 
that the skin temperature of the sample for a given 
Wöhler curve at a chosen rubber temperature, does 
not depend on the load level. It is also worth noting 
that the small cross-section of the chosen sample 
(cf. Figure 6-b) leads to a limited temperature gra-
dient from skin to core (less than 7°C).

Figure 5. Stress and crystallinity ratio versus elonga-
tion at various temperatures for an unfilled NR (Marchal 
2006).

Figure 7. Schematic outlook of the testing device.

a) b)
30 mm 30 mm

Figure 6. Test samples used in the present study.
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− The same tests were performed with a positive 
and a negative force preloads (cf. Figure 9). 
During the first thermal cycle with a positive 
preload, we have observed a very important 
creep and then a “thermal inversion” (i.e. the 
thermal dilatation coefficient switched to a neg-
ative value). The second thermal cycle provides 
a much more stable evolution of the displace-
ment (i.e. at the end of the second thermal cycle, 
we nearly recover the measured displacement 
at the beginning of this cycle). First of all, we 
conclude that, both for compressive and tensile 
conditions, a “thermal accommodation” during 
the first thermal cycle arises—with the positive 
preload, the reaction displacement is multiplied 
by 2 in less than 6 hours—that can not only be 
explained by classical visco-elasticity. Secondly, 
when the displacement is high enough, the 
expected classical thermal inversion is clearly 
visible;

− Similar tests were performed with enforced 
positive, null and negative displacements (cf. 
Figure 10). Load levels were chosen to ensure 
that the displacements were equivalent to the 
ones used in the previous tests at the beginning 

of the first thermal cycle. Once again, we observe 
an important relaxation step during the first 
thermal cycle. The second one is more stable, 
highlighting, there again, a “thermal accommo-
dation”. During these tests, the enforced dis-
placements were not high enough to reach the 
thermal inversion elongation;

− The level of variation of the force/displacement 
was so surprising with constant preload that we 
have performed similar tests with cyclic loadings 
(both repeated and alternated tests were con-
ducted). We can notice that the cyclic “thermal 
accommodation” level is well below the static 
one with enforced forces (Figure 11) or displace-
ments (Figure 12).

All these results obtained with a fatigue device 
have been confirmed using TMA apparatus, so 
that we can say the Gough-Joule effect is evidenced 
but only after a “first thermal accommodation” 
which level depends on the kind of loading (static, 
repeated, alternated…). For us, it is an important 
issue that has to be explained.

Moreover, using the TMA apparatus, the 
thermal dilatation coefficient was measured as 
a function of the preload both in tension and in 
compression (cf. Figure 13). It is important to 
note that this thermal dilatation coefficient is the 
one measured during the second thermal cycle, 
i.e. after “thermal accommodation”. Our results 
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are conformed to classical ones showing that, at a 
preload of about 10%, the thermal dilatation coef-
ficient becomes negative.

Regarding the present study, it was decided to 
let the sample unscrewed during 2 hours in the 
oven at the testing temperature before clamping it. 
It was then checked that there was no unexpected 
evolution of the force during the cyclic tests.

3 TEST RESULTS ANALYSIS

3.1 Temperature range

Based on this preliminary study on both the test 
rig and the test procedure, the aimed temperature 
range for the skin sample was set to [10°C; 102°C]. 
Frequency was then used as a tuning parameter to 
balance heat build-up and test duration.

3.2 Failure surface analysis

Before talking about crack initiation results (depend-
ing on the local skin temperature), it must be men-
tioned that the shape of the fracture surface depends 
on temperature (cf. Figure 14).

As the temperature increases, brittle failure zones 
can be observed on the failure surface (increas-
ing areas with a low rugosity shown on Figure 14). 
These zones can be related to the failure history 
which exhibits two steps (cf. Figure 15): first a clas-
sical mechanical initiation and propagation step, giv-
ing a failure surface with a roughness equivalent or 
smaller than the one at room temperature. During 
that stage, the sample stiffness regularly and con-
tinuously decreases (combination of visco-elasticity, 
damage cumulation and crack growth). Then, in a 
second stage, the sample breaks in one cycle and 
the associated zone of the failure surface is smooth. 
When the temperature increases, this brittle failure 
appears sooner and the size of the smooth area 
increases. For the studied material, brittle failures 
appear for skin temperatures higher then approx-
imatively 83°C. However, the crack tip temperature 
has to be accurately evaluated in order to define this 
transition temperature (this is a still on-going work).
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Figure 13. Thermal dilatation coefficient versus strain 
obtained after a first thermal accommodation cycle.

Increasing skin temperature

Figure 14. Failed surface as a function of the skin tem-
perature during fatigue test in the studied temperature 
range.

0 10 000 20 000 30 000
Cycles

Fo
rc

e

Figure 15. Evolution of the reaction force during high 
temperature fatigue test (102°C) highlighting “thermal 
brittle failure” after a mechanical propagation stage.

Figure 16. Failed surface for a temperature of 120°C, 
i.e. higher than the studied temperature range.
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Figure 17. Reaction force evolution during a very 
high temperature fatigue test (120°C) highlighting “age-
ing brittle failure” preceding a mechanical propagation 
stage.
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When performing tests out of the previous 
temperature range (using another test device), a 
new type of failure was observed (cf. Figure 16). 
Before any mechanical propagation, a brittle fail-
ure appears and the corresponding failed area is 
a smooth ring located at the skin of the sample 
(cf. Figure 17). In that precise case, we can assume 
that the heat ageing during the test is so important 
that it drives the ageing of the sample cross-section 
threw the so-called D.L.O. (Diffusion Limited 
Oxygen) effect. It leads the skin to become so brit-
tle that it breaks after some cycles.

3.3 Heat ageing during the tests

It is well known that heat ageing can be detected 
for NR compounds by a stiffness increase along the 
test. So, we have chosen to follow the stiffness dur-
ing cyclic test ignoring the two hours spent in the 
oven before starting the test. For our analysis we 
used the full range stiffness, dividing the measured 
force range by the enforced displacement range.

As demonstrated in Figure 18, for the highest 
skin temperature tested, the cyclic stiffness increases 

during the fatigue test and we can assume that our 
rubber ages during the test. This is not the case (or 
less visible) at lowest temperatures.

3.4 Measured Wöhler curves

Let’s see now how the relaxing (R = 0) Wöhler 
curves for the tested compound are modified by 
the temperature, measured at the skin of the sam-
ple (cf. Figure 19).

First of all, the Wöhler curve measured at 102°C 
is quite clearly far from the others. This can be 
explained by the previously mentioned heat ageing 
during test that weakens the NR compound.

The Wöhler curve measured at 10°C is also far 
from the others demonstrating a higher resistance 
of the compound at low temperatures. This is not 
what have been observed by Cadwell et al. (1940) or 
Lake & Lindley (1964), but is expected if  we think 
about the reinforcement due to the strain induced 
crystallization.

The plots of the duration life and of the Wöhlers 
curves slopes versus the skin temperature of the 
sample both confirm that (cf. Figures 20 & 21):

− Above a threshold temperature, the material 
becomes weaker, and we assume that this is due 
to thermal ageing;
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Figure 18. Normalized cyclic stiffness versus the number 
of cycles during a fatigue test with a skin temperature of 
102°C.

Figure 19. Measured strain Wöhler curves (R = 0) for 
different temperatures. Doted line corresponds to 10°C. 
Dashed ones correspond to 30°C, 44°C, 62°C and 83°C. 
Finally, the black one corresponds to 102°C.
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− Below another threshold temperature, the mate-
rial becomes stronger (which is different from 
previous results of the literature) due to strain 
induced crystallization.

3.5 Durability scattering

Another approach to visualize the effect of the 
heat ageing during fatigue test consists in focusing 
on the durability scattering. Figure 22 shows that, 
at 102°C, the variation coefficient (i.e. standard 
deviation divided by mean value) grows in an unex-
pected manner unless heat ageing is involved.

4 CONCLUSION

To conclude about this on-going study, authors 
would like to mention that:

1 Performing fatigue test at various temperatures 
requires numerous cautions, among which the 
“thermal accommodation” presented here is not 
the least;

2 Heat ageing can disturb fatigue test at high tem-
peratures so that special care have to be used to 
restrict the studied temperature range in order 
to dissociate the pure thermal effect from the 
thermal ageing;

3 At low temperatures, it seems that there is 
a divergence between the already published 
results and the ones proposed here. Room 
temperature (about 20°C) corresponds to the 
melt temperature of NR crystals without any 
preload. We can suppose that below this tem-
perature, the fatigue behavior will be enhanced. 
It corresponds to our experimental results but 
not to the former ones. Maybe experimental 
protocol could explain these variations but it 
still has to be demonstrated.

Authors would like to thank Renault and PSA-
Peugeot-Citroën for the participation to this study.
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ABSTRACT: Cyclic tensile stress-strain data for a cross-linked EPDM rubber in uniaxial, biaxial and 
constant width modes of deformation are presented. After extraction of the rubbery and viscous contri-
butions, the rubbery data is modelled using the Edwards-Vilgis strain energy function with parameters 
evolving with the maximum stretch. It is found that the cross-link density reduces with increasing stretch, 
but the slip-link density is invariant. The viscous contribution is a strong function of stretch but invariant 
of maximum stretch. This presents an opportunity to model the behavior using a strain energy function 
with evolving parameters in parallel with viscoelastic anisotropic flow units.

1 INTRODUCTION

Filled elastomers are increasingly important indus-
trial materials because of their unique flexibility 
and damping properties, and are used in a range of 
applications such as seals, dampers, transmission 
belts and automotive tyres. They exhibit a range of 
complex phenomena when subjected to repeated 
loadings: (1) the stress-softening phenomenon 
known as the Mullins effect (Mullins & Tobin 1957); 
(2) complex pre-conditioning dependent viscoelas-
ticity; and (3) a small degree of permanent set.

The generation of constitutive models able to 
accurately predict the mechanical response of such 
components forms an essential part of their design, 
and can also contribute to the understanding of 
the mechanisms underpinning such a response.

In this paper we present a series of experimen-
tal observations aimed at shedding light on these 
phenomena. We propose a means of separating 
the rubbery and viscous contributions to the stress. 
The rubbery stress is then used to identify the evo-
lution of a set of strain energy function parameters 
with the amount of pre-deformation. The viscous 
stress can then be examined, and is found to be 
both a unique function of stretch in the rubber, 
and invariant of pre-deformation.

These findings are aimed at supporting the 
implementation and validation of a new constitutive 

model able to capture the complex multiaxial 
viscoelastic deformation of this type of elastomers.

2 EXPERIMENTAL METHOD

The material studied in this work is an accelerated 
sulphur cross-linked carbon-black filled (50phr) 
oil extended ethylene-propylene-diene (EPDM) 
rubber. Sheets of material approximately 0.5 mm 
thick were compression-moulded for 13 minutes at 
160°C using a heated press. Specimens for tensile 
testing were cut from the sheet using a dog-bone 
cutter. 70 mm square specimens were cut from 
the sheet for biaxial testing.

Uniaxial tensile testing was performed in an 
In-stron tensile testing machine fitted with a coun-
terbalanced elastomer extensometer, at room tem-
perature at a constant true strain rate of 0.03 s–1, as 
measured in the gauge length by the extensometer, 
imposed using a feedback loop.

Biaxial testing was performed using the Oxford 
flexible biaxial stretcher (Buckley & Turner 1999) 
at room temperature at a constant nominal strain 
rate of 0.03 s–1. Strain was measured by non-
contact video tracking of small markers placed 
near the centre of the specimen.

All tests consisted of 4 load-unload cycles, load-
ing to a specified maximum stretch, and unloading 
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to a tensile force of 0.1 N to avoid buckling. 
In uniaxial deformation experiments a range of 
10 maximum stretches from λ = 1.5 to λ = 6 were 
used. A range of grip displacements corresponding 
to maximum stretches from λ = 1.5 to λ = 2.25 were 
used in equibiaxial deformation, and from λ = 1.5 
to λ = 3 in constant width deformation, Represent-
ative stress-strain curves for the cycles in the three 
modes of deformation are shown in Figures 1–3.

3 ANALYSIS

The premise for this work is provided by the ideas 
of Haward and Thackray (1968) for the model-
ling of polymeric materials. Two contributions are 
ascribed to the stress, arising from: (a) an under-
lying entropy-elastic network with connectivity 
provided by chemical cross-links, including bond-
ing at the rubber and carbon-black interface, and 
entanglements; and (b) viscoelastic inter-molecular 
interactions. In the case of the simple deformation 
sequences presented here the behaviour of the net-
work is assumed to depend only on the maximum 
stretch previously reached. Therefore unloading-
reloading loops following the first loading to the 
maximum stretch can be used to determine sepa-
rately the contributions from (a) the network, and 
(b) viscoelasticity, following a procedure similar 
to that suggested previously by Prisaca-riu et al. 
(2005).

The network stress was calculated as the mean 
of the unloading and reloading stress at a given 
strain, and the viscous stress as half  of the differ-
ence between the unloading and reloading stress, 
as illustrated in Figure 4. In order to remain clear 
of viscoelastic transients, data from the first and 
final 0.33 strain of any loading and unloading 
cycle is not used for this purpose.

The physically based Edwards-Vilgis (EV) strain 
energy function (Edwards & Vilgis 1986) was used 

Figure 1. Representative uniaxial stress-strain cycles to 
different levels of pre-deformation.
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Figure 2. Representative equibiaxial stress-strain cycles 
to different levels of pre-deformation.
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Figure 3. Representative constant width stress-strain 
cycles to different levels of pre-deformation.

Stretch

1.0 1.5 2.0 2.5 3.0

T
ru

e 
S

tr
es

s 
(M

P
a)

0

2

4

6

8

10 Pre-deformation
First loop
Rubbery contribution
Viscous contribution

Transient
data

Transient
data

Data
used in
fitting

Figure 4. Extraction of a rubbery contribution and a 
viscous contribution from a stress-strain loop.
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to model the rubbery contribution, and was imple-
mented in Matlab. An in-house minimisation rou-
tine was used to find the best set of EV parameters 
for the rubbery stress obtained from each loop, 
minimising the rms error in stress. The parameters 
are Ns and Nc, the number densities of slip-links 
and cross-links respectively, α, a measure of finite 
chain extensibility, and η, the slip-link mobility 
factor. In order to account for the relatively small 
amount of permanent set εset exhibited by this 
material, the permanent set stretch λset = 1 + εset 
is used as a further parameter. Thus the effective 
stretch λeff seen by the material after permanent set 
can be related to the measured stretch λ through ln 
λ = ln λset + ln λeff.

4 RESULTS

For the case of uniaxial deformation, the set of 
fitted parameters Ns and Nc, α and η, and εset are 
shown in Figures 5–7 respectively as functions of the 
maximum pre-deformation. Figures 8–9 and 10–11 
illustrate parameters Ns and Nc, and α and η, for 
equibiaxial and constant width deformation respec-
tively. The amount of permanent set under equibi-
axial and constant width deformations (not shown) 
was small. Remarkably, the rms error in stress 
from the fitting routine remains below 0.5% of the 
maximum stress in all the uniaxial loops, and below 
1.5% of the maximum stress in all the equibiaxial 
and constant width loops, indicating that the EV 
function is appropriate for capturing the particular 
shape of the rubbery part of these curves.

The evolution of the rubbery parameters with 
increasing number of cycles was investigated 
experimentally in all three modes of deformation 
for up to 100 cycles (not shown). Although there 
is a limited amount of evolution in the parameters 
with cycle number, this is small relative to the evolu-
tion of the same parameters with pre-deformation. 
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In the first phase of this work it is not our intention 
to investigate this evolution. Thus we pursue with 
the assumption that the above parameters depend 
only on the maximum stretch previously reached.

The strain rate dependence of the response was 
also investigated experimentally in all three modes 
of deformation at rates from 0.01 to 0.1 s–1 (not 
shown). The effect of strain rate on the rubbery 
parameters was also found to be small relative to 
the other effects.

5 DISCUSSION

5.1 Entropic contribution

As can be seen from Figure 5 for uniaxial defor-
mation, although the slip-link density as found 
from fitting remains approximately constant with 
pre-deformation, the cross-link density appears 
to decrease. At the same time, Figure 6 shows 
that the chain inextensibility parameter α is also 
decreasing. α is related to the limiting (asymptotic) 
value of the stretch λmax in the EV model through 
α = 1/λmax. A possible physical interpretation is 
that, with increasing pre-deformation, some poly-
mer chains are becoming too tightly stretched, 
and breaking loose from bonding at the polymer 
carbon-black interface. Thus, there is a reduction 
in apparent cross-link density, and chains can 
reach a larger limiting λmax. However, the entangle-
ments (represented by slip-links) are a topological 
feature of the network and therefore their number 
density is unaffected by strain.

In the equibiaxial and constant width deforma-
tion modes, there is evidence of a similar decrease 
in the value of α (Figs. 9, 11), but the deformations 
are not large enough to be able to discern with any 
certainty whether the same trends are present in 
Ns and Nc (Figs. 8, 10).

The presence of carbon black in a system such 
as the EPDM used here leads to a strain amplifica-
tion in the rubber network. This is at present not 
specifically accounted for in the parameters Ns, Nc, 
α, η and λset.

The entropy-elastic part of the stress, evaluated 
from the fitted parameters, is shown in Figure 12 
as a function of the effective stretch seen by the 
rubber (corrected for permanent set) for all 10 
uniaxial tests.

5.2 Viscoelastic contribution

The viscoelastic contribution to the stress was 
obtained from all the loops using the procedure 
described above. Figure 13 shows the computed 
viscosity from the first unloading-reloading loop 
(away from transients) as a function of the effective 
stretch seen by the rubber, for all 10 uniaxial tests 
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to different degrees of pre-deformation. Figures 14 
and 15 show the computed viscosities from the first 
unloading-reloading loop for the four equibiaxial 
and four constant width tests respectively. Although 
there is considerable noise in the data due to the 
small values of viscous stress relative to the rubbery 
stress, after due correction for permanent set there 
appears to be a unique viscosity ‘master curve’ in 
each mode of deformation. The viscosity is invari-
ant of the levels of pre-deformation, but in all cases 
increases with stretch in the rubbery network. This 
increase is particularly noticeable in the uniaxial 
data where it changes from ∼5 MPa s at low stretch 
to beyond 200 MPa s at large stretches. This implies 
that the viscoelastic contribution can be repre-
sented as a unique function of strain in the rubbery 
network, but is independent of pre-deformation 
and rubbery network parameter evolution.

A possible explanation for this observation is 
that the viscous contribution arises from inter-
molecular interactions that are unaffected by the 
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breakdown in polymer-filler bonding, but where 
the flow units are intrinsically anisotropic. With 
increasing strain, the combined effect of such flow 
units becomes increasingly anisotropic as a result of 
molecular alignment at a local (sub-entanglement) 
length scale. One approach to incorporate this 
phenomenon is to model the flow as a spectrum of 
units that are intrinsically anisotropic, and whose 
anisotropy evolves with network stretch (Buckley 
2006).

It must be emphasized that the ‘master curve’ 
can be obtained only after accounting for the 
permanent set in the rubbery stress, which is not 
a direct experimental measurement, but obtained 
as a parameter in the fitting of the EV strain 
energy function to the rubbery stress. Although 
the viscosity is strictly speaking pre-conditioning 
dependent, this is only because of the dependence 
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of permanent set on pre-deformation. Once the 
permanent set is accounted for, the viscosity 
reduces to a ‘master curve’ and becomes independ-
ent of pre-deformation.

5.3 Constitutive model development

The experimental findings presented here offer a 
range of insights into the necessary features of a 
constitutive model able to cope with combined 
multi-axial viscoelastivity and the Mullins effect in 
filled elastomers.

The main features to be accounted for are: 
(1) a small, but not insignificant amount of per-
manent set as a result of pre-deformation; (2) an 
underlying rubbery network whose parameters 
evolve with increasing pre-deformation (the Mul-
lins effect); and (3) a viscosity that is invariant of 
pre-deformation once permanent set is accounted 
for, but that exhibits a strong dependence on cur-
rent network stretch.

A range of phenomenological and microstruc-
tural models have been proposed to describe the 
Mullins effect (see for example Marckmann et al. 
2002, Hor-gan et al. 2004, Qi & Boyce 2004), and 
some models have included viscoelastic effects 
(Bergstrom & Boyce 2000), but to our knowl-
edge no model presently captures the complex 
pre-deformation invariant but strongly stretch-
dependent viscosity.

Incorporating the anisotropic flow mdel pro-
posed previously by Buckley (2006) to account for 
strain hardening phenomena of glassy polymers 
near the glass transition into a constitutive model 
for filled elastomers presents a possible means of 
capturing this phenomenon.

Further developments of a constitutive model 
should account for the anisotropic nature of the 
Mullins effect, the small strain rate dependence, 
and the evolution of network parameters with 
increasing number of cycles.

6 CONCLUSIONS

This study has presented cyclic tensile stress-
strain curves for a cross-linked carbon-black filled 
EPDM rubber in three modes of deformation: 
uniaxial, equibiaxial and constant width. A tech-
nique has been proposed for extracting the rubbery 
and viscous contributions to the stress and their 
dependence on the extent of pre-deformation. The 
rubbery contribution from each loop was fitted to 
the Edwards-Vilgis strain energy function, and the 
evolution of the strain energy function parameters 
determined.

In uniaxial deformation this procedure revealed 
that the apparent cross-link density reduced with 

increasing pre-deformation, but that the slip-link, or 
entanglement density was constant. In equibiaxial 
and constant width deformation the results are not 
inconsistent with the findings under uniaxial defor-
mation. The finite extensibility of the network was 
found to increase with increasing pre-deformation 
in all three modes of deformation.

The viscoelastic contribution to the stress was 
extracted using the same procedure. In each mode 
of deformation the viscosity was found to be invar-
iant with respect to the amount of pre-deformation 
once permanent set is accounted for, but to increase 
with increasing stretch in the rubber, possibly 
revealing anisotropy of flow.
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ABSTRACT: The present study deals with the mechanical characterization of elastomeric materials. 
Classically, three homogeneous tests are considered to identify constitutive parameters, namely Uniaxial 
Tensile (UT), Pure Shear (PS) and Equibiaxial Tensile (ET) tests. Here, a new method is proposed: 
it consists in inducing the three previous homogeneous tests from only one heterogeneous mechanical test. 
For this purpose, a conventional tensile machine is used and a new apparatus is designed to be adapted on 
the machine. The test-induced heterogeneity is discussed related to two criteria based on the existence of 
UT, PS and ET and on the distribution of the maximal principal elongation at each material points of the 
sample surface. Experimentally, kinematic fields are provided on the sample surface by an image correla-
tion code suitable for large deformations. Finally, an inverse technique, so-called Virtual Field Method, is 
used to identify the material parameters in the framework of the Mooney hyperelasticity.

Kinematic fields are provided by a Digital Image 
Correlation software suitable for large deforma-
tions: CorreliLMT (Hild 2002). Constitutive param-
eters are identified using an inverse method called 
the virtual field method.

2 CHOICE OF THE SAMPLE GEOMETRY 
AND THE LOADING CONDITIONS

In this section, a heterogeneous test that com-
bines UT, PS and ET from a conventional tensile 
machine is presented. A numerical approach is 
used to choose the sample geometry and the load-
ing conditions in order to generate sufficient het-
erogeneity of the kinematic fields. Criteria used 
to estimate Test-Induced Heterogenity (TIH) are 
defined and the chosen sample geometry and load-
ing conditions are presented.

2.1 Test-induced heterogenity

We analyse the heterogenity induced by the test 
using the I1 – I2 diagram where I1 and I2 are the first 
and second invariants of the right Cauchy-Green 
tensor C (Holzapfel 2000). This diagram allow 
us to determine the loading condition applied at 

1 INTRODUCTION

The behaviour of rubber-like materials is generally 
modelled in the framework of hyperelasticity. 
Numerous constitutive relations are available in 
the literature (Marckmann and Verron 2006). 
The identification of the material parameters that 
govern the constitutive equations is still a dif-
ficult task. Classically, three homogeneous tests 
are considered to identify constitutive parameters, 
namely uniaxial tensile (UT), pure shear (PS) and 
equibiaxial tensile (ET) (Ward and Hadley 1993), 
(Sasso et al. 2008) and a trade-off  between the dif-
ferent sets of values obtained for each type of test 
must be found. These tests are based on the strong 
assumption of homogeneity of the kinematic fields 
induced by each test.

In the present work, a new approach based on 
a heterogeneous test that simultaneously generates 
the three types of strain states abovementioned is 
pro-posed. For that purpose, the authors propose 
to design and adapt a new apparatus on a conven-
tional uniaxial tensile machine that generates a het-
erogeneous strain state. The sample geometry and 
the loading conditions are defined beforehand by 
numerical investigations. Two criteria are defined 
to discuss the heterogeneity induced by the test. 
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each material point of the kinematic fields. In this 
diagram (see Fig. 1), the three curves UT, PS and 
ET are plotted. The localization of any point in 
this diagram indicates the corresponding loading 
condition: it can be only one of the three previous 
loadings or a combination of two of them.

In order to characterize TIH, we propose two 
criteria. Firstly, the test has to generate the three 
homogeneous loading conditions, namely UT, 
PS and ET. Secondly, for each loading condition, 
i.e. UT, PS and ET, a distribution of the maximal 
principal stretch ratio (defined as the ratio between 
actual and initial lengths) has to be observed and 
must be sufficiently large considering the chosen 
constitutive equations and its field of validity. In 
the following, these criteria are used to choose 
both sample geometry and loading conditions.

2.2 Sample geometry and loading conditions

In the present study, a uniaxial tensile machine 
is used. In order to generate heterogeneity in the 
kinelatic fields, a change in geometry (for instance 
by adding notches or holes) could be considered. 
However, because of large deformations, the strain 
state obtain in an elastomer tends to be homogene-
ous, i.e. TU, whatever the geometry. So, numerical 
investigations are carried out to choose both sam-
ple geometry and biaxial loading conditions that 
generate a high heterogeneity level. The sample 
geometry and the loading conditions applied are 
presented in Figure 2. The sample geometry, which 
corresponds to a three branch sample, is 2 mm 
thick, 60 mm high and the branches are 20 mm in 
width. The bottom branch is clamped, the loading 
is carried out by applying prescribed displacement 
following the axis of the two other perpendicular 
branches.

A Finite Element Analysis is performed using 
the Ansys 10.0 package to discuss the TIH. Ele-
ment type plane 182 is used to ensure the incom-
pressibility assumption. The mesh is composed of 
640 elements. For the sake of simplicity, we have 
chosen the Mooney strain energy density (Mooney 
1940):

W C I C I= − + −1 1 2 23 3( ) ( ) (1)

where C1 and C2 are the material parameters. Their 
values are chosen equal to 0.4 MPa and 0.04 MPa, 
respectively, which are typical values for carbon 
black filled natural rubber.

Figure 3 shows that in the (I1 – I2) diagram, 
the three homogeneous tests are satisfactorily 
represented and distributed. The corresponding 
maximum principal elongation (see Fig. 4) of each 
loading case at the sample surface is deduced from 
Figure 3.

Global stretch ratios (defined as the ratio 
between actual and initial sample lengths) of 1.71 
and 1.42 are prescribed following the horizontal 
and the vertical axes, respectively. The equiva-
lent maximum stretch ratio is higher for UT than 

Figure 1. Three basic loading cases.

Figure 2. Sample geometry and loading conditions.

Figure 3. Loading cases in the (I1 – I2) plane.
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for PS and ET. This is explained by the fact that 
PS and ET are obtained by the extension of the 
branches. From Figure 4, one can conclude that 
each loading case is satisfactorily represented in 
terms of distribution of the maximum principal 
stretch ratio.

3 EXPERIMENTAL SET-UP

The numerical configuration is now used to per-
form the test with a conventional uniaxial testing 
machine. To prescribe a biaxial loading condition, 
a new apparatus is designed. It is presented in the 
first part of this section. Then, the measurement 
of the displacement fields is precisely described.

3.1 New apparatus

The testing machine, referred to as MTS 858 
Elastomer Test System, has a loading capacity of 
15 kN. The loading cell is 1 kN capacity. A new 
tensile apparatus is designed to be adapted to the 
uniaxial tensile machine. It allows to generate ET 
at the sample centre. This apparatus is mounted on 
the left testing machine column (see Fig. 5).

Figure 6 presents a picture of the apparatus. It is 
composed of four parts:

• part A allows the apparatus to be fixed on one 
of the two columns;

• part B is a grip in which the horizontal branch 
of the sample is fixed;

• part C corresponds to a helical slide that ensures 
the horizontal branch of the sample to be 
stretched;

• part D is a ruler used to measure the horizontal 
displacement of the grip.

In practise, the two vertical branches of the 
sample are fastened on the grips of the conventional 
testing machine, then the branch perpendicular to 
the previous ones is fastened on the apparatus grip.

3.2 Measurement of the kinematic fields

Digital Image Correlation (DIC) technique is 
used to measure the displacement fields at the 
sample surface. For that purpose, images are shot 
with a cooled 12-bit dynamic CCD camera with 
1376 × 1040 squared pixels and CORRELILMT 
software is used. The DIC technique is well-suited 
for measuring large strains and has already been 
used in the case of elastomeric materials (Chevalier 
et al. 2001). To determine the displacement field of 
a given image with respect to a reference image, one 
considers a set of sub-images (i.e., a square region 
that contains N × N pixels). This set is referred to 
as Zone of Interest (ZOI). A suitable correlation 
function is used to calculate the displacement of 
the centre of a given ZOI in two images captured 
at different stages of an experiment. In the present 
work, special attention is paid to the choice of the 
size of the ZOIs that define the region of inter-
est (ROI). Here, the size of the ZOI is equal to 
16 pixels with a shift of 16 pixels. This parameter 
characterises the measurement grid. To improve 
the image contrast, white paint is sprayed on the 
sample surface before testing.

Figure 4. Numerical TIH visualization: maximum value 
of the principal stretch ratio.

Figure 5. Experimental set-up.

Figure 6. Proposed apparatus.
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4 IDENTIFICATION OF THE MATERIAL 
PARAMETERS

In this section, we present the method used to iden-
tify the material parameters of a given model from 
one heterogeneous test. It must be emphasized that 
no closed-form solution generally exists for such 
a problem, thereby meaning that no simple rela-
tion between local measurements, load, specimen 
geometry and unknown parameters is available. 
Extracting constitutive parameters in this case is 
a major issue which must be tackled using relevant 
tools. We propose here to use the so-called Virtual 
Fields Method (VFM) which has recently be used 
for characterizing elastomeric materials within the 
framework of large deformations (Promma et al. 
2009).

The VFM relies on the Principle of Virtual 
Work (PVW) which can be regarded as the global 
equilibrium of the specimen under study or the 
weak form of the local equations of equilibrium 
(Dym and Shames 1973). In case of large deforma-
tions, assuming a plane state of stress and neglect-
ing body forces such as weight, the PVW can be 
written as follows:

Π Π: * ( . .). * * . .
S S

U
X

dS n U dl U K A
0 0

0 0∫ ∫
∂
∂

+ = ∀
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where Π is the first Piola-Kirchhoff stress tensor 
(PK1), the X s are the Lagrangian coordinates, U* 
is a kinematically admissible virtual field, S0 is the 
surface of the specimen in the initial configuration 
the boundary of S0 and n the unit vector perpen-
dicular to this boundary. Considering the Mooney 
strain energy density, one can express the stress 
components as functions of the actual strain com-
ponents. This leads to the following equation:
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where A and B are quantities depending on the 
components of the deformation gradient ten-
sor F. This equation is linear with respect to the 
unknown parameters C1 and C2. In the integrands 
above, there are two types of terms: A and B on 
one hand, ∂ ∂U X*  on the other hand. A and B 
are directly deduced from the full-field measure-
ments whereas ∂ ∂U X*  is derived from the virtual 
field U*. At this stage, the idea consists in writing 
the PVW with two different virtual fields U*. Since 
actual strain fields are heterogeneous, this leads 
to two independent equations where C1 and C2 

are unknown. They are obtained by inverting the 
linear system.

Choosing at best the two virtual fields is a key 
issue in the method. In the present case of large 
deformations and hyperelasticity, it has been 
decided to use the following heuristic method. 
A large number of virtual fields is first randomly 
generated. Then, the set of two virtual fields that 
leads to the best conditioning of the linear system 
(assessed with the condition number) is finally cho-
sen for identification purposes. Those two virtual 
fields provide parameters less sensitive to noisy 
data. In the present work, virtual fields have been 
defined piecewise (Toussaint et al. 2006) because 
of the particular shape of the specimen. Four sub-
regions are used to mesh the specimen because 
of its particular shape. The virtual displacement 
defined in each of the four sub-regions is described 
by polynomial shape functions multiplied by the 
virtual displacement of the nodes defining the 
corners of the sub-regions. These shape functions 
are similar to those employed in the finite element 
method. Figure 7 presents an example of opti-
mized initial fields used for identifying C1 and C2 
for the maximum global stretch ratios.

5 RESULTS

5.1 Experimental kinematic fields

The biaxial tensile test is carried out by prescrib-
ing a 25 mm displacement along both the x- and 
y- directions shown in Figure 2. The correspond-
ing global stretch ratios are 1.71 and 1.42 along the 
x- and y-directions, respectively. In order to avoid 
the well-known stress accommodation (Mullins 
1948; Meunier et al. 2008; Godin et al. 2009) 

Figure 7. Example of one optimized virtual fields (dot-
ted line) used for identifying C1 and C2. The maximum 
global stretch ratios is superimposed with the virtual 
mesh (solid line).
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over the first mechanical cycles, three cycles are 
first carried out with the same maximum stretch 
ratio, thereby partially stabilizing the mechanical 
response of the specimen. Images are stored for 
every 1 mm of prescribed displacement in both 
directions. The material considered here is a car-
bon black filled natural rubber. Its composition 
and some of its mechanical properties are given in 
Table 1.

A typical view of the horizontal and vertical dis-
placement fields obtained for the maximum pre-
scribed global stretch ratios is shown in Figure 8.

Differentiating these fields provides the four 
components of the displacement gradient. They 
are obtained by using a centered finite differences 
scheme. In the present case, 740 experimental points 
are processed. This number is close to the number 
of elements used for numerical simulations and 
makes it easier to compare numerical and experi-
mental TIH visualizations (see Figs. 3 and 9).

The states of strain of the three homogeneous 
tests (UT, PS and ET) are represented and the 
equivalent maximum stretch ratio is higher for UT 
than for PS and ET. Figure 10 presents the maxi-
mum principal stretch ratio for each ZOI.

Here, each loading case is satisfactorily repre-
sented in terms of maximum stretch ratio distri-
bution. With regard to the previous analysis and 
numerical prediction, the TIH satisfies the two 
criteria used to define a sufficient level of TIH. 
Some points are encircled in Figures 9 and 10. 
They correspond to points taht are located at the 
border of the sample i.e. to zones for which there 
are insufficient measurement points to obtain an 
efficient image correlation. To summarize, these 
experimental results are in good agreement with 
the numerical prediction in terms of TIH.

5.2 Identification results

Identification results are presented in Figure 11 
for each step of the loading. This step is equal to 
1 mm along both the x- and y- directions. C1 and 
C2 are calculated at each loading step. The global 
stretch ratio reported along the horizontal axis in 
Figure 11 is that prescribed along the y- direction.

Apart from stretch ratios inferior to 1.05, both 
C1 and C2 remain approximately constant while the 
global stretch ratio increases, thereby showing that 
the Mooney strain energy density presently used 
correctly describes the actual mechanical response 

Table 1. Material formulation (parts 
per hundred rubber) and mechanical 
properties.

Components NR

Rubber 100
Zinc oxide   9.85
Oil   3
Carbon black  34
Sulfur   3
Stearic acid   3
Antioxidant   2
Accelerators   4

Density   1.13
Shore A hardness  58
Stress at break (MPa)  22.9
Elongation at failure 635

Figure 8. Displacement fields.

Figure 9. Loading cases in the (I1 – I2) plane.

Figure 10. Experimental TIH visualization: maximum 
value of the principal stretch ratio.
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of the specimen. The mean values of C1 and C2 
deduced from these curves are 0.509 MPa and 
0.012 MPa, respectively. These values are accept-
able with regard to thermodynamic considerations 
(Ball 1977). It should be noted that only the loading 
steps corresponding to a global stretch ratio along 
the y- direction ranging between 1.05 and 1.42 are 
considered here. In fact, identifying C1 and C2 in 
the domain of low stretch ratio leads to unreliable 
results. This is explained by the fact that the mate-
rial parameters are not sufficiently activated in this 
domain. It should be noted that this observation is 
valid whatever the law considered.

6 CONCLUSION

The aim of the present paper is to propose an alter-
native to the classical method of identifying con-
stitutive parameters of rubber. For that purpose, 
only one heterogeneous test is performed. Sample 
geometry and loading conditions are chosen using 
numerical simulations in order to involve UT, PS 
and ET at the sample surface. The test-induced 
heterogeneity is discussed related to two criteria. 
To perform the heterogeneous test, a new appara-
tus is designed and is adapted on a conventional 
tensile machine. Displacement fields are measured 
on the specimen surface using the DIC technique.

Unknown constitutive parameters are then 
deduced from these fields using a suitable iden-
tification procedure: the Virtual Fields Method 
extended to hyperelasticity. Results obtained are in 
agreement with theoretical and numerical expecta-
tions, thus confirming the feasibility of the present 
approach. An interesting perspective would be to 
identify parameters governing more complicated 
constitutive models. For instance, it could be inter-
esting to take into account the significant change 
in volume observed under extension in such a 
material (Le Cam and Toussaint 2008).
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ABSTRACT: Rubber materials are used in many engineering applications mainly because of their 
elastic properties. Nevertheless, inelastic effects often must not be neglected during the predictive design 
process which is commonly supported by numerical methods. A crucial point in simulation of rubber 
parts is the selection of a suitable material model and the reliable determination of material parameters. 
This work is focussed on the experimental characterization of the quasi-static Mullins effect and residual 
plastic strains in filled rubber materials due to uniaxial loading. A common problem during rubber mate-
rial testing is how to avoid visco-elastic contributions to the test results. Thus, a special test sequence and 
an appropriate evaluation scheme have been developed. This method allows the identification of purely 
quasi-static contributions to the material response. Afterwards, the achieved test data is used to identify 
the parameters for the Mullins model as introduced by Ogden and Roxburgh in 1999 in combination with 
an elasto-plastic approach. Finally, the quality and the limitations of this approach, as provided by the 
finite element software ABAQUS, are investigated.

1 INTRODUCTION

Very often hyperelastic material models for rubber 
are calibrated from simple uniaxial tension tests. 
Although very low strain rates might be used, the 
stress-strain data will suffer from the influence of 
visco-elastic effects, i.e. the data and the calibrated 
material model will not represent the quasi-static 
material behavior.

The same problem arises when the Mullins 
effect is investigated. A standard tension test will 
not allow to determine the stress softening prop-
erly, since the measured virgin stress-strain curve is 
never quasi-static.

In this work a new test sequence and evaluation 
scheme are proposed which avoid these problems. 
The provided quasi-static test data is then used to 
calibrate a material model describing the Mullins 
effect and plastic strains.

In Section 2 of this work the material models for 
hyperelasticity, plasticity and stress softening are 
introduced. Afterwards a special test sequence for 
uniaxial tension tests and an evaluation scheme, 
which eliminate visco-elastic effects and deliver a pure 
quasi-static response, are presented (Section 3). Third, 
the calibration of the three material models based on 
the evaluated test data is explained (Section 4).

Finally, in Section 5 the quality and the limita-
tions of the presented approach, consisting of the 
test sequence, the evaluation scheme and the cali-
bration process, are investigated.

2 CONSTITUTIVE MODELS

The non-linear elastic behavior of Elastomers 
is usually modeled by hyperelastic constitutive 
models. These are defined through a strain energy 
function

W W= ( , , )λ λ λ1 2 3  (1)

where λi, with i = 1, 2, 3, denote the principal 
stretches (Holzapfel 2008).

Most experimental tests are based on a uniaxial 
stress state with stretch

λ ε= = +l
l0

1 ,
 

(2)

where l and l0 denote the specimen lengths in 
the deformed and undeformed state, respec-
tively. Since rubber material can be assumed to be 
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incompressible (λ1⋅ λ2⋅ λ3 = 1), in this case the defor-
mation can be simplified to

λ λ1 =  (3)

and

λ λ
λ2 3

1
= = .  (4)

The nominal principal stresses Ŝi are derived 
from the strain energy function by

3

1

ˆ ,j
i

i j ij

IW W
S

Iλ λ=

∂∂ ∂
= =

∂ ∂ ∂∑  i = 1, 2, 3, (5)

where Ij, j = 1, 2, 3 represent the three strain invari-
ants. If  a uniaxial stress state is applied, these are

I1
2 2

= +λ
λ

,  (6)

I2 2
1 2= +

λ
λ  (7)

and

I3 1= .  (8)

While the nominal stresses are related to the 
undeformed state, the Cauchy stresses (also called 
true stresses) are related to the deformed state of 
the material. In the uniaxial stress state the conver-
sion is done by

σ λ= ⋅S. (9)

2.1 Hyperelasticity—Kilian model

The model proposed by Kilian (1981) is based on 
an analogues behavior of polymer chains and ideal 
gas. In contrast to models like Neo-Hooke and 
Mooney-Rivlin it is able to represent the entire 
hyperelastic stress-strain curve, even the stiffening 
in the range of large strains, quite well.

Considering volumetric incompressibility and 
neglecting the dependency of the second strain 
invariant the strain energy function of the Kilian-
Model can be reduced to

W
I

m= − − − +[ ] −
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with

ξ
λ

=
−
−

I

m

1
2

3
3

,  (11)

where the parameter μ determines the shear 
modulus in the origin of the stress-strain curve, α 
denotes the gradient in the inflection point and λm 
the locking stretch.

From Equation (10) the Cauchy stress in the 
uniaxial stress state is

σ λ μ
ξ

α λ λ( ) ( ).=
−

−
−⎛

⎝⎜
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2.2 Plasticity—isotropic hardening

In this work plastic material behavior is considered 
by the von-Mises plasticity model with isotropic 
hardening (Simo & Hughes 1989).

The initial yield stress σF marks the beginning 
of plastic deformation. Stresses which exceed the 
yield stress lead to the evolution of plastic strains, 
while loadings below the yield stress result in pure 
elastic deformation.

The isotropic hardening approach causes the yield 
stress to increase with rising plastic deformation.

Stress computation is based on the elastic part 
of stresses only, while the plastic strains do not con-
tribute to the stresses. Hence, the total strain needs 
to be split into an elastic and a plastic part. In this 
work we use logarithmic strains according to

ε ln ln ln= +ε εel pl  (13)

with

ε λln ( )= ln  (14)

in order to be in agreement with the approaches 
used in the finite element software ABAQUS 
(Dassault Systèmes 2008).

2.3 Mullins effect—pseudoelasticity

Here we use the phenomenological model of  pseu-
doelasticity proposed by Ogden and Roxburgh 
(1999) in order to describe the Mullins effect. 
This model represents the idealized, quasi-static 
Mullins effect (Fig. 2) and, thus, neglects any vis-
cous effects.

The Mullins effect describes a stress-softening 
of filled rubber materials, which is induced by the 
maximum strain in total strain history (Mullins 
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1959). If  a deformation exceeds the former maxi-
mum strain, the stress response will first follow the 
virgin curve (b-c-d), but during unloading the sof-
tening effect will be visible (curve B or C). Accord-
ing to this model, the amount of softening depends 
only on the maximum strain that has ever been 
achieved in history. Consequently, further load 
cycles that do not exceed this strain maximum (b´ 
or c´) will be observed as purely elastic, following 
the softened curves B or C, respectively.

The modified strain energy function WMul 
according to Ogden and Roxburgh is defined as

W WMul i i( , ) ( ) ( )λ η η λ φ η= ⋅ +  (15)

where η is the damage variable, φ (η) the damage 
function and W represents the virgin material’s 
strain energy function.

The evolution approach of the damage variable η 
uses the Gaussian error function

erf x e tt
x

( ) .= −∫
2 2

0π
d  (16)

Within the finite element software ABAQUS it is 
implemented as

η
β

= − ⋅
−

+ ⋅

⎛

⎝⎜
⎞
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1 1

r
erf

W W
m W

max

max ,  (17)

where Wmax is the maximum strain energy that 
has ever been achieved and r, m, β are material 
dependent parameters (Govindarajan et al. 2008).

During first time loading the strain energy 
W is equal to Wmax and so the damage variable 
becomes η = 1. This is also true for further loads 
that exceed Wmax. During unloading or for loads 
smaller than Wmax the value of the damage variable 
is smaller than 1 and the stress response is softened 
according to Equation (15).

Considering stress softening, the uniaxial true 
stress σ is calculated by

σ λ η η λ λ( , ) ( ).= ⋅ ⋅ S  (18)

3 EXPERIMENTAL SETUP 
AND EVALUATION SCHEME

The goal of the presented test sequence is the elimi-
nation of visco-elastic effects from the quasi-static 
response. Uniaxial tension tests are used for this 
purpose.

A full separation can only be achieved by an 
infinitely low strain rate. Thus, the quasi-static 
response is often approximated by a reduction of 
the strain rate. However, this yields increased test 
durations and often still delivers bad results.

The test sequence proposed in this work avoids 
these problems by a determination of the quasi-
static response through an averaging approach. 
The test sequence basically consists of a loading 
and an unloading cycle. Each half  cycle is inter-
rupted by some relaxation phases which are car-
ried out at certain strains εr,j where j denotes the 
number of the sampling point. This yields partially 
relaxed stress values σload,j and σunload,j which corre-
spond to the strains εr,j, where a relaxation process 
is carried out (Figure 3).

The assumed quasi-static stress response σs,j at 
the applied strains εr,j is defined by the average of 
these two stress values

σ σ σs j load j unload j, , ,( ).= +
1
2

 (19)
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Figure 1. Plastic deformation with isotropic hardening.
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Figure 2. Idealized Mullins effect proposed by Ogden 
and Roxburgh (1999).
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This finally yields several sampling points (εr,j, 
σs,j) of the quasi-static stress-strain-curve that can 
be used for parameter identification.

A consequence of this approach is that at maxi-
mum strain εmax the quasi-static stress cannot be 
determined properly, because there is only one stress 
value σload,max from the loading half  cycle available. 
Therefore, we use an extrapolation of the sampling 
points at lower strains to determine the quasi-static 
response at the maximum strain εmax. The Kilian 
model is used for this purpose. It is mentionable 
that this stress value at maximum strain εmax cor-
responds to the stress in the virgin material state 
σv, since W = Wmax.

In Figure 4 the strain applied to the rubber 
sample during the test sequence is illustrated. This 
sequence provides the required data to determine 
the sampling points (εr,j, σs,j) of a quasi-static 
stress-strain curve valid for a certain maximum 
strain εmax. It is divided into three sub-sequences. 
First, ten preconditioning cycles are applied in 
order to achieve the stress softening and plas-
tic deformation corresponding to the maximum 
strain εmax. Then a relaxation phase is carried 
out, that allows to determine the plastic strain εpl. 
Finally, the quasi-static stress response σs,j of  the 
softened material is determined by the relaxation 
test described above.

Adopting this approach for analyzing the stress 
softening, several of these test sequences with 
increasing maximum strain are successively carried 
out at the same rubber specimen. The whole proce-
dure is referred to as Mullins test (Hoffmann 2008) 
in this paper.

Figure 5 summarizes the results of the Mullins 
test. It also shows the extrapolation of each quasi-
static stress curve to the stress value in the virgin 
material state σv

i, where i denotes the number of the 
test sequence with the maximum applied strain ε imax.

4 PARAMETER IDENTIFICATION

In order to represent the quasi-static material 
behavior that is shown in Figure 5, three consti-
tutive approaches are combined in this work: the 
Kilian-Model for hyperelasticity, the model of 
isotropic hardening for plasticity and the model 
of pseudoelasticity for stress softening. These 
constitutive models are supported by the finite ele-
ment software ABAQUS through the commands: 
∗HYPERELASTIC, ∗PLASTIC and ∗MULLINS 
EFFECT (Dassault Systèmes 2008).

The plastic flow criterion is simply defined in tab-
ular form by the yield stress σ i

v and a corresponding 
plastic strain ε i

pl. This data is extracted from the test 
data, where the plastic strain ε i

pl is measured after 
sub-sequence 2 of the test sequence, and the extrap-
olated virgin stress σ i

v is taken as the corresponding 
yield stress. The parameters defining the hyperelas-
tic Kilian model are determined by approaching 
the sampling points of the virgin curve σ i

v through 
this model. Finally the parameters of the model of 
pseudoelasticity are determined from the sampling 
points of the quasi-static response σ i

s,j.

5 RESULTS

5.1 Examples

The capability of this approach is shown by a 
comparison of evaluated experimental data and 
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simulation results. The comparison is conducted 
for two different materials and two temperatures.

The experimental data is provided by the evalu-
ated Mullins test as described in Section 3. For the 
quasi-static finite element analysis a cube model 
with only one element is used. The applied bound-
ary conditions represent the uniaxial tension test 
state.

Figures 6–8 show a comparison of the simulation 
results and the experimental data. It is obvious, that 

the material models represent the stress response 
qualitatively correct. Nevertheless, a deviation can 
be observed in the range of small strains, what will 
be discussed in detail in the next sub-section.

5.2 Limitations of the model of pseudoelasticity

The limitations of the model proposed by Ogden and 
Roxburgh (1999) have been subject of other publi-
cations before, see e.g. Kazakeviciute-Makovska 
(2007). The main limitation is that the damage 
approach according to Equation (17) is not able to 
model the measured evolution of the stress soften-
ing. In this work this is clarified by a comparison 
of the measured relative damage values

arel j
i v

i
s j
i

v
i,

,=
−σ σ
σ

 (20)

with the values computed from the model of 
pseudoelasticity.

The measured relative damage (Fig. 9) shows a 
maximum that is increasing with rising maximum 
strain ε i

max. Within Ogden’s model of pseudoelas-
ticity, the reduced stress is computed from the vir-
gin stress by

� �σ η σs j
i

j
i

v
i

, .= ⋅  (21)

Here, the symbol ‘∼’ denotes values that are com-
puted from the investigated material model. Hence, 
the relative damage �arel j

i
,  predicted by the model of 
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Figure 8. Mullins test results and simulation results 
for EPDM (78 Shore A) at 100°C and 80% maximum 
strain.
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The computed damage (Fig. 9) does not show 
a maximum. Thus, the model of pseudoelasticity 
is not able to represent the stress softening for 
small strains within a softened curve qualitatively 
correct.

Nevertheless, at large strains the model yields 
very good results.

6 CONCLUSIONS

A new test sequence and evaluation scheme for the 
identification of the Mullins effect was presented, 
that allow to determine a purely quasi-static 
response from uniaxial test data. Instead of suffi-
ciently low strain rates, relaxation phases at spe-
cific strains and an averaging approach were used 
in order to determine the quasi-static response. 
Furthermore, the virgin material behavior was 
approximated by an extrapolation approach.

The quasi-static Mullins effect, determined by 
the new test sequence, was represented by using 
the Kilian model for hyperelasticity, an isotropic 
hardening approach for plastic effects and Ogden’s 
model of pseudoelasticity for stress softening. 
Based on these material models numerical simula-
tions were carried out. The comparison of test data 
and numerical results showed that the quasi-static 
Mullins effect is described qualitatively correct for 
different materials and temperatures. Nevertheless, 
there were some mentionable deviations in the 
damage evolution at small strains.

Besides the characterization of the Mullins 
effect the approach represented an effective way of 
considering quasi-static inelastic effects in numeri-
cal simulations of filled rubber materials.

REFERENCES

Dassault Systèmes Simulia Corp. 2008. ABAQUS 
Version 6.8 Documentation. Providence, Rhode 
Island, USA.

Govindarajan, S.M.; Hurtado, J.A. & Mars, W.V. 2007. 
Simulation of Mullins Effect and Permanent Set in 
Filled Elastomers Using Multiplicative Decomposi-
tion. 5th European Conference on Constitutive Models 
for Rubber, Paris, 4–7 September 2007.

Hoffmann, S. 2008. Modellierung des Mullins-Effekts 
von Elastomeren mit der FEM-Software ABAQUS. 
Diploma Thesis, RWTH Aachen University, Aachen.

Holzapfel, G.A. 2000. Nonlinear Solid Mechanics. Wein-
heim: WILEY-VCH Verlag.

Kazakeviciute-Makovska, R. 2007. Experimentally 
Determined Properties of  Functions in Pseudo-
Elasticsoftening Models of  the Mullins Effect. Inter-
national Journal of Solids and Structures 44(11–12): 
4145–4157.

Kilian, H.G. 1981. Equation of state of real networks. 
Polymer 22: 209–217.

Mullins, L. 1959. Effect of Stretching on the Properties of 
Rubber. Journal of Rubber Research 16(12): 275–289.

Mullins, L. 1969. Softening of Rubber by Deformation. 
Rubber. Chemistry and Technology 42(1): 339–362.

Ogden, R.W. & Roxburgh, D.G. 1999. A pseudo-elastic 
Model for the Mullins Effect in Filled Rubber. Proceed-
ings of the Royal Society of London. 455: 2861–2877.

Saccomandi, G. & Ogden, R.W. 2004. Mechanics 
and Thermomechanics of Rubberlike Solids. Wien: 
Springer.

Simo, J.C. & Hughes, T.J.R. 1989. Computational Inelas-
ticity. Springer.



205

Constitutive Models for Rubber VI – Heinrich et al. (eds)
© 2010 Taylor & Francis Group, London, ISBN 978-0-415-56327-7

1 INTRODUCTION

Jamming processes, which exhibit non-equilibrium 
transitions from a fluid-like to a solid-like state, are 
characterized solely by the sudden arrest of the par-
ticle dynamics (Liu and Nagel 1998; Trappe et al. 
2001; Robertson and Wang 2005; Biroli 2007). This 
arrest may happen either due to the crowding of 
non-interacting particles at high loadings or due to 
the presence of strong attractive (repulsive) inter-
actions between the particles at low loadings. Jam-
ming processes can occur in a variety of systems of 
diverse characteristic length scales, e.g. molecular 
structures, colloidal suspensions, polymer-filler 
composites, granular materials, and even automo-
bile traffic (Liu and Nagel 1998).

Jamming and glass-formation processes appear 
to have interrelated physics. The idea of jamming 
is that perhaps all of these amorphous solids are 
solid-like for the same reason: a universal jammed 
state, and by understanding it, we understand all of 
these materials simultaneously. Moreover, in each 
case, there are control parameters that allow the 
system to be changed from jammed to unjammed 
(fluidized) state, e.g. by applying an external stress 
(or external strain) that exceeds a critical yield 
stress (a critical strain).

Recently, for filled rubbers it has been found that 
the spectral density of fluctuations of the storage 
modulus around the mean value exhibits a power 
law behaviour with an exponent of two, similar to 
the exponent reported in jamming process (Wang & 
Rackaitis 2006).

To gain insight into the physics of the jamming 
process in filled polymer systems, we have under-
taken a relatively simple nonlinear viscoelastic 
investigation, herein after referred to as the “floccu-
lation” experiment. In this experiment the structural 
changes in the filler phase are followed by meas-

uring the time evolution of storage modulus after 
application different strain amplitudes to the sam-
ple, below and above the critical strain. We already 
reported on the flocculation experiment in our pre-
vious paper (Costa et al. 2008) about low density 
polyethylene nanocomposites filled with layered 
double hydroxide particles. Here, we make a step 
further and try to reproduce the measured data the-
oretically, with the help of a superposition approach 
in which the contributions from the polymer matrix 
and the filler phase are accounted for separately.

Here we show, that the filler agglomerates in a 
polymer melt and in an elastomer matrix can be 
ruptured under application of the nonlinear shear-
ing and re-agglomerate again in the quiescent state, 
when the shearing is stopped.

2 RESULTS AND DISCUSSION

It is well known that mechanical reinforcement in 
filled polymer systems can be achieved without a 
network between the filler particles (Einstein’s or 
Smallwood’s formula, (Smallwood 1944; Larson 
1999) mechanical mixing laws (Torquato 2001)). 
At the same time attractive interactions between 
the filler particles as well as depletion interactions 
with the polymer matrix lead to the appearance of 
filler-enriched spatial regions (fractal agglomerates) 
which can come to a contact and form a micron-
scale filler network. These large-scale soft agglom-
erates may be ineffective in the reinforcement of 
hard materials, since the modulus of a fractal cluster 
falls below that of the matrix for large cluster sizes 
(Witten et al. 1993). Contrary, a dramatic mechani-
cal reinforcement due to the presence of large-scale 
agglomerates can be achieved in soft materials, that 
is in elastomers and polymer melts, already at low 
filler loadings (Schaefer and Justice 2007).

Flocculation kinetics in the light of jamming physics: 
New insights into the Payne-effect in filled rubbers

Sven Richter, Marina Saphiannikova & Gert Heinrich
Leibniz-Institut für Polymerforschung Dresden e. V., Dresden, Germany

ABSTRACT: After an introduction into the general characteristics of the jamming behavior, two filler 
flocculation experiments on a silica-filled ethylene propylene diene monomer elastomer and on a polycar-
bonate melt filled with multi-walled carbon nanotubes are presented. We propose that these experiments 
can be regarded as jamming phenomena. The experimental data are successfully modeled using the stress 
superposition approach.
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If the polymer matrix is filled with attractively 
interacting nanoparticles, its mechanical behaviour 
can be described in the framework of superposi-
tion approach. In this approach the total stress ten-
sor, σ, is represented by a sum of two stresses

σσ σσ σσ= +X m f
net

 
(1)

where σm is the viscoelastic stress arising in the 
matrix due to stretching and orientation of poly-
mer strands. To describe the polymer stress in this 
equation, one can probe any of appropriate con-
stitutive models proposed for the elastomer matrix 
(polymer melt). The second component on the 
right site of equation (1), σσ f

net, arises due to attrac-
tive interactions between the particles and will be 
described later.

Hydrodynamic reinforcement of the polymer 
matrix is taken into account by multiplying σm 
by the hydrodynamic amplification factor, X. In 
the case of hard spherical particles such as car-
bon black and silica, X can be estimated using the 
Batchelor formula (Larson 1999)

X = 1 + 2.5φ + 6.2φ 2, (2)

where φ is the volume fraction of the filler particles. 
Equation (2) reduces to X = 1 + 2.5φ, i.e. the Einstein’s 
(Smallwood’s (Smallwood 1944)) formula in the limit 
of small loadings. In the case of highly elongated 
particles, X is given by (Thomasset et al. 2005)

X
A

= + +⎛
⎝⎜

⎞
⎠⎟

1 2 1
15

φ ,
 

(3)

where A is the stress-shape coefficient

A
r

r
r=

2

2 ln
, 1>>

 
(4)

which depends only on the particle aspect ratio 
r = L/d (L is the particle length and d is its diam-
eter). Equation (3) can be also used in the case of 
semi-flexible particles such as carbon nanotubes, 
only one should take the persistence length instead 
of the particle length for estimation of the aspect 
ratio. Thus, we consider only hydrodynamic inter-
actions between filler particles and the polymer 
matrix and neglect possible attractive interactions 
between them.

2.1 Filled elastomer

Let us probe the superposition approach on a 
silica-filled ethylene propylene diene monomer 
(EPDM) elastomer. Figure 1 presents the results 
of flocculation experiment at f = 1.67 Hz for the 
EPDM matrix filled with 40 phr Aerosil particles. 
The sample was pre-treated at the strain amplitude 

γ0 ≈ 0.25 to cause a considerable damage of the 
filler clusters. At the first stage of the floccula-
tion experiment the silica-EPDM elastomer is 
subjected to the oscillatory shearing with a strain 
amplitude γr ≈ 0.003. It is chosen to be so low that 
the sample at this stage can be considered to be 
in the quasi-quiescent state. The slight oscilla-
tory perturbation is only necessary to detect the 
changes in G′ and G″ with time. Thus, at the first 
stage one is able to follow in-situ re-agglomeration 
of the silica clusters destroyed previously in the 
process of pre-treatment. When the stationary 
state is nearly attained after 60 minutes, the sample 
is subjected to shearing with slightly higher strain 
amplitude γb1 ≈ 0.01. At this strain amplitude the 
storage modulus of the filled sample stays nearly 
unchanged. However, if  the silica-EPDM elastomer 
is subjected to considerably stronger shearing, first 
at γb2 ≈ 0.05 and then at γb3 ≈ 0.25, the storage 
modulus falls in both cases abruptly reaching at 
the end of flocculation experiment the reinforced 
matrix value. Interestingly, the loss modulus of the 
silica-EPDM elastomer stays nearly unchanged up 
to γ = 0.25: G″ ≈ 0.21 MPa.

The similar flocculation experiment (not shown 
here) reveals that the storage and loss moduli of 
the unfilled EPDM elastomer can be considered 
to be constant till γ = 1.0: ′ =G MPam 0 07.  and 

′′ =G MPam 0 06. . Thus, we can re-write the super-
position equation (1) for the case of oscillatory 
shearing at different strain amplitudes as follows

′ = ′ + ′G t XG G tm f( ) ( ),  (5a)

′′ = ′′ + ′′G XG G tm f ( ).  (5b)

Further, to simplify our analysis, let us neglect 
viscose effects in the filler network, i.e. assume 
that ′′ =G f 0. This gives a value of X ≈ 3.5 which 
corresponds to the volume fraction of about 45% 
(it is overestimated compared to 20% at the 40 phr 

Figure 1. Flocculation kinetics (jamming experiment) 
of the silica particles in the EPDM elastomer.
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Figure 2. Schematic representation of filler agglomera-
tion: multi-particle aggregation (left) into clusters with 
2 ≤ n ≤ 3; cluster-cluster aggregation into the filler net-
work with n ∼ 2 (middle); addition of single particles to a 
well-formed network n ∼ 1 (right).

3~n

2~n
1~n

3~n

2~n
1~n

Aerosil loading). Time evolution of the pure elastic 
filler network can be described using the modified 
Hooke’s model

σ ξ γf
Net

f bG= −( ) ,1  (6)

where Gf is the effective elastic modulus of the 
filler network and 0 ≤ ξb ≤ 1 is a structural param-
eter that reflects the state of the particle network at 
particular shear conditions (Leonov 1990).

In the absence of shear, time evolution of the 
structural parameter is usually described by a sin-
gle kinetic equation

d
dt b b

nξ λ ξ= − −
0

1  (7)

with the relaxation time λ0. The value of exponent 
n defines what kind of cluster growth is expected 
during the recovery process: for example, n = 1 cor-
responds to the first-order kinetics and n = 2 to the 
second-order kinetics. However, we found out that 
it is impossible to reproduce the recovery branch 
of the flocculation experiment, γr = 0.003, using a 
single kinetic equation (7) with a constant value of 
the kinetic exponent, i.e. using a pure rate law. So, 
only the middle part of the recovery branch can 
be described using the second-order kinetics law 
(Richter et al.).

Initially, the growth of clusters is very fast obey-
ing the kinetic law with 2 ≤ n ≤ 3, whereas it slows 
down considerably at the final stage of recovery 
process when n takes the values around 1. Such 
complex behavior can be interpreted assuming dif-
ferent kinds of the agglomeration process: first, in 
the very beginning, when a lot of single particles are 
provided, the multi-particle agglomeration, which 
gradually changes to the cluster-cluster agglomera-
tion at the middle flocculation stages, followed by 
addition of the rest of particles to a well-formed 
network at the late stages (see Figure 2).

Interestingly, this complex behavior can be very 
well described (see the recovery branch in Fig. 3) 
using the superposition of three kinetic equations 
of the first order with the same weight, i.e.

ξb
t

i

l
t

l
e li( ) ,/= =−

=
∑1 3

1

λ  (8)

The recovery times λi are found to be equal to 
60, 310 and 2160 sec.

In the presence of  shear, time evolution of 
the structural parameter is usually described by 
another kinetic equation

d
dt

ab eff
m

b bξ γ ξ λ ξ= − − −� ( )1 0
1  (9)

where a is the rupture parameter and �γ π γ ωeff = ( / )2 0  
is the effective shear rate. The value of exponent 
m depends on whether the breakage of struc-
ture is caused by the elastic strain accumulated 
in the filler structure, m = 1, or by the dissipated 
energy, m = 2 (Yziquel et al. 1999). As the recov-
ery branch has been fitted with three exponents, 
one may assume that it is necessary to follow the 
same approach for description of shear-induced 
breakage. However, we found out that it is not the 
case: two longest recovery processes play no role 
in the presence of oscillatory shear. Only the fast-
est recovery process with λ1 = 60 s manifests itself  
in the all three breakage steps. Hence, one should 
take λ0 in equation (9) equal to the shortest recov-
ery time, λ0 = λ1. Further, equation (9) with m = 1 
overpredicts the breakage of filler structure at the 
small strain amplitude γb1 = 0.01 and underpredicts 
it at the high strain amplitude γb3 = 0.25 (not shown 
here). However, the use of m = 2 provides an excel-
lent fit of all breakage steps (Figure 3, a = 0.2 s). 
This shows that the process of structure damage is 
governed not by the accumulated strain but rather 
by the energy dissipated during this process.

Figure 3. Time evolution of storage modulus in the 
flocculation experiment on the silica-filled EPDM elas-
tomer: experiment (squares), fit (dashed line).
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Figure 4. Flocculation kinetics (jamming experiment) 
of the CNT particles in the PC melt. Recovery branch 
(above), breakage branch (below).
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staying however higher than its initial value measured 
in the beginning of flocculation experiment (Figure 4 
below). The loss modulus stays nearly unchanged. 
The next shearing step with γb2 = 0.25 leads to a drop 
in both moduli. One observes a solid-liquid transi-
tion as at this breakage step the loss modulus attains 
a higher value than the storage modulus.

The similar flocculation experiment (not shown 
here) reveals that the storage and loss moduli of 
the unfilled PC melt can be considered to be nearly 
constant (compared to the moduli of filled PC 
melt): ′ =G kPam 0 2.  and ′′ =G kPam 3 5. . Thus, we 
can use the same superposition equations (5) for 
description of oscillatory shearing of CNT-PC 
melt at different strain amplitudes. The main dif-
ference with the filled elastomer is that one cannot 
neglect viscose effects in the filler network in the 
case of polymer melt. Therefore, the stress experi-
enced by the filler structure will be described by a 
modified viscoelastic Maxwell model

( ) ( ) ,( )σσ σσf
Net

b f
Net

fG1
1+ =−τ ξ �γ  (10)

where �γ  is the rate-of-strain tensor and ( )( )σσ f
Net

1  
denotes the upper-convected time derivative of a 
tensor σσ f

Net (Bird et al. 1987). Equation (10) implies 
a process-dependent relaxation time, τ (ξb), which 
is an intrinsic feature of the thixotropic systems 
(Barnes 1997; Dullaert and Mewis 2006)

τ ξ
τ

ξ
( )

( )
.b

f

bm
=  (11)

Here τ f is the characteristic time of filler struc-
ture and

m
db

b
d

( ) ( ) ,ξ α ξ= + − −−1 1  (12)

is the phenomenological mobility function. The 
latter is constructed in such a way that it describes 
the transition to the solid-like behavior in the limit 
of vanishing shear rates and the shear-thinning 
behaviour with the exponent d > 0 at high shear 
rates. Additionally, the residual parameter α < 1 
describes a non-vanishing ′′G f  at small frequencies. 
Time evolution of the structural parameter ξb will 
be again described by equations (8) and (9).

To extract a set of six parameters, {a, λ0, Gf, τf, 
α, d}, we measured first the strain sweep for the 
CNT-PC melt at ω = 1 rad/s. The dynamic oscil-
latory shearing at this frequency shows that at low 
strain amplitudes both storage and loss moduli 
of the CNT-PC composite remain constant and 
independent of the applied strain (Figure 5 above), 
whereas above a critical strain γcr ∼ 0.01 both moduli 

2.2 Filled polymer melt

Let us now probe the superposition approach on 
a polycarbonate (PC) melt filled with multi-walled 
carbon nanotubes (CNTs). Figure 4 presents the 
results of flocculation experiment at ω  = 1 rad/s for 
the PC matrix filled with 5 wt% CNTs. These com-
posites were produced by injection molding which 
causes a considerable damage of the CNT clusters 
because of very high shear rates. At the first state 
of the flocculation experiment the CNT-PC melt 
is subjected to the oscillatory shearing with a very 
low strain amplitude γr = 0.005 (Figure 4 above).

Thus, the sample is in the quasi-quiescent 
state stage, and one is able to follow in-situ the 
re-agglomeration of the CNT clusters destroyed 
previously in the process of injection molding. The 
reagglomeration (recovery) process is found to be 
extremely slow without a sign of saturation even 
after two hours. It can be seen that both moduli 
considerably increase with time: G′ approximately 
three times and G″ approximately 25% compared 
to their initial values.

After application of the oscillatory shearing with 
γb1 = 0.05, the storage modulus drops immediately 
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decrease with increasing strain. As G′ decreases 
faster than G″, it is possible to observe the solid-
liquid transition, i.e. considerable damage of the 
filler structure, around the strain amplitude of 
0.1. At this amplitude the structural parameter 
ξb increases to about 0.5 (Figure 5 below). Using 
the values of storage and loss moduli at the lowest 
strain amplitude, it is possible to extract the values 
of two parameters: X = 1.5 and Gf = 57.1  kPa. To 
extract the rest of parameter set, we performed the 
shear growth experiments for the unfilled and filled 
polycarbonate at shear rates up to 1s−1 (not shown 
here). The polycarbonate melt does not exhibit the 
shear-thinning behaviour at these shear rates hav-
ing the zero-shear viscosity η0 = 8000 Pa ⋅ s.

The stationary viscosity, ηst, for the the PC 
matrix filled with 5 wt% CNTs is presented in 
Figure 6 (circles). One can observe a strong shear-
thinning behavior which can be fitted (dashed line) 
using the stationary solutions of equations (1) and 
(10) for the case of constant shearing

η η
τ

α λ γst
f f

dX
G

a
d

= +
+ + −0

0 0
21 1( )�

 (13)

with the following parameters: α = 0.329, τf = 1.41 s 
and aλ0 = 200 s2. Note, that the rupture parameter a 
and the short recovery time λ0 appear in equation 
(13) in the combination and can be only separated 
using the fit of an additional experiment.

For control, we calculated the dependence of 
complex viscosity on the effective shear rate (solid 
line) using the extracted parameter set

η ω∗ −= ′ + ′′1 2 2( ) ( ) .G Gf f  (14)

Here we used the solution of equation (10)

′ =
+

′′ =
+

G G G Gf f
b

b
f f

b

b

( ( ))
( ( ))

, ( )
( ( ))

ωτ ξ
ωτ ξ

ωτ ξ
ωτ ξ

2

2 21 1
 (15)

valid for λ0 >> 2π/ω (Lion 2008). In this case the 
storage and loss moduli are given by usual Max-
well expressions, only the time is not anymore 
constant but depends on the structural parameter 
according to equation (11). Comparison with the 
corresponding experimental data for the complex 
viscosity (diamonds) reveals a very good agree-
ment between both dependencies.

The recovery branch of the flocculation experi-
ment can be well described using the superposition 
of two kinetic equations of the first order with the 
same weight, i.e. l = 2 in equation (8). This gives 
the shortest time λ1 = 50 s and the longest time 
λ2 = 2000 s (Figure 4 above). The fast recovery proc-
ess corresponds presumably to the formation of car-
bon nanotubes agglomerates, while the extremely 
slow process is very likely caused by the gradual 
rearrangement of a whole network structure. To 
obtain a best fit, we should use a slightly different 
value of the residual parameter: α = 0.52τ f. We found 
out that only this choice of α provides a reasonable 

Figure 5. Strain sweeps of the storage and loss moduli 
(above) and corresponding changes of the structural 
parameter (below) for the CNT-PC melt at ω  = 1 rad/s.
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Figure 6. Dependencies of the stationary viscosity, ηst, 
and complex viscosity, |η*|, on the (effective) shear rate.
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fit of the strain sweeps (Figure 5 above). The theory 
however predicts a maximum of the loss modulus 
which is not observed in the experiment, presumably 
due to the use of only one relaxation mode.

Similar to the filled elastomer, only the fastest 
recovery process with λ1 = 50 s  manifests itself in the 
two breakage steps. Unfortunately, in the case of filled 
polymer melt we could not achieve a high quality of 
the fit for the breakage branch in the flocculation 
experiment. The first breakage step with γb1 = 0.05 
stays considerably underestimated (Figure 4 below, 
a = 4 s). The observed discrepancy has presumably 
two reasons: 1) Description of flocculation experi-
ment in the filled polymer melts needs a much longer 
parameter set than in the filled elastomers; 2) The 
samples used were produced by the injection mold-
ing technique which inevitably leads to a different 
filler microstructure in different probes.

3 CONCLUSIONS

In this study we carried out dynamic oscillatory 
shearing experiments on two, on the first sight 
quite different, filled polymer systems. In spite of 
different matrices (elastomer—polymer melt) and 
different fillers (silica particles—multi-walled car-
bon nanotubes), these experiments reveal more 
similarities than discrepancies between the two 
systems. In particular, a dramatic increase of the 
storage modulus has been found during recovery 
of the filler structure in the flocculation experiment 
for both systems. This recovery process cannot be 
described by a pure rate law which presumes a sin-
gle type of the particle agglomeration. Contrary, 
analysis of the experimental data reveals a multi-
stage agglomeration process: first, fast organiza-
tion of particles into clusters, then much slower 
agglomeration of clusters into the filler network, 
finally, extremely slow addition of single parti-
cles to a well-developed network. Each stage can 
be characterized by its own rate law (or recovery 
time). During the process of shear-induced break-
age only the shortest recovery time plays a role.

Thus, similar to other jammed systems, the filled 
polymer systems demonstrate an asymmetric behav-
iour upon approaching the steady state depending 
on whether the system was initially at higher or lower 
shear strain. In particular, the recovery time of filler 
structure in the quiescent state is found to be one-
two orders of magnitude larger than a characteristic 
recovery time in the nonlinear shear regime.
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1 INTRODUCTION

For a constitutive modeling of rubber it is neces-
sary to understand the mechanisms of mechanical 
deformation in the whole deformation range as 
well as under different load.

While in the case of uni- and biaxial tension of 
rubber quite high deformation is possible, under 
three-dimensional loading due to the relative high 
compression modulus the situation is rather differ-
ent. Mainly under three-axial tension cavitation is 
expected as pre-stage of failure.

By online-SAXS and -WAXS it is possible to 
throw light on the underlying mechanisms of defor-
mation and failure. While SAXS enables to detect 
structural units with different electron density and 
with sizes in the range to about 100 nanometer 
WAXS enables to recognize strain induced crystal-
lization, crystalline units, and their orientation.

2 EXPERIMENTAL

2.1 Materials

Within the current project different natural and 
synthetic rubber materials were produced with 
well-defined composition and filler. The details of 
the material are summarized in Table 1.

2.2 Mechanical characterization

For mechanical testing different experiments were 
established. To get a comprehensive informa-
tion of mechanical properties the materials under 

investiga tion must be tested under quite different 
load. So it is convenient to use unidirectional tension 
and if necessary compression, the pure shear geom-
etry (tension with specimen with a high width com-
pared with length and thickness) or biaxial tension. 
On the other side fracture mechanical experiments are 
of interest, where the structure in the crack tip is inves-
tigated scanning this region with a small x-ray beam.

The used fracture mechanical sample forms are 
MDB (micro-dumbbell; or MDB-H: in some cases 
with an additional hole in the middle of the sample) 
and DENT (double edge notched tensile specimen).

To estimate true strain over the whole specimen 
grating techniques were used. In the easiest case a 

Mechanical and structural characterization of rubber under 
one-, two- and three-dimensional load

K. Schneider & A. Schöne
Leibniz Institute of Polymer Research Dresden, Dresden, Germany

ABSTRACT: Structural changes of elastomer composites during load/deformation, fatigue and crack 
propagation shall be investigated by online x-ray scattering, using time resolved as well as scanning tech-
niques. Main attention will be paid to the beginning of cavitation and changes in phase morphology. Due 
to the large ratio between compression to tensile or shear modulus the cavitation which is relevant for 
damage will happen mainly under local 3-axial load. Therefore it is also necessary to perform the experi-
ments under a comparable loading situation. A special test arrangement for 3-axial tensile tests will be 
presented which enables simultaneous x-ray scattering.

By Online-X-ray scattering with synchrotron radiation a time resolution in the order of seconds and a spatial 
resolution in the order of microns can be achieved. A combination of WAXS and SAXS enables to characterize 
the crystalline state or changes within it as well variations within the amorphous phase and cavitation processes.

Table 1. Investigated rubber specimen.

Rubber Filler Additives Form

NR (Natural
rubber, 
Polyiso-
prene)

None or 
50 phr 
carbon 
black N220

ZnO, stearic 
acid, sulphur, 
accelerator

MDB,
 DENT

SBR
(Styrene-
Butadiene-
Rubber)

60 phr 
carbon 
black N115
and N339 
resp.

ZnO, stearic 
acid, sulphur, 
accelerator

MDB,
 MDB-H

XNBR
(Carboxy-
lated 
Acrylnitrile-
Butadiene-
Rubber)

0 and 5 phr 
Nanofil 15

ZnO, stearic 
acid, sulphur, 
accelerator

MDB,
 DENT
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regular pattern was applied by a flexible dye and 
the deformation of the meshes followed during the 
experiment.

To realize that the highest stress and so also the 
highest strain is in the middle of the specimen a 
waisted sample geometry was used. The geometry 
of these specimen is shown in Figure 1.

Typical stress-strain-curves for uniaxial tension 
estimated via the force-displacement-curves using 
the grating technique are shown in Figure 2.

To get information about the behavior under 
3-axial load a new specimen form is developed, 
which is shown in Figure 3.

These specimen are loaded simultaneously in 8 
directions by the supporting metal blocks. Again 
the estimation of local deformation of the rubber-
core of the specimen is planned to be estimated by 
optical measurement. On the basis of this measure-

ments by FE-modeling the loading situation must be 
estimated. Within the gap between the blocks is suf-
ficient space for SAXS- and WAXS-measurements.

2.3 Scattering experiments

The finally used experimental arrangement was 
described in some detail by Davies et al. (2004), see 
Figure 4.

While a waisted specimen is stretched horizon-
tally, SAXS and WAXS in equatorial direction 
are measured simultaneously. Following a regular 
or random surface structure with a camera via a 
mirror with a pin-hole enables to estimate simul-
taneously locally the 2d strain field at the beam 
position. Similarly also pre-damaged or fracture 
mechanical samples can be brought into the beam 
and scanned over a region of interest.

The proposed arrangement was used success-
fully investigating semi-crystalline polymers dur-
ing deformation (Schneider et al. 2006, Schneider 
et al.) and fracture (Schneider 2008).

3 FIRST RESULTS AND DISCUSSION

According to the amorphous structure of rubber 
networks there is no representative scattering. The 
situation becomes different, if  there are fillers or 
additives within the material, which are active in 
scattering, like ZnO or layered silicates. Their ani-
sotropic orientation can be followed by scattering.

In the case of natural rubber strain-induced 
crystallization can be observed. This allows on the 
one hand the estimation of local internal strain 
within the material. On the other hand it enables to 
estimate the amount of crystallizable chains within 
the network.

Scanning fracture mechanical samples shows, 
that the structural changes near the crack tip are 
very similar the homogeneous deformed sample 
with comparable strain.

Figure 1. Geometry of the waisted specimen, the 
dimensions can be scaled.

Figure 3. Geometry for a specimen for 3-axial tensile test.

Figure 4. Experimental arrangement for Online-SAXS 
and -WAXS during deformation.

SAXS-Detector

WAXS-Detector

Sample

Camera 
reflecting 
mirror 

Final aperture Indication for 
applied stress 
during deformation

Camera

Beamstop 
support

Optional:
rotation axis

Figure 2. Stress-strain-curve of different rubbers, strain 
optically estimated.
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Figure 5 shows the pattern of stretched natural 
rubber of a DENT specimen near the crack tip 
with a high local strain and its decomposition into 
the contributions of the amorphous and the crys-
talline parts.

Unloading the strain-crystallizes rubber there is 
a remarkable hysteresis.

While by WAXS the orientation and deforma-
tion of crystallites can be followed, SAXS enables 
to follow variations within the amorphous phase 
and cavitation processes. The first indication of 
cavitation is a strong increase of scattering inten-
sity due to the high difference of electron density 
within the rubber and the cavities.

A strategy to find model-free characteristic 
dimensions within a material under the condi-
tion of cylindrical symmetry within the structure 
is presented by Stribeck 2007. By image process-
ing the 2-dimensional pattern were transformed 
into 2-dimensional slices across the (electron 
density) autocorrelation function and further by 
edge enhancement characteristic lengths can be 
extracted from the cord distribution function.

Unfortunately it is not straight forward 
possible to identify the underlying structures. 
Therefore it is desirable to complement the 
scattering investigations with methods, which 
verify the estimated structures, e.g. by electron 
microscopy.

4 CONCLUSIONS

The experiments presented here enable the moni-
toring of the continuously changing mechanisms 
of deformation and energy dissipation in rubber. 
Due to the high number of parallel processes, the 
use of structure characterisation by X-ray scatter-
ing techniques should be complemented by further 
independent investigations. This combination of 
methods is likely to provide a well-founded basis 
for material development and optimisation.
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Stress relaxation behaviors of filled rubbers under various 
deformations
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K. Urayama & T. Takigawa
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ABSTRACT: Stress relaxation behaviors under various types of deformation have been investigated 
for carbon black filled and unfilled styrene butadiene rubbers. We discuss the separability of the 
time(t)−and deformation(λ)-dependent terms on the stress relaxation component, i.e, Δσi(λx, λy, t) 
(= σi(λx, λy, t) − σi,∞(λx, λy) where σi,∞ is the equilibrium stress) along each principal axis (i = x, y). The 
Δσi(λx, λy, t)−t curves obtained under various deformations are reduced to a single curve, when Δσi(λx, λy, t) 
is normalized by the total relaxation strength, Δσi,∞(λx, λy) = σi,0(λx, λy) − σi,∞(λx, λy), where σi,0 is the initial 
stress. This result indicates that the separability of interest works for Δσi, i.e., Δσi(λx, λy, t) = Δσi,∞(λx, λy)ψ (t) 
where the time-dependent term ψ (t) is common to all types of deformation. Interestingly, ψ (t) for carbon 
black filled rubber well agrees with that for SBR without filler. This indicates that the time constants of 
stress relaxation in the filled rubbers are similar to those in the rubber matrix, although the filled and 
unfilled rubbers differ in Δσi,∞.

1 INTRODUCTION

The finite element method (FEM) simulation is a 
strong and important tool to design the industrial 
rubber products because in many cases, they are 
subjected to complex deformations in use. The 
FEM analysis requires the constitutive equations 
which accurately describe the stress-strain behav-
iors under all types of deformation. Many types 
of phenomenological constitutive equation for 
rubbers have been proposed (For a review, Beda 
2005). The determination of the model parameters 
or the assessment of the models has often been 
made using the uniaxial deformation (stretching 
and/or compression) data due to the experimen-
tal simplicity. The analysis relying on only uniax-
ial deformation often leads to incorrect results 
because the uniaxial deformation is only a par-
ticular one among all accessible deformations of 
rubbers (Treloar 1949, Urayama 2006). Evidently, 
the stress-strain data under various deformations 
provide unambiguous basis to establish the reliable 
constitutive equations. In principle, general biaxial 
strains with varying independently the principal 
strains in the two orthogonal directions cover the 
whole range of accessible deformations of incom-
pressible rubbers. We demonstrated that the stress–
strain data of the silicone rubbers under general 
biaxial deformations provided a definite basis to 

deduce a phenomenological form of strain energy 
density function (W ) as well as to assess various 
molecular theories of rubber elasticity (Kawamura 
et al. 2001, Urayama et al. 2001).

The FEM analysis of  filled rubbers is practically 
very important because the filler reinforcement 
markedly improves the mechanical properties of 
rubbers. Compared to the unfilled rubbers, the 
filled rubbers exhibit a pronounced viscoelastic 
effect together with the remarkable improvements 
of  fracture properties. The stress of  the filled rub-
bers is considerably time dependent, and it shows 
large relaxation toward the equilibrium one at 
fixed strains. This stress relaxation effect compli-
cates the establishments of  the constitutive equa-
tions for filled rubbers. An important key on this 
issue is whether the separability of  the time and 
strain effects on stress(σ)—which is well known 
for uncrosslinked polymer melts (Doi & Edwards 
1986)—works for crosslinked rubbers. Several 
researchers attacked this issue but the conclu-
sion remains unsettled: There exist both types 
of  results that supported the success and failure 
of  the separability (Kawabata & Kawai 1977, 
Sullivan 1986, Quigley et al. 1995, Roland et al. 
1989). It should be noted that most of  the earlier 
studies discussed the separability regarding σ. 
For polymer melts without crosslinks, σ resulting 
from imposed deformation vanishes after a finite 
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time because they are essentially liquids. In the 
case of  rubbers with crosslinks, σ exhibits decay 
but stays finite even in the long time limit. In the 
present study, we emphasize that we should dis-
cuss the separability regarding the stress relaxa-
tion component (Δσ), instead of σ itself: Δσ is 
given by Δσ = σ − σ∞ where σ∞ is the equilibrium 
stress (Figure 1). It should be noticed that Δσ 
becomes zero at equilibrium as in the case of  σ 
in uncrosslinked polymer melts. A major reason 
of the puzzling conclusions for the separability in 
the earlier studies is that they employed σ –which 
does not vanish in the equilibrium-for discussion. 
We investigate the stress relaxation behavior of  the 
filled rubbers under several deformation modes 
(equi-biaxial, pure shear and uniaxial stretching) 
with various degrees of  deformation. We assess 
the validity of  the time-strain separability for Δσ 
under various deformations. We also point out the 
similarity in the stress relaxation behavior between 
the filled and unfilled rubbers. The results in the 
present study provide an important basis of  the 
full description of the nonlinear viscoelastic 
behaviors of  filled rubbers.

2 EXPERIMENTAL

2.1 Sample preparation

The carbon-black filled and unfilled rubber vul-
canizates were prepared using Nipol SBR 1503 
(ZEON Co.) and the ISAF grade of carbon black 
(N222 Mitsubishi Chemical Corporation). The 
sample sheets with a thickness of ca. 1 mm were 
made by the vulcanization of the mixtures of SBR 
and additives. The mixing process consisted of the 
two steps. Firstly, 100 phr of SBR was mixed with 
2 phr of stearic acid and 3 phr of zinc oxide by 

1.7 litters Banbury mixer at 140°C for 5 minutes. 
For the filled samples, 47.2 phr of carbon black 
(corresponding to the volume fraction of 0.2) was 
also added. Next, the resultant SBR compound 
was mixed with 1.5 phr of sulfur and 1.0 phr of the 
two kinds of accelerator (N-tert-butyl-2-benzothi-
azolesulphenamide and N,N´-diphenyl guanidine) 
by two roll mixing mill at 80°C. The obtained green 
rubber was vulcanized in a press mold at 170°C. 
The vulcanization times for the filled and unfilled 
samples were 12 and 14 minutes, respectively. The 
vulcanization time was determined from the results 
of curelastmeter at 170°C.

2.2 Biaxial stress relaxation measurements

Biaxial stress relaxation measurements were carried 
out with a biaxial stretching apparatus (IS-GIKEN 
KOGYO Co.)(Figure 2). A square-shaped sample 
sheet was clumped by totally twenty chucks, that 
is, four chucks at each side and one chuck at each 
corner. The detailed mechanism of the instrument 
is similar to that of the biaxial tester in a literature 
(Kawamura et al. 2001), although the maximum 
load of the present apparatus (980 N) is larger. The 
principal ratios in the two orthogonal axes (λx and λy) 
are variable independently. The present investigation 
employed the three deformation modes, i.e., uniaxial 
stretching (λy = λz = λx

–1/2), pure shear (λz = λx
–1 and 

λy = 1), and equi-biaxial stretching (λx = λy, λz = λx
–

2). Prior to the collection of the stress relaxation 
data, the equi-biaxial pre-tension of λx = λy = 2 was 
applied for 20 minutes to eliminate the undesirable 
initial effects such as the deformation history.

The stress relaxation measurements were con-
ducted 5 minutes after the full release of the pre-ten-
sion. The measurements were carried out at –20°C, 
0°C, and 23°C within the accuracy of 0.5°C.

The stress relaxation was measured at various 
λx in each deformation mode. The ratio λx was 

time

st
re

ss

σ∞

Δσ(t)= σ(t)− σ∞   

t t∞
ti

Figure 1. Schematic illustration of the stress relaxation 
at a fixed strain for rubbers. σ∞ represents the equilibrium 
stress.  

Figure 2. Photograph of the biaxial stretching instrument. 
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varied from 1.1 to 2.0 for the filled SBR, and 
from 1.1 to 1.5 for the unfilled SBR. The sample 
sheets were stretched to a target principal ratio 
with a crosshead speed of  8.3 × 10–3 m/s. The time 
dependence of  the force was measured after the 
imposition of  λx of  interest. About 6 seconds 
was required to reach λx = 2 (the maximum λx 
in the present study) from the undeformed state. 
Accordingly, the data for the first 10 seconds after 
reaching the target elongation were excluded in 
the analysis of  stress relaxation because they 
include the delay effect. The force at each defor-
mation reached the quasi-equilibrium state at 
t > 2,500 s at 23°C. The quasi-equilibrium stress 
was estimated by averaging the data in the region 
of  2,500 s < t < 3,600 s.

3 RESULTS AND DISCUSSION

In the beginning, the master curve of the stress 
relaxation [i.e., σi–log(aT

–1t) curve] at each defor-
mation was made using the corresponding σ–log(t) 
curves at different T on the basis of the conven-
tional time-temperature superposition principle 
in order to extend the accessible time scale. The 
master curves were successfully constructed by a 
horizontal shift without vertical shift. It should be 
noted that the horizontal shift factor (aT) depends 
on only T, and it is independent of the deforma-
tion mode as well as λ.

a T a TT x y T( , , ) ( )λ λ ≡
 

(1)

More interestingly, aT at each T for the filled elas-
tomers was identical with that for the unfilled ones.

a T a TT
filled

T
unfilled( ) ( )=  (2)

We obtain the time dependence of Δσi for each 
deformation from the corresponding master curve 

of stress relaxation. Figure 3 shows the double 
logarithmic plots of Δσi(λx, λy, aT

–1t) vs. aT
–1t-where 

the reference temperature is 23oC–for the filled 
elastomers. The time-temperature superposition 
considerably extends the available time window. 
The resultant time scale covers from 10–1 s to the 
equilibrium (4 × 103 s).

The total relaxation strength (Δσi,∞; Δσi,∞ = 
σi(t) − σi, ∞) depends on both deformation mode 
and λ, the details of which will be discussed later. 
We can compare only the time dependence of Δσi, 
between various deformations by using the reduced 
quantity ψ:

ψ λ λ
σ λ λ
σ λ λ

( , , )
( , , )

( , )x
i x

i, x
y

y

y
t

t
=

∞

Δ
Δ  

(3)

Figures 4 and 5 show the time dependence of 
ψ(λx,λy,t) for various deformations for the filled 

Figure 3. Double logarithmic plots of Δσi
filled(λx, λy, aT

–1t) versus reduced time, aT
–1 ⋅ t, under (a) uniaxial stretching, 

(b) pure shear, and (c) equi-biaxial stretching for the filled SBR. The filled symbols in (b) represent the data in the 
y-direction.

Figure 4. Double logarithmic plot of ψi
filled(λx, λy, aT

–1t) 
versus reduced time, aT

–1t, under equi-biaxial stretching, 
pure shear, and uniaxial stretching for the filled SBR. 
The principal ratio was varied from 1.1 to 2.0.
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and unfilled elastomers, respectively. In each 
figure, all the curves appear to fall on a single 
master curve in the entire time range investigated 
here. An appreciable data scattering in Figure 5 
is due to the small degree of  Δσi,∞ for the unfilled 
rubber. The results in Figures 4 and 5 are also 
expected from the fact that all Δσi(λx, λy, aT

–1t)-
aT

–1t curves -which for the filled rubber are shown 
in Figure 3- have a similar shape. The quantity of 
vertical shift of  each curve needed for the super-
position in Figure 3 is proportional to Δσi,∞ for 
the corresponding deformation. The result in 
Figures 4 and 5 clearly indicates that ψ is com-
mon to all types of  deformation independently of 
the degree of  deformation, i.e.,

ψ λ λ ψ( , , ) ( )x y t t≡ Δ
 

(4)

This means that Δσ is separable into the time- 
and strain-dependent terms for the filled and 
unfilled elastomers, respectively:

Δ Δσ λ λ σ λ λ ψi
filled

x i,
filled

x
filled( , , ) ( , ) ( )y yt t= ∞  

(5)

Δ Δσ λ λ σ λ λ ψi
unfilled

x i,
unfilled

x
unfilled( , , ) ( , ) ( )y yt t= ∞  

(6)

As in the case of σ(t) for uncrosslinked polymer 
melts, the time-strain separability works for Δσi of  
the unfilled and filled rubbers.

Figure 6 is the merger of the data in Figures 4 
and 5, i.e., the comparison of ψ filled (t) and ψ unfilled (t). 
The data of the filled and unfilled elastomers are 
highly overlapped with each other in the whole time 

region. This indicates that ψ(t) for the filled elas-
tomers is the same as that for the unfilled ones:

ψ ψfilled unfilled( ) ( )t t=  
(7)

Equation (7) means that the relaxation proc-
ess in the filled elastomers is governed by that in 
the rubber matrix. This is also supported by no 
difference in aT between the filled and unfilled 
elastomers (Eq. 2). Isono et al. investigated the T 
dependence of dynamic viscoelasticity of the rub-
bers filled with silica and carbon black (Wu. et al. 
2007). They showed that the glass transition tem-
peratures (Tg) of the filled and unfilled elastom-
ers are similar, and that it is almost independent 
of filler content. They concluded that the thermal 
motion of fillers and rubber molecules are gov-
erned by segmental friction constant of the matrix 
polymer. Our results confirm that this conclusion 
is valid even when the filled elastomers are sub-
jected to large and complicated deformations.

The separability of  the time-dependent and 
strain-dependent terms for Δσ facilitates to for-
mulate the constitutive equations describing the 
viscoelastic effects under large strains in various 
deformation modes, because the time dependence 
of Δσ at various deformations can be described 
by only a time function ψ(t). The function ψ(t) in 
Figure 6 is well approximated by a sum of the five 
exponential functions:

ψ
τ

( ) expt A
t

j
= −

⎛

⎝
⎜

⎞

⎠
⎟

=
∑ j

j1

5

 
(8)

Figure 5. Double logarithmic plot of ψi
unfilled(λx, λy, aT

–1t) 
versus reduced time, aT

–1t, under equi-biaxial stretching, 
pure shear for the unfilled SBR. The principal ratio was 
varied from 1.1 to 1.5. 

Figure 6. Double logarithmic plot of  ψi(λx, λy, aT
–1t) 

versus, aT
–1t under equi-biaxial stretching, pure shear, and 

uniaxial stretching for black filled and unfilled elastom-
ers solid line represents the fitting result of Eq. (8).
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where Aj and, τj used for fitting are listed in Table 1. 
The fitted curve by Eq. (8) is shown by the solid 
line in the figure.

As mentioned before, the total relaxation 
strength Δσi,∞ considerably depends on the defor-
mation mode and λ. Figure 7 shows the dependence 
of Δσi,∞ on (I1 + I2 − 6) for the filled and unfilled 
elastomers where I1 (= λx

2 + λy
2 + λz

2) and I2 (= λx
2

λy
2 + λy

2λz
2 + λz

2λz
2) represent the first and second 

invariants of the deformation gradient tensor. The 
relaxation strengths Δσi,∞ for both the filled and 
unfilled elastomers appear to increase with the 
degrees of deformation. However, this tendency 
may be simply because σ increases with strain. 
This effect can be eliminated by reducing Δσi,∞ by 
the initial stress (σ0) at each deformation. Figure 8 
shows this reduced quantity (Δσi,∞/σ0) as a function 
of (I1 + I2 – 6). The reduced relaxation strength 
seems to be almost constant independently of the 
degree of deformation, although the data are scat-
tered: Δσi,∞/σ0 = C filled ≈ 0.40 for the filled elastomer, 
and Δσi,∞/σ0 = C unfilled ≈ 0.25 for the unfilled elas-
tomer. The constancy of the reduced relaxation 
strength significantly simplifies the deformation-
dependent terms in Eqs. (5) and (6):

Δσ λ λ σ λ λi,
filled

x
filled

i,
filled

x∞ =( , ) ( , )y yC 0  
(9)

Table 1. Parameters of Eq(8) used for fitting.

j 1 2 3 4 5

Aj 0.093 0.114 0.125 0.298 0.541
τj 535 56.4 11.3 1.81 0.198

Δσ λ λ σ λ λi,
filled

x
unfilled

i,
unfilled

x∞ =( , ) ( , )y yC 0  
(10)

On the basis of the separability of the time and 
strain terms for Δσ, a form of W including the time 
effect may be expressed by

W t W W t Wy( , , ) ( )λ λ ψx = −( ) +∞ ∞0  
(11)

where W0 and W∞ are the strain energy density 
functions in the short time limit (aT

–1t ≈ 10–1 s in 
the present study) and equilibrium, respectively. 
The functions W0 and W∞ can be determined on 
the basis of  the stress-strain data under various 
deformations in the short and long time lim-
its, respectively. The existing phenomenological 
forms of  W may be available as W0 and W∞. The 
total relaxation strength of  stress (Δσi, ∞) corre-
sponds to ∂(W0 − W∞)/∂λi. If  the constancy of 
the reduced relaxation strength [Eqs. (9) and 
(10)] is valid, W∞ is simply related to W0 with 
the constant C filled. It means that we need only 
the form of  W0. The evaluation of  the forms of 
W(λx, λy, t) along this line, i.e., the full descrip-
tion of  the nonlinear viscoelastic effects under 
various deformations will be conducted in our 
separate study.
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ABSTRACT: A series of uniaxial fatigue experiments carried out on diabolo-shaped specimens made 
of elastomers shows many discrepancies with Miner’s cumulative damage rule predictions. A new heuris-
tic model is then established, introducing a continuum damage mechanics model which describes fatigue 
by means of a damage parameter D and an evolution equation for this parameter. This law involves an 
empirical parameter representing the discrepancies to Miner’s law. The results obtained using this model 
give a better representation of the experiments than Miner’s rule’s predictions.

1 INTRODUCTION

Miner’s cumulative damage rule is still the most 
commonly used to predict the fatigue of elastom-
ers, thanks to its simplicity which makes it one of 
the easiest to use. Many researches (D. Klenke and 
A. Beste 1987) (L. Lemaitre and J.L. Chaboche 
1978) (F. Ellyin and D. Kujawski 1984) (F. Ellyin and 
D.Kuhawski 1988) have been carried out in order 
to improve Miner’s law. This rule predicts that the 
total damage is the sum of the damages obtained 
for each loading. This sum is equal to one when the 
sample breaks. This rule does not take into account 
the load sequence effects or interactions between 
the cycles: for a given number of cycles, it states 
that the damage is the same, regardless of the order 
in which the different loadings are applied.

The aim of the present work is firstly to test this 
cumulative damage rule on rubber. A series of uniax-
ial fatigue experiments have been carried out on two 
specimens of Styrene-Butadiene-Rubber (SBR). The 
force loading conditions are specific to each sample, 
due to different carbon black contents: 30 and 60 
“Per Hundred of Rubber” (PHR) in each SBR speci-
men. The results obtained show many discrepancies 
with Miner’s cumulative damage rule predictions.

The second aim of this work is therefore to 
pro pose a new heuristic model which takes into 
account these discrepancies. Consequently, we 

have introduced (i) a continuum damage mechanics 
model which describes fatigue by means of a dam-
age parameter D and (ii) a damage law for the 
evolution of this parameter. This damage law rep-
resents the discrepancies to Miner’s rule and thus 
gives a total Miner’s cumulated damage which can 
be lower or greater than unity. The discrepancies to 
Miner’s rule are represented by means of a param-
eter α which depends on the applied loading and 
the value of which is determined from the experi-
ments by the least square method.

The results obtained using the proposed model 
give a better representation of the experiments 
than Miner’s rule.

2 MINER’S CUMULATIVE DAMAGE RULE

Miner’s cumulative linear damage rule (M.A. Mine 
1945) is a damage function predicting failure after 
a sequence of different loadings, by calculating the 
damage of the specimen for each loading.

In case of a unique cyclic loading, the damage 
(noted DMiner) is the ratio of the number of cycles 
realized n over the number of cycles required to cause 
the failure Nf of the sample at a given loading level:

D
n

NMiner
f

=  (1)
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If a cyclic solicitation is composed of p different 
loadings, the total damage is expressed as follows:

D D
n

NMiner Mineri
i

fii

p

i

p

= =
==
∑∑

11
 (2)

where

• p is the number of distinct loadings levels,
• DMiner i is the fraction of sample life consumed at 

load level i,
• ni is the number of cycles at loading level i,
• Nfi is the number of cycles required to cause the 

failure at the level i.

Furthermore when the sum of damages is equal 
to one, the sample is expected to break.

Among the many drawbacks of Miner’s law, we 
recall that it does not take into account the load 
sequence effects or interactions between the cycles: 
for a given number of cycles, it states that the dam-
age is the same, regardless of the order in which the 
different loadings are applied.

In order to test Miner’s law, a series of uniaxial 
fatigue experiments have been carried out and the 
results are presented in the following section.

3 EXPERIMENTS AND RESULTS

All the fatigue experiments have been carried out 
at room temperature on diabolo-shaped specimens 
(Fig. 1) made of Styrene-Butadiene-Rubber (SBR) 
with different carbon black contents: 30 “Per Hun-
dred of Rubber” (PHR) for the specimen A and 60 
PHR for the specimen B.

These diabolo-shaped specimens are subjected 
to cyclic loadings with a frequency of  3 Hz. Due 
to the different carbon black contents in the two 
specimens, different maximum loads are applied 
in each, in order to limit the duration of  each 
experiment.

Miner’s cumulative damage rule has been tested 
for only two loadings in the present paper. The 
loadings 1 and 2 for sample A are respectively set 
to 60 N and 90 N, while for sample B, they are set 
to 110 N and 130 N.

According to the equation (3), Miner’s total 
damage is written as follows:

D
n

N
n

N
D DMiner

f f
Miner Miner= + = +1

1

2

2
1 2 (3)

and this quantity is equal to one at failure.
In order to test this cumulative law, the numbers 

of cycles at which a diabolo-shaped specimen fails 
at a given loading is first determined using a uniax-
ial tensile machine. For each loading, three trials 
are made to ensure the validity of the results.

Figure 2 shows that three phases can be distin-
guished during the fatigue experiments.

Thanks to figure 2, we observe that during our 
fatigue experiments, we have three phases. The first 
is the phase of accomodation (noted 1 on figure 2), 
it corresponds to a sudden drop of the rigidity of 
the material. The second phase is the phase of sta-
bilisation (noted 2 on the figure 2), where we can 
observe that the displacement becomes stable. This 
phase takes a very long time and corresponds to 
the greatest part of the specimen’s total lifetime. 
The last phase (noted 3 on the figure 2), corre-
sponds to the sudden growth of the minimum and 
maximum displacements, it occurs just before the 
failure of the specimen.

The loading sequence carried out for the two 
specimens to test Miner’s cumulative law are:

• 66% of the number of cycles to failure for loading 
1 then until the failure for loading 2,

• 33% of the number of cycles to failure for loading 
1 then until the failure for loading 2,

• 66% of the number of cycles to failure for loading 
2 then until the failure for loading 1,

• 33% of the number of cycles to failure for loading 
2 then until the failure for loading 1.

For each loading sequence, the experiments 
have been repeated three times in order to verify 

Figure 1. Diabolo-shaped specimens.
Figure 2. Variation of  the minimum and maximum 
displacements for sample B loaded at 130 N.
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the reproducibility of the tests. Miner’s cumulative 
damage rule has thus been tested twelve times for 
each material.

The fatigue experiments show in some cases, 
a Miner’s total damage higher than 1 which can 
be due to a material reinforcement after the first 
solicitation. In the same manner for others experi-
ments, we obtain the contrary, that is a very fast 
damaging of the material which generates a total 
damage of Miner smaller than 1. These observa-
tions don’t allow to use Miner’s cumulative dam-
age rule. The aim of the new model introduced 
in the next part is to overcome the limitations of 
Miner’s cumulative law.

4 A NEW HEURISTIC MODEL

For a given loading resulting in a failure in Nf 
cycles, we proposed the following damage evolu-
tion law:

dD
dN

g D N
N

f

f
=

( , )
 (4)

The function g(D, Nf) has to verify the following 
conditions:

• the necessary condition: 
dD

g D N
N

f
f( , )

= ∀∫ 1
0

1

; 
(because at a constant loading amplitude, D has 
to be equal to 1 when N = Nf)

• the function g cannot be the product of two func-
tions which depend respectively on D and Nf, in 
order to predict the discrepancies to Miner’s lin-
ear law.

A particular form of g(D, Nf), the simplest pos-
sible which verifies these conditions, is:

g D N
Df( , )

( / )
=

+ −
1

1 2 1 2α  (5)

where α ≡ α (Nf).
α (Nf) means that α depends on the applied 

loading level (and thus ultimately of Nf).
After having specified the form of  the func-

tion g, we can explain how to determine the 
parameters α1 and α2 corresponding to the two 
loadings. We then define:

G D N
dD

g D N
D Df

f

D
( , )

( , )
( )= ′

′
= + −∫0

2 1α α  (6)

For a loading sequence (C1, C2), the total dam-
age of Miner is:
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where D represents the damage of the sample after 
the first cyclic loading.

Using equations 6 and 8, D2 is eliminated and an 
expression for the damage D is obtained:

D
N N N Nf f=

− + +
−

α α
α α

1 2 2 2 1 1

2 1

1( / ) ( / )
 (9 )

Replacing D in equation (7), we obtain a rela-
tion between the experimental data and the numer-
ical parameters α1 and α2 of the form

f1(N1/Nf 1, N2/Nf 2, α1, α2) = 0

In the same manner, for a loading sequence 
(C2, C1), we obtain a relation of the form f2(N1 '/Nf1, 
N2' /Nf 2, α1, α2) = 0.

For a succession of two loadings, like for our 
fatigue experiments, we have to determine α1 and α2 
by the least square method. It’s necessary for that 
to have at least two equations, thus at least two 
experiments.

5 COMPARISON BETWEEN 
EXPERIMENTAL RESULTS 
AND THE NEW MODEL

This section compares the results obtained with 
the new model and the results obtained dur-
ing our twelve fatigue experiments on diabolo-
shaped specimens. The lifetime computed with the 
model and during our experiments are grouped in 
tables 1 and 2 for the specimen A and in tables 3 
and 4 for the specimen B.

DMiner 1exp and DMiner 1model represent the damage 
obtained experimentally and numerically for load-
ing 1, and DMiner 2exp and DMiner 2model for loading 2.

The loading orders (C1,C2) or (C2,C1) indicate 
the first loading applied to the sample. Indeed, if  
this is (C2,C1) (line 8 in the tables 1 and 2), then the 
first loading applied is loading 2 until a Miner’s 
damage of 0.66 then loading 1 until the failure.

The comparison between the experimental 
and numerical results shows for the sample 
A (tables 1 and 2), a better prediction than Min-
er’s cumulative rule, even when observing a dam-
age for one loading greater than 1 (line 12 in the 
tables 1 and 2). Indeed, the experiments give DMiner  1exp 
equal to 1.10, the model gives DMiner 1model = 0.90, 
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that is an error of 18% and the Miner’s law gives 
Dpred 1Miner = 0.67, that is an error of 39%.

For these loading sequences, the model com-
putes α1 = 0.430 and α2 = –0.300 corresponding 
respectively to the loadings 1 and 2.

For the sample B, the experimental total dam-
ages (Tables 3 and 4) are greater than 1 when 
loading 1 is applied first and lesser than 1 when 
loading 2 is applied first. The model gives a better 
representation of  the experiments than Miner’s 
cumulative rule when the damage for a unique 
loading is much higher than 1 like in line 7. 
Indeed, DMiner 2exp is equal to 1.66, the model gives 
DMiner 2model = 0.94, which is an error of  43% and 
Miner’s law gives Dpred 2Miner = 0.67 that is an error 
of  60%. For these loading sequences, the model 
computes α1 = –0.09 and α2 = 1 corresponding 
respectively to the loadings 1 and 2. Even if  our 

model gives less satisfactory results for fatigue 
experiments for the sample B than for the sample 
A, the aim of  this work to give a better predic-
tion of  the experiments than Miner’s cumulative 
damage rule, is fulfilled.

6 CONCLUSIONS

A fatigue experimental compaign carried out on 
diabolo-shaped specimens made of  elastomers 
with different carbon black contents: 30 and 60 
PHR in each SBR specimen, has allowed to test 
Miner’s cumulative damage rule and to conclude 
that Miner’s law predictions in term of  lifetime are 
not very accurate. In order to overcome the limi-
tations of  Miner’s cumulative law, we have pro-
posed a particular model. This one has  permitted 

Table 1. Damages obtained with the experiments for 
the sample A.

Loadings order DMiner 1exp DMiner 2exp DMiner total exp

(C1, C2) 0.33 0.81 1.14 
0.33 0.31 0.64 
0.33 0.13 0.46 
0.66 0.01 0.67 
0.66 0.43 1.09 
0.66 0.23 0.89 

(C2, C1) 0.40 0.66 1.06 
0.62 0.66 1.28 
0.63 0.66 1.29 
0.57 0.33 0.90 
0.64 0.33 0.97 
1.10 0.33 1.43 

Table 2. Damages obtained with the model for the 
sample A.

Loadings order DMiner 1model DMiner 2model DMiner total model

(C1, C2) 0.17 0.70 0.87 
0.44 0.38 0.82 
0.55 0.28 0.83 
0.80 0.11 0.91 
0.50 0.32 0.82 
0.64 0.22 0.86 

(C2, C1) 0.46 0.70 1.16 
0.56 0.62 1.18 
0.57 0.62 1.19 
0.73 0.44 1.17 
0.75 0.41 1.16 
0.90 0.19 1.09 

Table 4. Damages obtained with the model for the 
sample B.

Loadings order DMiner 1model DMiner 2model DMiner total model

(C1, C2) 0.27 0.94 1.21 
0.23 0.96 1.19 
0.27 0.94 1.21 
0.59 0.68 1.27 
0.68 0.57 1.25 
0.64 0.61 1.25 

(C2, C1) 0.13 0.74 0.87 
0.07 0.86 0.93 
0.06 0.87 0.93 
0.18 0.65 0.83 
0.14 0.71 0.85 
0.12 0.76 0.88 

Table 3. Damages obtained with the experiments for 
the sample B.

Loadings order DMiner 1exp DMiner 2exp DMiner total exp

(C1, C2) 0.33 1.66 1.99 
0.33 2.08 2.41 
0.33 1.56 1.89 
0.66 1.47 2.13 
0.66 0.40 1.06 
0.66 0.74 1.40 

(C2, C1) 0.12 0.66 0.78 
0.05 0.66 0.71 
0.04 0.66 0.70 
0.15 0.33 0.48 
0.11 0.33 0.44 
0.08 0.33 0.41 
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to obtain values of  Miner’s damage closer to the 
experimental results than Miner’s law predictions.
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ABSTRACT: This paper presents a hyper-vico-plastic constitutive model with damage, which is based 
both on the generalization of rheological models to finite strain and on a micro-physically motivated sta-
tistical approach. An experimental campaign of fatigue was realized and has allowed to study the fatigue 
behavior with respect to amplitude and frequency of the mechanical sollicitation. A model of fatigue 
based on cumulative damage is proposed. Finally, a numerical implementation has permitted to confront 
the experimental results to the numerical ones.

developed that takes into account the positive part 
of the free energy rate both on the interface fillers/
matrix and inside the matrix when an energetic 
criteria has been reached (Grandcoin 2008; Mars 
2001). The model has been implemented in a finite 
element software to confront the experimental 
fatigue configurations to numerical ones.

2 A STATISTICAL HYPER-VICO-PLASTIC 
MODEL

2.1 Micro-physical hypothesis

Elastomers belong to the family of flexible high 
polymers. They consist in macromolecular chains 
with ramifications and exhibit high deformability 
and a dissipative dynamical behavior. Further-
more, this dissipative behavior depends on the vul-
canization, the industrial process and moreover on 
the fillers which are incorporated.

By taking into account the heterogeneity of  the 
material at a microscopical scale, it is proposed to 
adopt a simple representation of the Representa-
tive Elementary Volume (REV). It is supposed to 
be composed by a filler agglomerate into an elas-
tomeric matrix with an intermediate zone called 
interphase (see figure 1(a)). The behavior of  each 
component is supposed as follow (see figure 1(b)):

• a hyper-viscoelastic behavior of  Poynting-
Thomson for the matrix;

1 INTRODUCTION

Elastomeric material are widely used by many 
industries: automotive, aeronautic … In many appli-
cations, elastomeric parts are closely linked to secu-
rity and require reliability properties. That is why 
a perfect knowledge of the mechanical behavior is 
needed, both for static and dynamic loadings, and 
furthermore for the life time prevision. These goals 
require a modeling of the behavior which takes into 
account material and geometrical non-linearities, 
entropic processes and fatigue influence.

The present work is concerned with the con-
stitutive modeling of the dissipative and fatigue 
behavior of a silicon elastomer filled with silica. 
The constitutive model is based on an micro-
physically motivated hyper-visco-plastic behavior 
associated with statistical concepts as already pre-
sented in previous ECCMR (Boukamel et al. 2005; 
Boukamel et al. 2007). This statistical aspect allows 
the model to cover a wide range of frequency with 
few parameters.

The fatigue behavior is investigated from an 
experimental campaign which was realized on 
cyclic traction and shear tests with various ampli-
tudes, frequencies and pre-loadings. From the 
experimental results an evolution of material 
parameters upon the number of fatigue cycles has 
been determined. Starting from these observations 
and with the hypothesis of a cumulative and iso-
tropic damage, a damage fatigue model has been 
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• an hyperelastic behavior for the filler aggregate;
• a visco-plastic behavior for the interphase.

It is also supposed that the affinity hypothesis is 
verified (Voigt hypothesis).

2.2 The statistical approach

The main idea of this approach consist in a com-
bination of the simple rheological behavior of 
each different population of R.E.V which could 
be present in the material. The statistical approach 
allows the generalization of a parallel assembly 
of a finite number of rheological branches to an 
infinite one. The interest of this approach resides 
in the cover of different characteristic times and 
different yield stress at the interphase. Further-
more, this approach presents the advantage of a 
multi-branches model (generalized model) without 
an increase of the number of material parameters 
(Martinez 2005; Boukamel 2006).

Starting from the rheological representation of 
the R.E.V. and the concept of a multi-branches 
model (or multi R.E.V) each family of aggregates 
can be associated with a random variable ω. This 
variable can be linked to the yield stress at the 
interphase which is closely related to the physical 
properties of the aggregates. It is also defined a 
probability of presence: P(ω)dω of  each family in 
the material.

The constitutive model is based on the concept 
of multiplicative decompositions or intermedi-
ate states as early proposed in (Sidoroff 1974). 
The deformation gradient F is decomposed as: 
F = Fe ⋅ Fv = fe(ω) ⋅ fp(ω), and it is defined the left 

Cauchy-Green deformation tensors: B F Fe e e
T= ⋅

for the elastic part in the matrix and B F Fv v v
T= ⋅  

for the viscous part in the matrix. The elas-
tic deformation in the filler is represented by 
b f fe e e

T( ) ( ) ( ).ω ω ω= ⋅  It is also defined the specific 
free energy and a pseudo-potential of dissipation 
as follow:
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deformation, respectively in the matrix and in the 
filler.1 Using the so-called internal dissipation ine-
quality and the normality principle, equation (1) gives 
us the following state and complementary laws:
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It has been taken into account in these equa-
tions of the incompressibility condition: Tr(D) = 
Tr Trv

o
vp
o( ) ( ( )) .D d= =ω 0  To proceed further, it is 

adopted a Gent-Thomas and a neo-Hooke free 
energy types together with a quadratic form of the 
pseudo-potential for the viscosity and a classical 
Von-Mises yield function for the plastic part:
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According to the previous choices, the behavior of 
the matrix is defined from the material parameters 
C1 and C2 of the Gent-Thomas hyperelastic model, 
from A the modulus of the viscous part and from 

(a) R.E.V
representa-
tion

Fillers Interphase

Matrix

(b) rheological
R.E.V.

Fillers

Matrix

ω1, P1

ω2, P2

ωN , PN

(c) Generalized model

F

Fe Fv

fe(ω) fvp(ω)

ψe

ψv

ϕv

ψμ(ω)
ϕμ(ω)

(d) Statistical model

Figure 1. Hyper-visco-plastic statistical model.

1 By using the polar decomposition Fe = Ve ⋅ R and 
fe(ω) = ve(ω) ⋅ r(ω), these objective tensors are defined 
from the Eulerian rates of deformation: Dv

o  = R ⋅ Dv ⋅ RT 
and dvp

o (ω) = r(ω) ⋅ dvp(ω) ⋅ r(ω)T.
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Figure 2. Identification of the material parameters.
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Figure 3. Identification of the material parameters.

H the viscosity parameter. The behavior of a filler is 
characterised by the hyperelastic coefficient a(ω), by 
the viscosity η(ω) and by the yield stress χ(ω). Finally, 
the following statistical functions are retained:
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There are 9 material parameters to be identified, 
7 are determinist ( , , , , , )C C A H a1 2 0 η χand  and 2 
are statistical (Ω et ω0).

3 EXPERIMENTAL TESTS AND 
PARAMETERS IDENTIFICATION

3.1 Identification strategy

Due to the complexity of the model and to the 
number and the interdependency of the material 
parameters, it has been necessary to develop a spe-
cific identification strategy to distinguish typical 
plastic effects from viscous effects. The proposed 
strategy is based on the following steps:

1.  Starting from quasi-static experimental tests 
 (shear and traction)

 – Identification of C1 and C2,
 – Estimation of A a, , , .0 0χ ωΩ and

2. Relaxation tests allow to:

 – Identify A, H and ω0,
 – Correct a0, , , .χ η ωΩ and 0

3. Triangular cyclic tests (at different rates) allow  
 to correct the prediction of a0, , ,χ η and Ω

3.2 Experimental campaign

According to the previously defined strategy, the 
experimental campaign has been realized at a 
controlled temperature T = 25°C on a silicon elas-
tomer filled with silica. This campaign has been 
consisted in:
• Uniaxial traction tests on tension specimens, with 

quasi-static loadings, triangular cyclic loadings 
and relaxation.

• Shearing test on double-shearing specimens, with 
quasi-static loadings, triangular cyclic loadings at 
various rates and various amplitudes of strain.
The figures 2 and 3 illustrate some results of the 

identified model compared to experimental tests.

(4)

3.3 Evaluation of fatigue

To analyze the effect of fatigue on the material 
behavior, it has been realized a specific experimen-
tal campaign on tension specimens (traction) and 
double shearing specimens with a specific shape at 
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the outer surface (figure 4(a)). This campaign has 
consisted in:
• Cyclic fatigue test for various cycle numbers, fre-

quency and amplitudes of loading;
• Characterization tests, as described in the previ-

ous section, for each level of fatigue (from 1000 
to 50000 cycles for traction and 1000 to 7000000 
for shearing, depending on the amplitude of 
fatigue).
The preliminary results of this campaign has 

shown that the visible damages are initiated near 
the center of the outer faces of the double shear-
ing specimen. Furthermore, the principal effects 
of fatigue on the material behavior are a softening 
response and a diminution of the dissipation.

4 TOWARDS A MODILISATION 
OF FATIGUE

In the aim of a better understanding of the inter-
action between the matrix and the agglomerates of 
fillers, it was realized microscopical observation with 
a SEM in collaboration with the Centre des Matéri-
aux, Mines de Paris. This observations were done 
on traction specimen which were previously sub-
jected to fatigue test. The principal micro-damage 
mechanism observed was a decohesion at the inter-
phase matrix/fillers. Furthermore, observations had 
shown the permanent aspect of this decohesion.

These earlier observations has conduced to 
analyse the influence of the material parameters 
of the statistical model on the cyclic response in 
shearing. It has been observed that the more influ-
ent parameters are the hyperelastic parameter of 
the matrix (C1, C2) and the statistical yield stress 
at the interphases Ω (see figures 4). From these 
phenomenologic observations, it can be postulated 
that the damage of the material can be described 
by a decrease of the hyperelastic parameters of the 
matrix leading to a softening effect together with a 
reduction of the yield stress at the interphase. So, 
to model the damage behavior in fatigue, it must be 
take into account of the two previous aspect and 
by considering an isotropy hypothesis, one has:

• A damage at the interphase matrix/fillers which 
can be described by a decrease of the yield stress

 
d = −1 0

Ω
Ω

where Ω0 is defined from the initial behavior 
(non-damaged material).

• A damage of the matrix with a softening effect

 
D = −1 0

0
0

Δ
Δ

σ
σ

where Δ Δσ σ0
0

0and  are respectively the maxi-
mum variation upon a stabilised cycle of the stress 
response of the matrix branch at the initial state 
and the damaged state.

The evolution of theses two damage variables 
upon the number of loading cycles was obtained 
through the identification of the parameters C1, C2 
and Ω at various level of fatigue (see figure 6). The 
damage of the material seems to initiate during 
the first cycles into the interphase and it is propa-
gated into the matrix in the next cycles. Using the 
hypothesis of a linear cumulative model, it can 
be postulated the following evolution equations 
for the two damage variables with respect to the 
number of cycles2:
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In the previous expressions, RM and Rμ repre-
sent returnable cyclic energies which can be defined 
as the difference between the given energy and the 

Menisc

(a) Double shearing specimen for fatigue
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Figure 4. Fatigue tests.

2 H( )⋅ 〈 〉and Χ  are respectively the Heaviside function 
and the positive part of X.
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dissipated one, and such respectively in the matrix 
branch and the statistical branch. This model 
requires the identification of 5 material parameters: 
α μ, , ,A R RM

0 0 and 0d . The last one can be viewed as 
a yield damage of the interphase from which the 
damage is initiated into the matrix. R RMμ

0 0, , are the 
fracture energies during a static test.

5 FINITE ELEMENT SIMULATION

5.1 Numerical implementation

The proposed statistical hyper-visco-plastic model 
was implemented in the finite element software 
Ze-BuLoN, by using a discretization that consist 
in three level: spatial, statistic and temporal. 
These developments are based on a perturbed 

Lagrangian formulation to take into account of 
the incompressibility. They are integrated in a 
Newton-Raphson algorithm with an elementary 
static condensation of the pressure dof. The inte-
gration of the evolution equations is based on a 
specific exponential mapping scheme which will 
be described in a paper to appear (Lejeunes et al. 
2009). The damage evolution laws has been taken 
into account using a week coupling scheme, that 
can be sum up as follow

• A preliminary post-treatment step is provided to 
calculate RM and Rμ on the first fatigue cycles,

• A simulation of characteristic tests at N number 
of cycles is realized using the fields RM and Rμ 
which were calculated from the first step to 
finally obtain d and D,

• A simulation of characteristic tests by taking 
into account the previously evaluated damage 
variables.

5.2 Simulation of the shearing test

It has been realised a simulation of some shearing 
tests made on the specific shaped specimen (figure 
4(a)). The amplitude of the strain loading is 25% 
and the frequency of the cyclic signal is 6 Hz. The 
global and local results of the finite element simu-
lation show:

• a good prediction of the fracture initiation loca-
tion (fig. 8),

• a good accordance of the numerical and the 
experimental results of a characteristic test 

(a) Before fatigue

(b) After fatigue, 100% of strain
amplitude

(c) Permanent decohesion

Figure 5. Microscopic observation of the damage 
mechanism in fatigue.
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realized after 170000 and 180000 cycles of 
fatigue, under a triangular cyclic loading at 50% 
of strain amplitude (fig. 9).

6 CONCLUSION

With the goal to model the behavior of filled elas-
tomer in fatigue, it has been proposed a microphys-
ically motivated statistical model that can take into 
account different family of aggregates. This model 
is derivated from a rheological view of a R.E.V., 
which consists of a filler aggregate inside an elas-
tomeric matrix with an interphase at the frontier 
of the two first phases. A damage law by fatigue as 
been integrated into the proposed model, with two 
specific mechanism: decohesion of the interphase 
matrix/fillers following by a propagation into the 
matrix.

From the experimental point of view, it has been 
realized an experimental campaign that has con-
sisted both in cyclic fatigue tests and characterisa-
tion tests. This campaign has allowed to quantify 
the evolution of the material parameters upon 
fatigue.

Finally, the finite element implementation and 
the numerical simulation of some experimental 
tests have shown a good agreement between the 
proposed model and the experiments.
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1 INTRODUCTION

There are many different approaches to evaluate 
the lifetime of rubber parts. What they all have in 
common is the fact, that the prediction is based 
on data which results from equidirectional experi-
ments. In those cases a lifetime prediction can lead 
only to satisfactory results, when it is made for an 
isotropic and elastic material or for a loadcase with 
constant loading directions. Under those condi-
tions the equidirectional experiments provide suffi-
cient information for the prognosis of the lifetime. 
Typical rubber products usually are not loaded 
equidirectionally and the material itself  is inelas-
tic. Therefore, not taking the change of the load-
ing direction into account, the common lifetime 
predictions are not complete. In this paper a new 
experimental approach is presented, which allows a 
split of the lifetime analysis into experiments which 
are based on tests with varying amplitudes and 
constant loading directions on the one side and 
tests with a constant amplitude and rotating load-
ing directions on the other side. A common known 
example for changing loading directions through-
out a deformation is the simple shear process, 
which is outlined in Figure 1. As can be observed, 
the directions of the connecting lines between the 
edges of the square change throughout the simple 

shear process. The lines in the undeformed square 
can be regarded as a representation for the direc-
tions of the lagrangian eigenvectors. When the 
inscribed square reaches a configuration where it 
is rectangular again, its edges represent the direc-
tions of the eulerian eigenvectors. As simple shear 
is often a dominant deformation in complex 
deformed structures, the influence of changing 
loading directions on the lifetime of rubber parts 
must be taken into consideration.

2 EXPERIMENTAL SETUP

2.1 Simple shear with rotating axes

The basis of the new experimental approach is a 
simple shear deformation process with rotating 
axes, which is outlined in Figure 2. The process is 
initiated by a simple shear deformation with the 

Lifetime prediction of rubber products under simple-shear loads 
with rotary axes

R. Klauke & T. Alshuth
German Institute of Rubber Technology (DIK), Hannover, Germany

J. Ihlemann
Chemnitz University of Technology, Chemnitz, Germany

ABSTRACT: Lifetime predictions of technical rubber products in most cases are based on long time 
fatigue experiments. During those experiments the samples are cyclically loaded till failure. Usually the 
loading is initiated with an uniaxial deformation whereby the amplitude and the mean value of the load is 
varied in the course of the test series. However, in the majority of cases the dominant loading condition 
in rubber-parts is a mixture of many different loading conditions. Moreover, the loading direction in a 
material point does not remain constant but often changes throughout the deformation process. There-
fore, a lifetime prediction with conventional approaches, based on data from equidirectional experiments 
leads to an error for inelastic and anisotropic materials under the described loading conditions. For the 
decoupling on the laboratory scale of the dependencies of the lifetime on the loading amplitude on the 
one hand and on the change of the loading direction on the other hand, an experimental rig according to 
(Gent 1960) has been developed, which is used in a new way for lifetime investigations under simple shear 
loads with rotary axes.

Figure 1. Outline of a simple shear process.
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shear strain s according to the coefficients of the 
deformation gradient F .
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The deformation process continues with the 
translatoric shift of the undeformed material 
planes on a circular track around the y-direction. 
Hereby, all planes maintain their orientation to 
each other. Equation 2 shows the coefficients of 
the corresponding deformation gradient.
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with

ϕ ω= t  (3)

f s t( ) ( )ϕ ω= ⋅ cos  (4)

g s t( ) ( )ϕ ω= ⋅sin  (5)

With the beginning of the rotational phase of 
the experiment, it can be observed that the result-
ing force F  and the shear deformation do not 
have the same direction anymore. This phenom-
enon is based on the fact that, in comparison to 
elastic materials, the resulting forces in inelastic 
materials do not necessarily have to be in the same 
direction, as the principle eigenvector of the defor-
mation. Moreover they can vary in the course of 
the deformation process due to effects like energy 
dissipation and stress-softening. For a simple 
shear process with rotating axes the resulting force 
vector can be regarded in a configuration, where 
the direction of the first component is the same, 

as the direction of the translatoric displacement in 
radial direction.
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In this configuration F R always stands in a 
right angle to the actual movement of  the defor-
mation process. It therefore has no contribution 
to the energybalance, except for the initial sim-
ple shear deformation. On the contrary, the cir-
cumferential force FU  only has a contribution to 
the energybalance during the rotational phase, 
because its direction is always the same as the 
direction of  the movement. As there is no change 
in the momentary configuration of  the deforma-
tion, it stays a simple shear deformation through-
out the whole process, the circumferential force 
must be originated in dissipative effects, which 
occur only due to the change of  the direction of 
the deformation.

The energy, which is dissipated per revolution 
of the simple shear process with rotating axes, can 
be computed with the value of the circumferen-
tial component of the force vector F  according to 
equation 7.

Φ = ∫ F rdR ϕ
π

0

2  (7)

Hereby, Φ stands for the amount of  dissipated 
energy during one revolution, ϕ for the actual 
angular position and r for the displacement of 
the initial simple shear deformation. Regarding 
the fact, that a mere change of  the direction of 
deformation is connected with energy dissipa-
tion, it can be concluded that this process induces 
damage in the material and therefore the mate-
rial itself  has a limited lifetime under those con-
ditions. The angle between the direction of  the 
translatoric displacement of  the simple shear 
deformation and the resulting force is the so 
called phase angle ψ. It can be computed directly 
via the two components of  the resulting force, as 
shown in equation 8.

ψ =
⎛
⎝⎜

⎞
⎠⎟

arctan
F
F

U

R
 (8)

First simulations of a simple shear process 
with rotating axes have been made by (Ihlemann 
2003), where the existence of the phase angle for 
this deformation process could be accounted for 
theoretically.

Figure 2. Simple shear with rotating axes.
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2.2 Experimental rig

For the realization of a simple shear deformation 
with rotating axes, a testing machine according to 
(Gent 1960) has been constructed. It can be used 
for the mechanical characterization of materials 
as well as for lifetime measurements, of which the 
second is the main purpose of the rig. A principle 
outline of the machine is given in Figure 3, which 
shows the procedure of  an experiment in four 
steps.

The machine consists of three parts, whereby, 
during a measurement, the outer parts stay fixed 
in their position. The middle part has a degree of 
freedom in radial direction. In the first step, two 
rotationally symmetric samples are clamped into 
the rig in a double-sandwich-arrangement, each 
between one outer and the middle part. The exper-
iment is initiated with the radial displacement of 
the middle part. In that way, a simple shear defor-
mation is realized in the samples. The geometry 
of the samples is optimized in a way, that with 
the radial displacement of the middle part, simple 
shear is the predominating deformation through-
out the whole volume of the samples. This is neces-
sary to realize a nearly homogenous deformation 
and to be able to correlate between the measured 
forces and the observed phenomena. At the same 
time, the maximum load is located within the 
sample, far away from contact- and surface areas, 
so that a failure is most probable in the interior. 
After initiating a simple shear deformation, one of 
the shafts of the outer parts is rotated to start a 
simple shear deformation with rotating axes. For 
inelastic materials, the middle part would move 
sideways due to energy-dissipation, as is shown in 
Figure 3 in the third image. If  the resulting move-
ment is restricted as shown in the fourth image, the 
circumferential force could be measured instead. 

The radial force due to the simple shear deforma-
tion and the circumferential force due to dissipa-
tion effects both are the measurement quantities of 
the new testing device. With those two measurands 
and the computed phase angle the lifetime behav-
ior of rubber-materials under simple shear loads 
with rotary axes can be characterized. Hereby it 
is a major advantage,that in spite of the dynamic 
characteristics of the experiment, the measurands 
stay constant in short-term-observation. A theo-
retical discussion on this kind of loading can be 
found in (Ahmadi 1999).

2.3 Long time fatigue experiments under simple-
shear-loads with rotating axes

The first experiments with the new testing device 
have shown, that rubberlike materials have a lim-
ited lifetime under simple-shear loads with rotat-
ing axes. Figure 4 shows the results of a long 
time fatigue experiment with the testing machine, 
whereby the course of the radial force and the cir-
cumferential force during the experiment are plot 
against the revolutions of the samples. The experi-
ment has been carried out till failure of one of the 
samples in the double-sandwich-arrangement.

During the first 10000 cycles, stress softening 
effects can be observed in the curve progression 
of the two measured forces. The material becomes 
weaker and both forces decrease in the course of the 
experiment. After that, both quantities stay con-
stant in short-terms. In long-term-observation, the 
radial force decreases with an increasing number 
of revolutions, but the circumferential force stays 
constant. The diminution of the radial force in 
the course of the experiment shows, that a mod-
ulation of the loading direction leads to a weak-
ening of the material which can be grounded on 

Figure 3. Outline of experimental rig.
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accumulated damage within the samples. Figure 5 
shows the course of the appropriate phase angle. It 
can be calculated according to equation 7 with the 
absolute values of the measured forces. For pres-
entation purposes the results in Figure 5 have been 
filtered to suppress noise effects.

As the radial force decreases and the circumfer-
ential force stays constant over the lifetime of the 
material it can be concluded, that the phase angle 
increases slightly. But this is hardly to detect until 
catastrophic crack growth due to the comparatively 
small changes in the radial force. Physically, an 
increasing phase angle is equivalent to an increasing 
relative energy dissipation, which can be explained 
with friction in microscopic cracks throughout the 
volume of the sample material. Those cracks can 
be found with the help of computer tomography 
inside the samples or with a REM-analysis on the 
crack-surfaces of a broken sample. As a result of 
the rotational symmetry of the deformation proc-
ess, the cracks also have a circular shape. An exam-
ple for such a crack is shown in Figure 6.

For visualization purposes, the crack has been 
marked with a white circle. The catastrophic crack 
growth can be observed in the course of both forces 
as well as in the course of the phase angle. Due to 
the decreasing stiffness of the material, the radial 
force decreases significantly. At the same time, the 
energy-dissipation increases due to cracks within 
the sample which is resulting in a higher amount 
of friction at the surfaces of the cracks. This effect 
is represented in the course of the circumferen-
tial force, which first slightly increases and then 
decreases significantly before the complete fail-
ure of the sample. As there is an increase and a 
decrease in the course of the circumferential force, 
it is probable that there are two effects taking place 
at the same time: increasing energy-dissipation 
due to crack-induced friction and decreasing 
energy-dissipation due to increasing damage in the 
filler-network. To confirm this hypothesis, further 
investigations are necessary.

Analyzing the course of the phase angle, there 
is also a slight increase observable, which is at a 
maximum shortly before the complete failure of 
the sample. It also indicates the occurrence of 
friction within the material due to microscopic 
cracks, as already has been mentioned in respect 
to the circumferential force. When the phase angle 
reaches its maximum value after approximately 
330000 revolutions the the energy dissipation due 
to friction on the crack surfaces of the samples is 
at a maximum, too. The following decrease of the 
phase angle shows the continued crack growth and 
the involved damage in the structure of the mate-
rial. However, when the phase angle decreases 
to a value, which is significantly below the value 
before the catastrophic crack growth, this behav-
ior cannot only be explained by effects from the 
sample geometry or the material itself. In fact, the 
phase angle has to stay constant independently 
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Figure 4. Examplatory measurement with EPDM.
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Figure 6. REM-Analysis of microscopic cracks at the 
crack surface.
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of the number of samples because it represents a 
material property. As both samples in the double-
sandwich-arrangement consist of the same mate-
rial and the change of the phase angle after the 
failure of one sample is always a decrease, it is 
improbable, that the difference in the phase angle 
can be explained with varying material properties 
due to processing effects. Therefore, the decrease 
has to have other reasons. A possible explanation 
for the difference in the course of the calculated 
phase angle before and after the failure of one 
sample is the influence of friction from the bear-
ings. With the failure of one sample, the reaction 
forces and therefore the friction in the bearings 
decrease. To confirm this theory, further investiga-
tions are necessary. For an overview of the general 
lifetime behavior of EPDM under simple shear 
load with rotating axes, measurements with vary-
ing amplitudes have been realized. Figure 7 shows 
the results of long time fatigue experiments with 
shear strains of s1 = 1.25, s2 = 1.5 and s3 = 1.75. 
Each point represents the mean of the results from 
two experiments. As can be seen in Figure 7, the 
lifetime of the material decreases with an increas-
ing shear strain.

The axis of abscissae shows the number of rev-
olutions till failure, the ordinate shows the shear 
strain.

The criterion for failure is defined with the com-
plete break of one sample in the double-sandwich-
arrangement. The state of the other sample has 
not been taken into account.

2.4 Mechanical characterization

With the help of the simple shear deformation 
with rotating axes, a mechanical characterization 
of rubberlike material is possible. For this pur-
pose, a loadcase according to Figure 8 is put into 
practice.

The principle is to drive the shear strain towards 
determined positions and keep the loading for a 
certain time. In the example, shear strains from 

0 to 1.75 in steps of 0.25 have been realized one 
after another. Each strain level has been kept for 
ten minutes of time. After reaching the maximum 
strain level, the procedure is repeated in reversed 
order and the samples are unloaded. Again, each 
strain level is kept for ten minutes. Figure 8 shows 
an exemplary measurement with sulfur cross 
linked NR.

The sinusoidal behavior of the curve can be 
attributed to minor inhomogeneities in the samples, 
which are expanded due to beating effects. Those 
beating effects are caused by the superposition of 
the rotational speed of the testing machine and the 
measurement frequency. Regarding the radial force, 
stress softening effects can be observed. Especially 
for the higher amplitudes it can be seen, that the 
radial force decreases over the time with an increas-
ing number of revolutions. Moreover, the stress 
softening effects can be shown with the help of a 
direct comparison of the values for the radial force 
in the loading and in the unloading process. It can 
be observed, that during the unloading process the 

Figure 7. Lifetime behavior of sulfur crosslinked EPDM.

Figure 8. Loadcase for a mechanical characterization 
under simple shear load with rotating axes.

Figure 9. Example measurement for the characterization 
of NR.
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resulting force for a certain loading level is signifi-
cantly lower, than in the loading process, although 
the samples have been deformed with the same 
shear strain amplitude. This behavior represents 
the Mullins-Effect (Mullins 1948). Analyzing the 
behavior of the radial force, it can be found that it 
increases with an increasing loading level.

With the help of the radial and the circumfer-
ential force, the phase angle can be determined to 
show its dependence on the shear strain amplitude. 
For a better interpretation of the behavior of the 
phase angle, the calculated results have been filtered 
to suppress the influence of the beating effects. As 
can be seen in Figure 10, the phase angle is depend-
ent on the shear strain amplitude. With an increas-
ing shear strain the phase angle decreases.

At the beginning of the experiment the meas-
ured forces are comparatively small so that the 
quotient of those two values, which is according to 
equation 7 necessary to compute the phase angle, 
magnifies the beating effects. Therefore, the scatter-
ing is at a maximum for small deformations, which 
can be found at the beginning and at the end of the 
experiment and small for the larger deformations, 
which are situated in the middle.

3 CONCLUSIONS

First investigations, using the experimental rig for 
long time fatigue experiments under simple shear 
load with rotating axes show, that in contrast to 
elastic materials, a pure modulation of the load-
ing direction has a significant effect on the lifetime 
of rubberlike materials. In that context, rotational 
symmetric cracks have been found and analyzed. In 

dependence of still unknown parameters, which will 
be identified in future investigations, the induced 
damage for the simple shear process with rotating 
axes can be even more pronounced than for compa-
rable loadcases like simple shear or uniaxial defor-
mations. Hereby, the life time experiments under 
the described loading conditions are not a substi-
tute for the common lifetime investigations, but an 
extension for the characterization of the lifetime 
of inelastic materials. It is a major advantage of 
the new testing device, that in spite of the dynamic 
characteristic of the experiment, the mesurands 
stay constant in short-term-observation.

Beside the long time fatigue experiments, the 
simple shear deformation with rotating axes is suit-
able for the mechanical characterization of  rub-
ber. Especially effects like stress-softening and the 
determination of the phase angle can be realized 
easily. Hereby it could be shown, that the phase 
angle is dependent on the shear strain amplitude 
under the described loading conditions.

ACKNOWLEDGEMENTS

We like to thank the following consortiums of 
companies for the support of our project.

1. Adam Opel GmbH
2. Continental AG, Contitech AG, PHOENIX 

Traffic Technology GmbH
3. Freudenberg Forschungsdienste KG, Vibra-

coustic GmbH & Co. KG
4. GMT GmbH
5. Henniges Automotive GmbH & Co. KG
6. REMA TIP TOP
7. Veritas AG
8. ZF Boge Elastmetall

REFERENCES

Ahmadi, H.R., J. Gough, A.H. Muhr & A.G. Thomas 
(1999). * Bi-axial experimental techniques highlight-
ing the limitations of a strain-energy description for 
rubber. Dorfmann, A., Muhr, A. (eds.), Constitutive 
Models for Rubber, Balkema, Rotterdam 21.

Gent, A.N. (1960). Simple rotary testing machine. British 
Journal of Applied Physics 11.

Ihlemann, J. (2003). Kontinuumsmechanische Nachbil-
dung hochbelasteter technischer Gummiwerkstoffe. 
Düsseldorf:VDI.

Mullins, L. (1948). Effect of stretching on the properties 
of rubber. Rubber Chem. Tech. 21.

Figure 10. Phase angle of a NR during the mechanical 
characterization.

 0

 5

 10

 15

 20

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

number of revolutions



241

Constitutive Models for Rubber VI – Heinrich et al. (eds)
© 2010 Taylor & Francis Group, London, ISBN 978-0-415-56327-7

Rubber component fatigue life evaluation based on FE-modelling 
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ABSTRACT: Rubber components are used extensively in, e.g., the automotive industry for vibration 
absorbtion whereby they are subjected to cyclic mechanical loading that can lead to fatigue failure. There-
fore, it is vital that the fatigue life of the component can be estimated a-priori based on the knowledge 
of its service condition. In this paper an approach based on FE-modelling, in combination with fatigue 
material testing, is evaluated and compared to fatigue testing of the component. The studied component 
is a standard damper made of carbon black filled natural rubber (NR). Monotonic material tests are used 
for choosing the appropriate constitutive model and to determine the material parameters for the NR 
material. Moreover, the FE model of the component is verified using the digital image correlation system 
ARAMISTM. Based on the results from the FE calculations, and material fatigue testing, the fatigue life 
of the component is estimated using different fatigue measures, i.e., the maximum engineering strain, 
strain energy density and cracking energy density. The results show that the estimated fatigue lives of the 
component from the calculation approaches are similar. However, the comparison with the fatigue testing 
of the component shows that the fatigue life estimates are quite poor and that they are non-conservative. 
Some probable causes for this are also discussed.

more sensitive to environmental conditions such as 
temperature, ozone and oxygen. Rubber also shows 
a more complicated constitutive behaviour with 
initial transient softening of the stress-strain-curve 
(Mullin’s effect), strain-crystallization in some rub-
ber materials, hysteresis effects and viscous effects. 
Among these, fatigue life is especially affected by 
the strain-crystallizing effect. A strain-crystallizing 
rubber material will actually show a reversed influ-
ence on the R-ratio than what is found in other 
rubber materials and in metals in general. For a 
thorough discussion of the factors affecting fatigue 
life, cf. Mars (2001) and the references therein.

The fatigue failure process for rubber materials 
is generally divided into the crack nucleation and 
crack propagation parts, cf. Mars & Fatemi (2002). 
As a consequence of this, the different approaches 
used to predict the fatigue life of rubber compo-
nents are also divided between those who consider 
the nucleation, Wang et al. (2002), Luo & Wu 
(2006), Kim et al. (2004) and Saintier et al. (2006) 

1 INTRODUCTION

Rubber components are used extensively in, e.g., 
the automotive industry for vibration absorbtion 
whereby they are subjected to cyclic mechanical 
loading that can lead to fatigue failure. Therefore, 
it is vital that the fatigue life of the component can 
be estimated a-priori based on the knowledge of 
its service condition. Due to heat generation and 
the sensitivity of rubber material to increased tem-
perature, fatigue evaluation of rubber components 
with testing must be undertaken at very low fre-
quencies, often around 1 Hz. This makes fatigue 
testing of rubber time consuming and expensive 
which motivates the use of modelling and simula-
tions to estimate the fatigue life.

In similarity with metals, the fatigue life is not 
only controlled by the loading range but also by the 
mean load (or R-ratio), by the multiaxial loading 
state and the sequence of loading cycles at variable 
amplitude loading. Compared to metals, rubber is 
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or propagation, Busfield et al. (2005) of the cracks. 
In this paper, the crack nucleation approach will 
be pursued. More specifically, the maximum engi-
neering strain, maximum strain energy density and 
maximum cracking energy density, cf. Mars (2001), 
will be used as measures of the fatigue damage.

The fatigue life of a standard damper used in 
the automotive industry, made of carbon black 
filled natural rubber (NR) having a hardness of 
60 shore A, is analyzed using both FE calculations 
and testing. Monotonic material tests are used for 
choosing the appropriate constitutive model for the 
NR material and to determine the material model 
parameters. Moreover, the FE model of the com-
ponent is verified using the digital image correla-
tion system ARAMISTM in monotonic component 
tests. Based on the results from the FE calculations, 
and material fatigue testing, the fatigue life of the 
component is estimated using the different meas-
ures of the fatigue damage and compared with the 
fatigue life obtained from component testing.

2 MATERIAL AND COMPONENT 
TESTING

2.1 Material

The studied component is made of a commer-
cially formulated carbon black filled natural 
rubber (NR). The NR material is viscous, incom-
pressible, isotropic and is able to withstand very 
large elastic deformations. During cyclic loading 
the NR material will soften initially, hence, for 
compressive load control this means that the meas-
ured compression of the component will increase 
during the loading. Furthermore, NR is a material 
that exhibits strain crystallisation, i.e., the stiffness 
of the material increases in the high loading end of 
each cycle due to the fact that the polymer chains 
become highly ordered. As a consequence of this 
there is a reversed dependence on the R-ratio as 
compared to metals. Hence, increasing the R-ratio 
with constant load range increases the fatigue life.

2.2 Monotonic material tests

Uniaxial tension and compression material tests, 
with prescribed deformation, were performed with 
the aim to evaluate different hyperelastic material 
models and choose the most appropriate. The ten-
sion and compression tests were performed accord-
ing to the standards ASTM D412 and ISO 7743, 
respectively. The environment during the tests was 
a standard laboratory environment with room tem-
perature and humidity. A total of 10 tensile and 
2 compressive tests were done and a mean curve 
was fitted to the results by visually picking values, 

cf. Figure 4. The resulting curve shows the typical 
 sigmoidal shape associated with rubber materials.

2.3 Cyclic material tests

Fatigue testing, according to the standard ASTM 
D 4482–99, was also performed on the NR mate-
rial using Dumbell test specimens. The test mate-
rial was delivered as sheets 300 × 300 × 2 mm, from 
which the Dumbell test specimens were die cut. 
A Die C, but with 5 mm shorter waist section, was 
used in order to maximize the deformation (strain 
level).

The specimens were cycled between a maxi-
mum and minimum tensile strain at a frequency of 
1.67 Hz. Two different R ratios, were considered; 
R = 0 and R = 0.2 where R = εmin/εmax. Different 
levels of maximum strain were also applied; 40, 
50, 75, 100, 150, 200 and 250%. The number of 
cycles to failure (Nf), as a function of the applied 
maximum engineering strain (εmax

E ), were recorded 
for the tests and also the load-deflection curves for 
the initial cycles. The number of cycles to failure is 
defined as the number of cycles until the specimen 
was completely ruptured. However, this coincides 
almost identically with the number of cycles until 
the first crack appears since the crack propagation 
time is very short compared to the initiation time. 
Since the load-deflection curve was recorded for 
the tests it was also possible to calculate the maxi-
mum strain energy density (SEDmax) and maximum 
cracking energy density (CEDmax) from the tests. 
These are defined as the maximum value of the 
SED and CED respectively in a cycle where these 
are defined as

SED and CED= =∫ ∫σ ε σ εij ij

t
T

ij ij

t

dt r rdt� �
0 0   

 (1)

where σij is the Cauchy stress, �εij is the symmetric 
part of the velocity gradient and the vector r is the 
normal to the crack plane. Thus, the SED is the 
area beneath the stress-strain curve and the CED 
is the part of the SED that is available for crack 
growth in different directions defined by r, cf. Mars 
(2001). It can be shown that, cf. Mars (2001), for a 
uniaxial tensile test SED = CED. This is based on 
the fact that the crack plane normal is parallel to 
the direction of stretching. Hence, the crack initi-
ates and propagates perpendicular to the direction 
of stretching. It should be noted that the maxi-
mum engineering strain, strain energy density and 
cracking energy density are all independent of the 
R ratio since it is the maximum value during the 
cycle that is used. The results from the cyclic mate-
rial tests were used to obtain equations relating 
the number of cycles to failure, Nf, to the applied 
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The compression load was ramped to 7.0 kN with 
a velocity of 10 mm/min and thereafter the com-
ponent was unloaded. The test-setup can be seen 
in Figure 2. The figure shows the load actuator at 
the top of the picture and the steel plates used to 
distribute the applied load to the component. Dur-
ing the tests the axial deformation was measured 
via the testing machine.

Moreover, the radial and tangential deforma-
tions and engineering strains were measured by 
the optical measuring system ARAMISTM. This 
system uses digital image correlation (DIC), with 
an arbitrary screen pattern that is applied with a 
spray bottle, to obtain point-wise deformations 
and strains at the surface of the component. The 
results from the component tests are given in 
 Figures 6–7 and in Figure 8 where also the point 
at which the point-wise measures are taken is indi-
cated. Note that, due to the large strains developed 
during the tests, the applied screen pattern was cor-
rupted above 3.0 kN. This leads to missing parts 
in the load-strain curve, especially for the axial 
and major (tangential) engineering strains, which 
can be seen in Figure 7. The tangential and larg-
est principal strain (major strain) coincide for the 
specific loading condition considered.

2.5 Cyclic component tests

The components were loaded using load control 
in an Instron 8501-machine with a control system 
MAX V5.2 and a sinusoidal wave form at a fre-
quency of 1 Hz. The frequency was chosen such 
that the heating of the rubber material was kept 
low during the loading. The temperature increase 
of the rubber material was also measured dur-
ing one of the tests and it was confirmed that the 
heating of the rubber could be neglected. Further-
more, the applied loading was compressive with 
maximum compressive loads (Pmax) of: 3, 3.5, 4 
and 5 kN. Moreover, two different R-ratios were 
used: R = 0 and R = 0.2 where the R-ratio is defined 

Figure 1. Experimental fatigue lifes for Dumbell test 
specimens and fitted curves as a function of: Maximum 
engineering strain (εmax

E ) R = 0 [asterisk], Maximum engi-
neering strain (εmax

E ) R = 0.2 [diamonds], SEDmax and 
CEDmax R = 0 [circles], SEDmax and CEDmax R = 0.2 
[squares].

Figure 2. Test setup and load application. The rubber 
component, i.e. rubber cylinder and steel plates, is in the 
middle and the parts at the top and bottom are the fix-
tures used for controlling the rotations at load applica-
tion. Load: 3 kN left and 5 kN right.

maximum engineering strain, SED and CED. This 
was done using a curve fitting procedure in Matlab. 
The equations that were fitted are

N Af E B= ( ) ,maxε  
N Cf D= ( )maxSED and

N Ef F= ( )maxCED
 

(2a, b, c)

for the different measures. The parameter values 
obtained from the curve fitting procedure are pre-
sented in Table 1 and the results from the tests and 
curve fit are presented in Figure 1.

2.4 Monotonic component tests

Compression tests in room temperature were done 
on the NR component in order to obtain input to 
the validation of the FE model. The component 
consists of a homogeneous rubber cylinder with an 
actual diameter of 47.5 mm and a length of 38 mm. 

Table 1. Obtained parameter values from the 
curve fit using the test data from cyclic mate-
rial tests.

R = 0 R = 0.2

N f E( )maxε A = ∗6 1010.1  
B = −2 95.

A = ∗2 1013.4
B = −4 06.

N f ( )maxSED C = ∗5.8 104

D = −1 78.
C = ∗1.3 105

 
D = −2 14.

N f ( )maxCED E = ∗5.8 104

F = −1 78.
E = ∗1.3 105

 
F = −2 14.
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as |Pmin|/| Pmax|. Figure 4 shows the component at 
different load levels.

In order to avoid that the component was tilted, 
as cracks appeared, a guided fixture that elimi-
nated rotations at load application was manufac-
tured. Ocular observation of the component under 
testing was made, at least once per 24-hour period, 
with the main purpose to identify cracks. With a 
frequency of 1 Hz this means that the initiation 
time could be missed with a maximum of 86400 
cycles (60 ∗ 60 ∗ 24). From the observations it was 
seen that the cracks initiated and propagated pref-
erentially in the partition plane, i.e. the plane that 
occurs where the two halves of the mould used for 
moulding the rubber component meet. Further 
investigations, using microscopy, also revealed that 
the cracks start at the surface of the component. 
The propagation direction was parallel to the direc-
tion of the applied loading. Some cracks initiated 
at other locations than in the partition plane and 
these were also perpendicular to the applied load-
ing. Finally it was seen that several cracks appeared 
and that crack coalescence was occurring. Figure 3 
shows an example of a crack occurring in the par-
tition plane.

The fatigue life of the component was recorded 
for the different applied maximum loads and 
R-ratios. The definition of fatigue life, used here, 
corresponds to the number of cycles for a crack to 
initiate (i.e. become visible). In Figure 10, the tested 
fatigue life as a function of the maximum applied 
compressive loading is shown for both R = 0 and 
R = 0.2. Furthermore, the same curve fitting pro-
cedure in Matlab, as for the cyclic material tests, 
was used to obtain curve fits to the data for R = 0 
from the tests. The function that was fitted is

N G Pf H= ( )exp max
exp

 (3)

and the obtained parameter values are: 
Gexp = 1.6509 ∗ 109 and Hexp = −6.90 No curve fit 
was done for R = 0.2 since the discrepancy in the 
recorded fatigue lives for this case is so large that 
this is not meaningful.

3 FINITE ELEMENT CALCULATIONS

3.1 Material model

The studied component is made of natural rubber 
(NR) which is a viscous, isotropic and incompress-
ible material that is able to deform elastically to very 
large strains. Therefore, the behaviour of the NR is 
modelled using an isotropic hyperelastic material 
model, whereby the large strains and the nonlinear 
elastic behaviour can be accounted for. Further-
more, the incompressibility of the NR is enforced 
by the addition of a pressure term in the finite ele-
ment formulation (cf. below). Note that, since the 
unloading of the component was not considered, 
no attempt to incorporate the softening into the 
material model was done. Different hyperelastic 
material models were evaluated by comparing the 
calculated results with the experimental results 
for the uniaxial tension and compression tests 
described above. The material parameters for the 
different models were determined using the experi-
mental results and a built in curve fitting proce-
dure in the commercial FE-code Abaqus. The final 
result from the evaluation can be seen in Figure 4 
below. Hence, most of the evaluated models give 
good predictions for compression and tension up 
to 100%, however, for larger tensile strains the 
Yeoh and Ogden models give the best predictions. 
Therefore, these two models were chosen for the 
calculations on the component.

3.2 Geometry and mesh

The NR cylinder (with diameter of 47.5 mm and a 
length of 38 mm, cf. above) was meshed by approx-
imately 30 000 C3D8H elements. The C3D8H ele-
ments in ABAQUS are 8-node linear hybrid brick 
elements with constant pressure. These elements 
can be seen in Figure 5, where a half  of the actual 

Figure 3. A crack is found at one side of the partition 
plane (right part of figure). The test is conducted at R = 0 
and a maximum compressive loading of 5 kN.

Partition plane without a crack Partition plane with a crack
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meshed component is shown, coloured lilac. The 
constant pressure term is added, in the elements, 
in order to fulfil the incompressibility of the NR 
material. Furthermore, M3D4R membrane ele-
ments were added as a skin to the NR cylinder. 
These elements do not contribute to the stiffness 
of the NR cylinder and are only used to better 
resolve the strains in the surface, since the cracks 
initiate there. The NR cylinder is bonded to the 
steel plates at both the top and bottom and there 
is a steel pin at the centre of each plate. All steel 
parts are modelled as rigid since steel is much 
stiffer than NR.

The steel plates in the FE-model are modelled 
with a flat surface. In reality, the pin will stick out 
from the plate with 3 mm into the rubber cylinder. 
Another simplification that has been introduced is 
that the curve of the corner between the NR cylin-
der and the steel plate is neglected. However, since 
the cracks initiate at the surface of the component 
and preferably in the centre plane, between the 
upper and lower edges of the NR cylinder, these 
simplifications are deemed to not have any signifi-
cant effect on the results.

The loading of the component was applied 
at the centre of the top end of the steel pin. Note 
that the unloading was not considered since it is 
the maximum strain that is of interest consider-
ing the different fatigue measures. All degrees of 
freedom for the opposite lower pin were locked. 
The considered output from the FE-model, i.e., 
strains, stresses, deformations and energies are 
integration point values corresponding to the 
point specified in Figure 8. This point is chosen 
due to the fact that the tangential (tensile) strain is 
maximized at this location and therefore the cracks 
should initiate at this location.

3.3 Verification of the FE model

The results from the verification of the FE-
model, regarding axial and radial deformation and 
major engineering strain, are given in Figures 6 

and 7 below. The results show that both of the 
calculated results using the Ogden or the Yeoh 
hyperelastic models correlate quite well with the 
experimental results. Furthermore, the distribution 
of the major (tangential) engineering strain from 
the tests and the FE calculations, with the Ogden 
hyperelastic model, are compared in Figure 8. 
These results also show that the measured and cal-
culated results correlate quite well.

3.4 Fatigue life estimation using FE modeling 
and material tests

The finite element model (that is described above) 
for the component, with the Ogden hyperelastic 
material model, was used to calculate values for the 
different fatigue measures. During the compres-
sion, large tensile tangential strains develop at the 
surface of the component. These are maximized 
in the centre plane, between the upper and lower 
steel plates, according to Figure 8. Therefore, the 
point specified in Figure 8 was used for calculating 

Rigid elements 

C3D8H elements 

Rigid elements 

Figure 5. FE model of the component.

Figure 6. Measured and calculated axial and radial 
deformations for the Ogden and Yeoh hyperelastic mod-
els. Both the tested and calculated values are taken in the 
point specified in Figure 8.

Figure 7. Measured and calculated major (tangential) 
engineering strain for the Ogden and Yeoh hyperelastic 
models. Both the tested and calculated values are taken in 
the point specified in Figure 8.



246

the different fatigue measures. More specifically, 
the different output that was needed from the FE-
calculations, were obtained as integration point 
values corresponding to the point specified in 
Figure 8. The values of the maximum engineer-
ing strain and also the maximum SED (according 
to Eq. (1)) were obtained directly as output from 
Abaqus. Two different values for the maximum 
engineering strain were used, εS

E
,max  and εM

E
,max  

where the S and the M corresponds to values 
obtained in the C3D8H solid and M3D4R mem-
brane elements, respectively (cf. above). Note that 
the energy in the membrane elements is zero since 
they have no stiffness. The maximum CED is not 
available as output from ABAQUS. This has to be 
calculated from the integration point values of the 
Cauchy stress and the logarithmic strain, that are a 
part of the output from Abaqus. Furthermore, in 
order to calculate the maximum CED (according 
to Eq. (1)) the direction of the crack propagation 
has to be defined. The crack will propagate per-
pendicular to the direction of the largest principal 
strain, i.e. in the axial direction of the component, 
and hence, the vector r will coincide with the tan-
gential direction of the component, i.e., r = (1,0,0). 
An in-house Matlab program was written and used 
to calculate the value of the CED based on the out-
put from Abaqus (Cauchy stress and logarithmic 
strain) and specified vector r.

All three fatigue measures, as a function of the 
load applied to the component, are presented in 
Table 2. The life of the component is obtained by 
using the calculated values of the different fatigue 
measures and the fatigue testing results for the NR 
material. Hence, we are able to insert the values of 
the different fatigue measures into Eq. (2a, b, c) and 
calculate the number of cycles to failure. Note that 
these calculations were performed for both R = 0 
and R = 0.2 whereby the different parameter values 
in Table 1 have been used. The results are presented 
in Figure 9. Thus, the maximum compressive load, 
applied to the component, and the logarithm of 
the number of cycles to failure are plotted against 

Figure 8. Measured and calculated major (tangential) 
engineering strain distributions for the Ogden hyperelas-
tic model.

Figure 9. Calculated and tested fatigue life for the 
rubber component and fitted curves as a function of the 
maximum applied compressive force.

Table 2. Maximum engineering strain (ε∗,max
E ), strain 

energy density (SED) and cracking energy density (CED) 
as a function of the applied compressive loading on the 
component.

Load [kN] 1 2 3 4 5

εM
E

,max [%]  9.9 19.0 26.7 33.0 37.8

εS
E

,max [%] 11.0 21.0 33.0 43.0 54.4
SEDmax [MPa]  0.029  0.087  0.143  0.192  0.236
CEDmax [MPa]  0.005  0.025  0.061  0.107  0.154

each other. Furthermore, the same curve fitting 
procedure as for the experimental data can be uti-
lized to give an equation relating the number of 
cycles to failure to the maximum applied compres-
sive force to the component (Pmax)

N G Pf
calc

Hcalc= ( )max  (4)

Note that the different fatigue measures and also 
the different R ratios will lead to different values 

Table 3. Parameter values for Eq.(4) 
obtained from the curve fit using the calcu-
lated fatigue life for the component for the 
different fatigue measures.

Data based on Gcalc Hcalc

Nf(εS
E

,max), R = 0 6.36 ∗ 107 −2.48
Nf (εS

E
,max), R = 0 5.40 ∗ 107 −2.94

Nf (SEDmax), R = 0 2.75 ∗ 107 −2.33
Nf (CEDmax), R = 0 6.57 ∗ 108 −3.83
Nf (εM

E
,max), R = 0.2 1.90 ∗ 109 −3.42

Nf (εS
E

,max), R = 0.2 1.52 ∗ 109 −4.05
Nf (SEDmax), R = 0.2 2.07 ∗ 108 −2.79
Nf (CEDmax), R = 0.2 9.30 ∗ 109 −4.60
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of the parameters Gcalc and Hcalc. These values are 
tabulated in Table 3.

4 DISCUSSION AND CONCLUSIONS

The first conclusion that can be drawn from 
 Figure 9 is that there is a large difference between 
the calculated fatigue lives for the different fatigue 
measures. Furthermore, the difference is depend-
ent on the applied maximum compressive load 
such that it is greater for smaller loads. This is a 
manifestation of the fact that the slopes obtained 
from the curve fits are different. The SED is the 
most conservative of the different fatigue measures 
whereas the CED and the maximum engineering 
strain from the membrane elements are the most 
non-conservative measures depending on the 
applied load.

From Figure 9 it is also evident that there is large 
difference in the calculated and tested fatigue lives 
for the component. More specifically, all of the cal-
culated fatigue life estimates are non-conservative, 
hence, the estimated fatigue lives are much longer 
than the actual tested fatigue lives. This behaviour 
has also been reported by Kim et al. (2004) where 
they have compared tests and calculated fatigue 
lives of an engine rubber mount. Moreover, the 
parameters from the curve fits, using the tested or 
calculated fatigue lives, are different, cf. Eq. (3) and 
Table 3. Table 4, shows the quotient between the 
calculated fatigue life and the mean value of the 
tested fatigue life for the different applied maxi-
mum compressive loads. The smallest difference 
between the calculated and the tested fatigue life 
is obtained for a load of 3 kN, R = 0 and a fatigue 
life estimate based on the maximum SED (quotient 
2.42) whereas the largest difference is obtained for 
a load of 5 kN, R = 0 and a fatigue life estimate 
based on the maximum engineering strain from the 
membrane elements (quotient 62.0).

Some probable causes for the differences in the 
calculated and tested fatigue lives are: (i) errors in 
the FE calculations that lead to erroneous values 
for the fatigue measures. However, these results 
have been verified using digital image correlation 
and it seems that the strains at the surface of the 
component are captured correctly. Further analy-
sis of the initiation sites of the cracks have revealed 
that the cracks start at the surface and thus, the 
errors introduced by the FE calculations should 
be small, (ii) differences in the NR materials used 
for the material and component tests. Hence, the 
calculated fatigue lives are based on cyclic mate-
rial tests using test specimens cut from a 2 mm 
thick NR sheet whereas the component has been 
moulded. Swelling tests revealed that there is a 
small difference in crosslink density between these 

two. However, the difference is so small that it can 
not explain the difference in the calculated and 
tested fatigue lives, (iii) there is a difference in the 
surface finish between the NR sheets and the com-
ponent. Hence, the fact that both the slope of the 
curve fit and the fatigue life for the test and the 
calculations are different indicates that two differ-
ent mechanisms are involved in the fatigue crack 
initiation in the component and material tests. 
A preliminary test that indicates the influence of 
the surface roughness has been performed. In this 
test the surface of the component was grinded such 
that the notch at the partition plane disappeared. 
Microscopy pictures of the grinded and original 
component are shown in Figure 10. Hence, the 
surface of the original component appears to be 
quite rough, especially near the partition plane. 
The component was then loaded with a maximum 
compressive load of 5 kN and R = 0. The recorded 
fatigue life for this test was 244 000 cycles which is 
a factor 10 more than for the components with a 
rough surface finish, (iv) the fact that monotonic 
stress strain data was used may have a significant 
impact on the results. As rubber shows stress sof-
tening, the material was characterised as being a 
little too soft compared to reality. Thus, when 

Table 4. Quotient between calculated and tested fatigue 
lives as a function of the applied loading and R-ratio.

Load [kN] 3 4 5

Nf(εM
E

,max)/N mean
f

exp, , R = 0  4.9 12.2 62.0

Nf(εM
E

,max)/N mean
f

exp, , R = 0  3.6  8.7 43.1

Nf(SEDmax)/N mean
f

exp, , R = 0  2.4  6.7 35.3

Nf(CEDmax)/N mean
f

exp, , R = 0 11.0 19.0 53.6

Nf(εM
E

,max)/N mean
f

exp, , R = 0.2 32.0 20.5

Nf(εM
E

,max)/N mean
f

exp, , R = 0.2 20.0 12.4

Nf(SEDmax)/N mean
f

exp, , R = 0.2  8.6  6.1

Nf(CEDmax)/N mean
f

exp, , R = 0.2 29 15.3

Figure 10. Microscopy pictures of the non-grinded 
(original) and grinded component in the left and right 
figure, respectively.
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components were tested for their fatigue life, they 
were deformed more (higher strains) than what the 
models predicted.
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ABSTRACT: This paper is about the fatigue design issues on rubber-to-metal bonded springs used in 
railway industry. The investigation, based on the actual fatigue loads, is carried out on these failed and 
modified products using a method of continuum mechanics. To simplify the simulation, a non-linear 
quasi-static analysis is carried out and then the residual stresses are superimposed to obtain the effective 
stress range to predict the metal crack initiation. For the rubber parts of the spring a three-dimensional 
effective stress criterion is employed to predict the fatigue crack initiation. The fatigue crack initiation for 
the metal parts of the failed component is predicted at 225 K cycles under specified fatigue load against 
total metal broken at 700 K cycles from the test. For the rubber spring, subsequently modified and opti-
mised, the total fatigue life for the metal parts of the component, is 8.0 million cycles against 1.75 million 
cycles from the test without any crack observed. The rubber fatigue crack initiation is predicted at 90 K 
cycles against crack onset around 79 K cycles and crack length 40 mm at 145 K cycles from the test. From 
the design point of view it is important to optimize the rubber profile under this very tight allowable space 
to provide the maximum support of the metal interleaves and at the same time to meet the minimum 
requirements of the manufacture process.

1 INTRODUCTION

The Chevron Springs are operating worldwide in 
a diversity of service applications including LRV, 
Metro, Freight wagons, High Speed Passenger 
Coaches and Locomotives. This paper is about the 
fatigue design issues on rubber-to-metal bonded 
springs used in railway industry. The spring, as 
shown in Figure 1 during a fatigue test, consist of 
metal plates (cold-bent to a V shape) and bonded 
with four rubber layers through a moulding proc-
ess. There are residual stresses left in the metal plate 
during the manufacture process. Recently a need to 
improve time and cost efficiencies to meet custom-
er’s requirement(1.25 million cycles) has caused an 
unexpected early fatigue failure (0.7 million cycles) 
of the component with no immediate explanation(see 
figure 2), which leads to an integrated fatigue evalu-
ation project involving a number of departments. 
Previous dynamic analyses has produced excellent 
fatigue predictions for a railway vehicle bogie frame 
under actual operating environment without resid-
ual stresses, see Luo etc. But in this situation there 
are very high residual stresses involved. It is well 
know that residual stresses can play a key role on 
the fatigue lives of engineering components.

Figure 1. The Chevron rubber springs on the test rig.

Figure 2. A metal failure of the Chevron rubber spring 
(after 0.7 million cycles).
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1.1 Metal fatigue with residual stress

There are several experimental methods available 
to determine residual stresses. They include mag-
netic field, boring, slicing, surface and deep hole 
drilling, X-ray diffraction and neutron diffraction 
method etc. Webster etc.used the neutron strain 
scanning technique to measure the internal resid-
ual stress distributions of rails and compared with 
conventional destructive strain gauge results and 
theoretical predictions. Theoretical work has also 
done by many researchers. Chien etc. employed 
both linear elastic mechanics and linear fracture 
mechanics approaches to investigate the fatigue 
influence of residual stresses induced by the fillet 
rolling process on a ductile cast iron crankshaft 
section under bending loads. Their results have 
shown that it can only determine the crack initia-
tion life for small cracks initiated on the surface, 
but cannot indicate whether cracks can propagate 
through or arrest in the compressive residual stress 
zone. Larue and Daniewicz used the crack closure-
based methodology to simulate fatigue crack 
growth from a hole with a pre-existing compressive 
residual stress via two-dimensional elastic–plastic 
finite element analyses. They pointed out that 
predictions from the closure-based method are 
highly dependent on the constitutive relationship 
between the crack growth rate and the effective 
stress intensify factor range used, highlighting the 
need for experimental methods to reliably measure 
this correlation. The influence on residual stresses 
by heat treatment is also conducted. Williams etc. 
investigated the fatigue behaviour of a low-alloy 
powder metallurgy (P/M) sintered steel. Signifi-
cant compressive surface stresses were generated 
during the machining of the fatigue specimens. 
A heat-treatment at 175°C after machining had no 
effect on these residual stresses, but polishing the 
surface resulted in a 20% reduction in compressive 
stresses. Webster and Ezeilo have concluded that 
reliable predictions of fatigue performance is pos-
sible as long as the accurate profile of the stresses 
is available. For the accurate assessment of fatigue 
lifetimes a detailed knowledge of the residual stress 
profile is required.

1.2 Rubber fatigue

In parallel with the metal fatigue it is also neces-
sary to evaluate the rubber performance. Similar to 
the metal fatigue analysis there are two methods to 
deal with the rubber fatigue caused by mechanical 
failure: continuum mechanics (total life) and frac-
ture mechanics (defect-tolerant). Roughly speak-
ing the total fatigue life in continuum mechanics 
is defined as the sum of the number of cycles to 
initiate a fatigue crack to some predefined size. 

The defect-tolerant in fracture mechanics is based 
on that there are inherent flaws in all engineering 
products. The useful fatigue life is defined as the 
number of cycles to propagate the dominate crack 
from this initial size to some critical dimension. 
The principal differences may be dependent on 
how the crack initiation and the crack propagation 
stages of fatigue are quantitatively defined.

For the fracture mechanics approach it has been 
found that the most appropriate formulation is in 
terms of the strain energy release rate and there 
is a limiting tearing energy below which no crack 
propagation occurs, see Lake and Thomas. Gent 
etc. analysed bonded rubber cylinders, linking 
the crack propagation to the tearing energy. They 
obtained a life prediction equation in the form of 
power law. Busfield etc. used energy release rate 
to predict fatigue crack growth in three modes of 
deformation and validated with the experiment 
results. It is shown that the maximum strain energy 
release rate can be used to predict the direction of 
crack growth. The fatigue crack growth for one of 
the applications (a gearbox mount) under investiga-
tion was predicted within a factor of 2 at different 
displacements for all three modes of deformation. 
Timbrell and Muhr etc. used the strain energy 
release rate to investigate the failure of the “O” ring 
and provided some guidance to use this approach. 
Mars and Fatemi have reviewed the development 
of analysis approaches for predicting fatigue life 
in rubber. They concluded that the crack initia-
tion has received less attention and an adequate 
multiaxial nucleation life approach is needed to 
accurately predict fatigue life in rubber compo-
nent. Luo and Wu etc. used a three-dimensional 
effective stress criterion, taking all principal stress 
tensors into consideration, to predict fatigue crack 
initiation and validated against several engineering 
applications of anti-vibration rubber components. 
Charrier and Verron etc. suggested that the crack 
initiation method should be preferred at the early 
design stage for anti-vibration components.

In a summary instead of conducting detailed 
fatigue crack growth analysis the best approach here 
is to target the fatigue crack initiation on both metal 
and rubber parts of the component. The investigation, 
based on the actual fatigue loads, was carried out on 
these failed and modified products using a method of 
continuum mechanics. It was assumed that the resid-
ual stresses were well kept in the metal part. To simplify 
the simulation, a non-linear quasi-static analysis was 
carried out and then the residual stresses were super-
imposed to obtain the effective stress range to predict 
the metal crack initiation. For the rubber parts a three-
dimensional effective stress criterion was employed to 
predict the fatigue crack initiation. The fatigue fail-
ure was taken as visual crack observation (normally 
1–2 mm).
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2 MATERIAL FATIGUE PROPERTIES

2.1 Metal fatigue resistance

The metal part is made from steel with yielding 
stress 355 MPa. The fatigue life of the metal part 
of the Chevron rubber spring can be estimated 
from the principal stress histories in the critical 
area in the structure using a duration curve from 
a design code. The current British Standard design 
code of practice for fatigue design and assessment 
of steel structures is BS7608. In BS7608, the mate-
rial properties, the S-N relationships, have been 
established from statistical analysis of available 
experimental data (using linear regression analysis 
of log S and log N) with minor empirical adjust-
ments to ensure compatibility of results between 
the various classes. The equations for the S-N curve 
relationship may be written in a basic form as

N k Hr
m dσ = 0  (1)

where N is the number of cycles to failure, σr is 
the stress range, m, k0 and H are constants, and 
d is the number of the standard deviations below 
the mean. The standard basic design S-N curves 
(mean minus two standard deviations) are shown 
in Figure 3.

2.2 Rubber fatigue resistance

The material properties used are associated with 
a moderately filled (nominal 59IRHD) synthetic 
polyisoprene with good low creep performance.

Fatigue resistance can be represented by a 
curve which indicates a component failure at con-
stant dynamic amplitude under a certain number 
of cycles. Normally a stress range against a cycle 
number forms a curve (S-N) to characterise the 
resistance of the material. Here the fatigue life esti-
mation method was based on previously-obtained 
data for the rubber material used and on an effec-
tive stress (σf). σf was a function of the principal 

Cauchy stress ranges (σ1, σ2 and σ3 are the 
maximum, middle and minimum principal stresses 
respectively) taking multi-axial loading effect.

σ σ σ σf A B= + +1
2

2
2

3
2

σ σ σ σ1 1 2 30 1 1> ≥ ≥ − < ≤, , ( )A Bor  (2)

Here A and B are weightings and the following 
assumptions are made.

a. There is no fatigue damage when a point is 
under compression in all directions.

b. A (or B) is taken as positive when σ2 (or σ3) is 
positive (ie tensile).

c. The fatigue damage caused by any one of the 
other two principal directions will not exceed 
that caused by σ1.

General speaking Equation (2) describes an 
ellipsoidal failure envelope, as shown in Figure 4. 
Under this definition any point on the ellipsoidal 
surface gives the same fatigue damage caused by a 
repeated cyclic loading.

There are now some procedures under consid-
eration to give A and B. In one of the procedures, 
A (or B) is given the maximum value (1) for safety, 
provided that σ2 (or σ3) > 0 and the value 0 if  σ2 
(or σ3) ≤ 0. That is

A B( ) , ( )or when or= 1 02 3σ σ >  (3)

A B( ) , ( )or when or= ≤0 02 3σ σ  (4)

The worst case is

σ σ σ σ σ σ σf = + + ≥ ≥ >1
2

2
2

3
2

1 2 3 0  (5)

This criterion has all characteristics of a stress 
tensor and can be easily integrated with finite ele-
ment codes (for example, Abaqus) and used in 
engineering applications. Under uniaxial loading 

Figure 3. The S-N curve of the metal.

3σ

fσ

1σ

2σ

Figure 4. Illustration of the effective stress criterion.
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condition (σ2 = σ3 = 0), the criterion is degenerated 
as σf = σ1, which is the maximum tensile stress cri-
terion. More details and definitions can be seen in 
Luo etc.

The rubber crack initiation is a result of the 
cumulative damage when visual cracks appeared 
(normally 1–2 mm). The fatigue resistance curve 
of the rubber material is shown in Figure 5.

3 FINITE ELEMENT MODELS
AND FATIGUE LOAD

Finite element analysis has been used to predict the 
stress distributions and evaluate the fatigue behav-
iour. During fatigue tests a pair of the components 
has been arranged as a whole unit. The two parts 
have been fixed on a frame with 22 degrees apart, 
formed as a Vee shape. The nominal loading range 
is 60 kN.

3.1 Two-dimensional finite element models

In order to quickly evaluate the effects on stress val-
ues due to bending moment. A pair of two-finite 
element models of a cross section of the rubber 
springs, one was for failed component and the other 
was for a modified component, were generated. The 
difference between the two models is that the lengths 
of the rubber layers of the modified component are 
several millimetres longer than those of the failed 
component. A typical fatigue load was applied to 
both models. The results are shown in Figure 6 and 
Figure 7 respectively. It is clear that the stress value 
was dropped by 5.5% (from 600 MPa to 576 MPa) 
when adding extra rubber. It is possible that the 
excessive bending moment caused the earlier fatigue 
failure. The principle for the service life extension 
lies on the reduction of the stress range. Therefore 
having more rubber support on the metal interleaf 
can reduce the dynamic bending stresses. Further 
two three- dimensional-model (half of the part) have 
been used to evaluate the failed part and modified 
part respectively. The two models have used simi-
lar finite element mesh to form a comparable base 

and have approximately 160,000 degrees of freedom 
each. The modified component has more rubbers 
between each layer than does the failed component. 
At the same time it is also necessary to meet the 
minimum clearance requirement for the manufac-
ture process to improve time and cost efficiencies.

4 METAL FATIGUE VERIFICATION

The simulation of fatigue loading was carried 
out on both failed and modified Chevron rub-
ber springs. The stress profiles of the failed part 
is shown in Figure 8. The stress ranges are valued at 
613 MPa at first interleaf of the failed component 
and 460 Mpa, also at the first interleaf, for the 
modified component respectively. The critical areas 

Figure 5. S-N curve of the rubber material.

Figure 7. Stress profile of the modified component.

Figure 6. Stress profile of the failed component.
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are at the apex of the first interleaf from the back 
plate. The interleaf broken from the fatigue test for 
the failed part has validated the location predicted, 
see Figure 2. There is also a second highest stress 
area at the middle interleaf of the failed compo-
nent but there is no failure observed.

The location of the early failure has been identified 
and validated. The next one is to validate the duration 
of the fatigue life based on the following approach.

As said before, the fatigue duration curves from 
BS7608 were used for the fatigue evaluation. The 
curves can be applied to both weld and non-welded 
structures. When it is used to estimate a service life, 
the result is the cumulative damage and hence the 
time taken for crack initiation to occur. The life 
derived from this standard is dependent not only 
upon stress ranges and the number of cycles encoun-
tered, but also upon the acceptable probability of 
failure. Here the class B with a 2.3 per cent probabil-
ity of failure is used to validate the fatigue analysis. 
The steel has minimum yield stress 355 MPa. After 
the metal was bent to the required shape, a 355 MPa 
compression residual stress was generated on the 
inner surface. Therefore the stress range can be 
reduced to 258 MPa (from 613 MPa) for the failed 
part and 105 MPa (from 460 MPa) and the modi-
fied part respectively. Based on the duration curve 
(Figure 3) the fatigue life for the failed part is about 
225 K cycles against test result about 700 K cycles 
(total metal interleaf fracture, see Figure 2). This is 
a reasonable estimation. It indicates a good agree-
ment between the simulation and the test from the 
failed part. From the design point of view it is clearly 
explained that the unexpected early failure was due 
to the less rubber support for the metal interleaves. 
For the modified component, when the same princi-
ple was applied, a fatigue crack initiation of 8 million 

cycles was obtained. The prediction would meet the 
1.25 million cycle requirement.

Based on the above prediction, it was decided to 
start the prototype manufacture and test procedure. 
Finally the modified component successfully com-
pleted 1.25 million cycles without metal broken, more 
requirement kept this test moving towards 1.75 million 
cycles. After the test finished all the metal parts have 
been carefully examined and no fatigue cracks found.

5 RUBBER FATIGUE VERIFICATION

In parallel with the metal fatigue prediction the 
rubber fatigue evaluation for the modified com-
ponent was also carried out based on the three-
dimensional effective stress method. Figure 9 
shows the effective stress profile of the modified 
component. The critical area is at the second layer 
of the rubber from the back and located about 
10 mm below the rubber top free surface. The value 
of the effective stress σf is 3.55 MPa. From the rub-
ber design curve in Figure 5 the corresponded cycle 
number for 3.55 MPa is about 90 K.

Figure 10. shows the top part of the rubber 
spring after 79 K fatigue loading cycles. The 
blisters at the apex of the second layer of the 
rubber part can be clearly seen on the enlarged 
photo. There are no other sites showing the blisters. 
The fatigue crack appeared on the same area after 
the fatigue test passed 145 K cycles. The length of 
the crack is about 40 mm long.

6 DISCUSSIONS

For the fatigue design of the anti-vibration compo-
nent it is important to optimize the rubber profile 
under this very tight allowable space to provide the 

Figure 8. Stress profile of the failed part (the maximum 
value is 612.5 MPa).

Figure 9. Effective stress profile (the red colour show-
ing the critical area).
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maximum support of the metal interleaves and at 
the same time to meet the need for time and cost 
saving requirements of the manufacture process. It 
is indicated that when a component is subjected to 
a bending dominated fatigue loading it may have 
significant influence on the service life even by a 
small change of the supporting areas.

The modified component has now manufac-
tured and successfully entered the service. It is 
demonstrated that this approach can be employed 
at a suitable design stage for both metal and rubber 
fatigue evaluation on anti-vibration springs.
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Towards a new fatigue life characterization based on heat 
build-up measurements?
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P. Charrier
Trelleborg Modyn, Carquefou, France

N. Ait Hocine
Laboratoire d’Ingénierie des MATériaux de Bretagne (EA4250), Brest, France

ABSTRACT: The temperature of rubber-like materials increases under cyclic loadings, due to its 
dissipative behaviour and low thermal conductivity. This well-known phenomenon, called heat build-up, 
has attracted the attention of researchers for a long time. But, to our knowledge, no published studies 
have tried to link this temperature rise to the fatigue life behaviour, as it can be done for many metallic 
materials. Three main points are discussed in this study. Firstly, a specific experimental protocol has been 
developed to capture the instantaneous heat build up. Based on this protocol, a “heat build-up test” is 
denned in order to link the temperature rise to the principal maximum strain, which is a commonly used 
variable for fatigue life criterion. Secondly, a discussion on the correlation between these results and the 
fatigue life behaviour will be opened, illustrated for several industrial materials by a comparison between 
heat build-up measurements and fatigue life duration. Finally, X-ray tomography measurements have 
been achieved on specimens used for fatigue tests.

1 INTRODUCTION

Rubber-like materials are extensively used in 
industrial applications because of their ability to 
undergo large deformations and their damping 
behaviour. Elastomeric components used in the 
automotive industry, such as engine mounts or 
torque rod, are submitted to cyclic loadings and a 
good conception towards fatigue phenomenon is 
therefore a necessity to insure the safety of these 
structures.

Fatigue life properties are usually studied by 
submitting a specimen to a given cyclic load and 
measuring the number of cycles needed to reach an 
end-of-life criterion (crack of a given length, frac-
ture of the specimen, stiffness loss). From these 
results, the so-called Wöhler curve, or “S-N” curve 
(Stress–Number of cycles) is built. This classical 
method presents at least two main disadvantages 
to be reliable: it requires long duration tests and a 
large number of specimens (at least 50 specimens) 
in order to have a good estimation of the phenom-
enon intrinsic dispersion. These two disadvantages 
obviously limit the study of fatigue life properties 

and the determination of the influence of some 
parameters (i.e. mean load, amplitude load, etc.) 
on these properties. To reduce this cost (in time 
and money), other methods have to be developed. 
For several years, different methods for the rapid 
estimation of mean fatigue limit of metallic mate-
rials based on temperature measurements have 
been developed. The aim of this paper is to inves-
tigate the opportunity to use these methods for 
rubber-like materials. In a first part, a heat build-
up experiment and the associate analysis suitable 
for metallic materials is reminded. Based on this 
protocol, a heat build up experiment suitable for 
rubber-like materials is proposed. Taking into 
account the specific aspects of this kind of materi-
als, the experiment relates the temperature rise to 
the maximum principal strain. In a third part, the 
relevance of a link between thermal measurements 
and fatigue life properties is discussed from results 
measured on fifteen industrial materials. Finally, 
X-ray microtomography measurements are carried 
out on specimens used for fatigue life characteriza-
tion in order to compare the population of cavities 
to the thermal rise.
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2 HEAT BUILD-UP MEASUREMENTS 
ON METALLIC MATERIALS

For several years, different methods for the rapid 
estimation of mean fatigue limit of  metallic mate-
rials based on temperature measurements have 
been developed. The method is to apply succes-
sive series of  given number of  cycles for different 
increasing stress levels (figure 1a). For each stress 
level, the change of  the temperature variation 
θ = T − T0 (where T is the current temperature of 
the sample during the test measured by a ther-
mocouple or an infrared camera and T0 its initial 
value) is recorded and the steady-state temperature 
θ  determined (figure 1b). Beyond a given limit it is 
observed that the steady-state temperature θ  starts 
to increase significantly (figure 1c). This change 
is correlated with a state where the fatigue limit 
is exceeded and can be related to the apparition 
of microplasticity, i.e. plasticity at a microscopic 
scale, that occurs in the material. A correlation 
between the mean fatigue limit and the stress level 
leading to the temperature increase can be empiri-
cally proposed (figure 1c). From a unique value on 
the Wöhler curve, which can be obtained by letting 

the last amplitude step runs until the sample 
breaks, and using an energetic approach based on 
a critical dissipated energy, it is also possible to 
reproduce the mean Wöhler curve (figure 1d). The 
main advantage of  this technique is that it is pos-
sible to characterize the mean HCF (High Cycle 
Fatigue) behaviour using a single specimen in only 
half  a day.

3 DEVELOPMENT OF A HEAT 
BUILD-UP EXPERIMENT

3.1 Temperature measurements

A heat build-up experiment can be defined as a 
cyclic test during which the temperature of the 
specimen is measured. The number of cycles used 
is are the number of cycles needed for the tempera-
ture to stabilize. The first difficulty encountered to 
measure the temperature is linked to the large dis-
placements of the specimen during a fatigue test. 
The use of thermocouples is to be avoided since 
this technology presents some limitations (fixation 
on the specimen, response time). We have chosen 
to use an infrared camera, which gives access to a 
2-D measurements with an interesting acquisition 
rate (50 frames/seconds), even if  it will only be a 
surface measurement.

The experimental protocol proposed is using 
a sequence of movies which allows temperature 
measurements whatever the deformation of the 
specimen (figure 2). One convenient approach is 
to consider the extremal positions of the specimen. 
As all experiments were carried out with a loading 
ratio equal to zero with displacement control, the 
non deformed and maximum deformed geometry 
are considered, as shown on figures 2b and 2c. 
With this processing, we get an envelope of the 
temperature variation and we are able to evaluate 
the coupling contribution (difference between the 
temperature measured in the maximum deformed 
position and non-deformed position).

3.2 Heat build-up curve construction

From the successive loads carried out on a AE2 
specimen, we can generate a heat build-up curve by 
associating a fatigue life parameter to the steady-
state temperatures. This parameter could be the 
maximum principal strain εmax

I  (Ostoja Kuczynski 
2005), the maximum principal Cauchy stress 
σmax

I  or an equivalent stress (Saintier et al. 2006), 
the strain energy density W, the cracking energy 
density We (Mars 2001), or the minimum principal 
configurational stress Σ* (Verron and Andriyana 
2008). We have chosen to use the maximum princi-
pal strain as fatigue life parameter, which seems to 

Figure 1. Empirical method to correlate heat build-up 
measurements to fatigue life mean behaviour (Doudard 
et al. 2005).
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be the most natural parameter since our experiments 
are displacement controled. A heat build-up curve 
is therefore built from the steady-state temperature 
as a function of εmax

I  as illustrated on figure 3.

4 A LINK WITH FATIGUE LIFE 
BEHAVIOUR?

4.1 Is there an obvious correlation between heat 
build-up and fatigue life duration?

Fifteen indutrial materials (with known tan δ and 
fatigue lifetime for a given amplitude) have been 
tested according to the test described previously, 
in order to compare the thermal response to their 
fatigue resistance. A few curves obtained during 
this campaign are plotted on figure 4. The main 
difference with the curves obtained for metallic 
materials is that none of the tested materials exhib-
its a brutal temperature rise. It is therefore difficult 
to determine a clear switch from non damaging 
loads (that is to say under a fatigue limit) to dam-
aging ones. It is not very surprising, though, as 
the Wöhler curves obtained for elastomers usually 
show no clear fatigue limit and are still decreasing. 
Nevertheless, the classification of the curves are 
good for both fatigue resistance and tan δ. As this 
fact was observed for the other ten tested materials, 
a not yet resolved question is: what is really meas-
ured during a heat build up test? To give some clues 
on that question, other tests have been achieved on 
well chosen materials either showing the same tan δ 
but with different fatigue resistance, either having 
the same fatigue resistance but with different tan δ. 
These results are detailed in the next section.

4.2 What stands behind heat build-up?

Rubber-like materials are known to be hysteretic 
materials at a macroscopic scale, which means 
that some energy is dissipated or stored dur-
ing a mechanical cycle. This hysteresis is not well Figure 2. Evolution of the temperature envelope for 

one value of displacement amplitude.
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explained and can be justified by several manners 
(Miehe and Keck 2000), ranging from interacting 
fillers, crystallization, viscosity, plasticity, damage, … 
The contribution of each of these sources are not 
clearly identified but it is usually assumed that 
viscosity is one of the most important. Figure 5 
presents the curves obtained for three materials that 
have the same tan δ and different fatigue lifetime. 
We observe that for a first range of deformation 
(i.e. up to 80%), no clear differences in the temper-
ature rises are to be seen but as the strain imposed 
increases, the three curves separates with signifi-
cant differences (the precision on the temperature 
measurement is about 3/100°C), and the curves 
of the tested materials are ranking well accord-
ing to their fatigue resistance. Nevertheless, it is 
difficult to propose a clear way to analyse these 
tests and one can see that a gap of 100 000 cycles 
in the initiation lifetime induce only a slight dif-
ference in the temperature curves. Other tests have 
been performed on materials that have the same 
fatigue lifetime (at a given amplitude of strain) 
but different tan δ. Figure 6 presents the results 
obtained and, there again, the curves are different 
and ordered according to their viscous properties. 
These results clearly show that a split between 
viscous dissipation and a dissipation related to 
the fatigue resistance is far less easy to identify 
for elastomers than for metallic materials. What 
should be noted is that the curves presented here 
are a not complete and have to be continued by 
letting the last amplitude step runs until the sample 
breaks. These curves will consequently be different 
even if  the first steps are the same. Still, these tests 
afford interesting data and we wish to go further in 
their analysis by the use of modeling and physical 
measurements.

4.3 How can we use these tests?

The first way to use these tests is to take advan-
tage of the stabilization of the temperature rise 
under cyclic loadings to identify the parameters 
of a thermo-visco-hyperelastic constitutive model. 
As the final goal of this study is to try to quickly 
identify a fatigue indicator, the link could be done 
using two different approachs:

• the developement of a local criterion for fatigue 
crack initiation based on a dissipation approach, 
in a similar manner to (Lacroix et al. 2005)

• the proposal of a damage value that depends 
both on the dissipation given by the model and 
the number of cycles (Grandcoin 2008)

The second way implies to be able to follow the 
damage of the sample along the fatigue or heat 
build-up tests. One of the most useful techniques 
is X-ray microtomography (Le Gorgu Jago 2007). 
As an illustration, we present in the next section 
some results obtained during a fatigue campaign 
on a polychloroprene rubber.

5 EVOLUTION OF FATIGUE DAMAGE 
USING X-RAY TOMOGRAPHY

X-ray microtomography is a non destructive 
technique allowing investigating the density dif-
ferences in a material. It is very useful for organic 
materials because their low density allows meas-
urements on massive specimens with a reasonable 
time of exposition. The spatial resolution is about 
5 μm and the use of a specific software allows the 
visualisation of the cavities and the quantification 
of the porosity (see figure 7) The figure 8 presents 
the fatigue campaign: several AE2 specimens were 

Figure 5. Heat build-up curves for materials having 
comparable tan δ, but different fatigue life behaviours.
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submitted to cyclic solicitation with different levels 
of local maximal strain. For the three imposed 
strain levels, the tests were stopped for different 
fatigue lifetime (10, 50 and 100% of initiation life-
time, previously evaluated on another specimen). 
As shown on figure 9 and 10, the scale is represent-
ative of the fatigue mechanisms and very helpful 
to understand what happens during fatigue crack 
initiation and propagation. As the samples used 
present a section that evolves, it is possible to study 
several discus of the sample (see figure 11) and to 
associate (as a first approximation), the mean prin-
cipal strain with the cavities populations measured. 
The figure 12 shows an example of that kind of 
analysis for a sample submitted to a high strain 
level and stopped at 10% of the initiation lifetime. 
Figure 13 shows the evolution of the cavities popu-
lations in the central zone for several strain level 
and lifetime percentages. We can observe that both 
the size and the number of the cavities are evolv-
ing with the strain level and the number of cycles. 

Figure 7. Example of cavities mapping in the central 
zone of a AE2 specimen.

Figure 8. Evolution of the volumic density of cavities 
as a function of the number of cavities for the different 
discus.

Figure 9. Population of cavities across a section.

Figure 10. Representative picture of crack propagation 
mechanism: cavities coalescence behind the crack tip.

Figure 11. Decomposition of the central zone of the 
AE2 specimen into several discus.

The analysis of these results will afford very valua-
ble data for the identification of damage evolution 
laws and fatigue criterion, based either on maxi-
mal dissipated energy or critical size or porosity. 
The application of this technique to heat build up 
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measurements is also scheduled and should be very 
helpful to discriminate viscous and cyclic damage 
contributions to the temperature rise.

6 CONCLUSIONS

In this study we focused on the development of 
a heat build-up test, which relates the maximum 
principal strain to the temperature rise. A first step 
was to propose an accurate measurement protocol 
allowing taking large displacements into account 
and that allowed discriminating the temperature 
rise induced by cumulative dissipation from the 
thermo-elastic contribution. More than twenty 
industrial materials were consequently tested in 
order to test the ability of that kind of test to be rep-
resentative of the fatigue resistance of elastomers. 

These tests provided promising results but the 
highly viscous nature of these materials prevents 
any quick analysis and it will be necessary to use a 
dissipative hyperelastic model in order to dissoci-
ate the viscous contribution from what comes from 
microscopic damage. An important point is that 
the heat build-up test seems to be a very appropri-
ate tool to identify the parameters of such a model 
since both mechanical and thermal responses are 
analysed. As illustrated in this paper for a fatigue 
study, microtomography measurements will be 
very valuable to help the understanding of what is 
seen during the heat build up tests and to feed the 
model with damage kinetics.
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Identifying the damaging events in a multiaxial duty cycle

W.V. Mars
Cooper Tire & Rubber Company, Findlay, Ohio, USA

ABSTRACT: The duty cycle of a rubber component in field service often involves time-varying loads 
applied simultaneously from several directions—ie multiaxial loading. This contribution demonstrates an 
analysis whereby events occurring in a multiaxial duty cycle can be ranked according to their contribution 
to the overall damage rate. In order to account for the transformation of multiaxial loading into the experi-
ence of localized flaws, the duty cycle on each material plane is considered, along with its corresponding 
damage rate. Once the damaging events have been identified and ranked, the original duty cycle can then be 
simplified by constructing a new duty cycle composed from a number of the most damaging events in the 
original cycle. Calculations are made for a series of duty cycles reconstituted via this procedure, illustrating 
the degree to which minor cycles influence the overall damage rate, and the selection of the failure plane.

a great deal of knowledge about fatigue in rubber has 
developed. Available reviews cover: the physics of 
strength and fatigue (Lake 2003, Persson et al. 2005), 
available approaches for fatigue analysis (Mars and 
Fatemi 2002, Mars 2007), the historical development 
of Fracture Mechanics (Thomas 1994), and factors 
that affect fatigue (Mars and Fatemi 2004).

The Fracture Mechanics approach has gained 
wide recognition, and has matured into well-
accepted methods and tools. Rivlin and Thomas 
(1953) and Thomas (1955) proposed the tearing 
energy as a criterion for characterizing mechanical 
conditions at a crack tip. The criterion found imme-
diate application in studies of what magnitude of 
loading would cause a crack to tear, and what would 
be its rate of tearing (Greensmith and Thomas 
1955). It was also applied to cases involving dynamic 
loading (Thomas 1958). Early studies focused on 
fatigue crack growth occurring with the load fully 
relaxed between each application. Later, Lind-
ley (1973) looked into the effects of non-relaxing 
cycles. The advent of Finite Element Analysis ena-
bled the energy release rate to be evaluated for real 
components and structures under complex loading 
(Lindley 1972), and the approach has been imple-
mented through a variety of schemes (Parks 1977, 
Shih et al. 1986, Shivakumar et al. 1988, Steinmann 
2000, Mueller and Maugin 2002), and is commer-
cially offered in several finite element codes.

A complementary paradigm, the Crack Nuclea-
tion approach, is also available. It consists in the 
idealization that cracks may appear at each point in 
a material, in any orientation, and that they do so 
according to a criterion defined in terms of param-
eters describing the loading state from a continuum 
viewpoint. In this approach, cracks are said to 

1 INTRODUCTION

Under dynamic loads, elastomeric components can 
fail due to the nucleation and growth of cracks, 
even when the loads remain always below the static 
strength of the material. Although much has been 
learned about the physics and phenomenology of 
such fatigue failures, there remains a great demand 
to integrate that knowledge into tools capable to 
address the materials and duty cycles that occur 
in everyday use. Consider, for example, that of all 
product design criteria, fitness for a given service 
life is often the most costly criterion to evaluate: 1) 
it is inherently destructive of expensive prototypes, 
2) it calls for extended running times, and 3) it 
requires elaborate systems to apply loading history 
and collect measurements.

This contribution describes the application of 
a new tool—the EnduricaTM fatigue life predic-
tion code (www.endurica.com)—to a common 
task: the transformation of a long multi-axial, 
aperiodic duty cycle (perhaps a direct recording of 
service conditions) into an abbreviated duty cycle 
(perhaps suitable for use as an accelerated product 
development test). It is often not initially obvious 
which events contribute most to the fatigue failure 
process, and which events may be dropped from 
consideration. It is desired that the shorter duty 
cycle retain those features of the original cycle that 
produce the original mode of failure.

2 HISTORICAL CONTEXT

Systematic study of fatigue failure in rubber was 
made as early as 1940 (Cadwell et al.). Since then, 
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“nucleate” or “initiate”. Gent, Lindley, & Thomas 
(1964) showed that the fatigue lives of apparently 
uncracked tension specimens could be computed 
from the crack growth characteristics, along with 
assumptions that 1) microscopic flaws were present 
initially and grew according to a known rate law, 
and 2) the loading state of the crack was related 
to the far-field strain energy density (the con-
tinuum mechanical parameter) in the test speci-
men. Several workers (Mars 2002, Mars & Fatemi 
2006a & b, Andriyana et al. 2008, Saintier et al. 
2006a & b, Yeoh 2002, Gough & Muhr 2005) have 
further explored the continuum mechanical param-
eterization required to account for the mapping 
between far-field loading state and the crack load-
ing state under multiaxial conditions. In this work, 
we apply the cracking energy density parameter 
introduced by Mars (2002). The cracking energy 
density represents approximately the portion of the 
strain energy density that is available for release by 
crack growth on a given material plane. It is worth 
noting that further efforts are currently underway 
with the aim to achieve a more exact connection 
between the fracture mechanics and crack nuclea-
tion approaches (Ait-Bachir et al. 2009).

Either the Crack Nucleation or the Fracture 
Mechanics approach may be used to determine how 
loads applied to a component are transformed into 
the localized experience of a given failure site. Once 
the localized experience is known, then an account 
can be made of how each individual loading event 
contributes to the overall development of the 
fatigue failure process. Procedures for identifying 
individual events have been developed for materials 
other than rubber (Downing and Socie 1982). They 
have been investigated and applied successfully to 
rubber (Harbour et al. 2007a, 2008a), taking care 
to account for rubber’s unique dependence on time 
and R ratio.

3 PROBLEM STATEMENT

3.1 Objectives

Given:

• a strain-crystallizing elastomer with known elas-
tic and fatigue properties.

• a duty cycle satisfying the plane stress condition, 
and consisting of 3 independent strain chan-
nels, each containing a range of low- and high- 
frequency variations.

Find:

• the Haigh and Cadwell diagrams corresponding 
to the specified material properties

• the loading history experienced by the most crit-
ical plane

• a listing of individual cycles in the history, 
ranked according to their relative contribution 
to the overall damage rate

• an abbreviated strain history reconstituted from 
the most damaging events, and retaining approx-
imately the same failure plane as the original

Method:

• All calculations presented here were made with the 
version 2.17 Endurica fatigue life prediction code.

3.2 Material properties

The chosen material for this analysis represents a 
filled NR. The hyperelastic behavior is given via 
the Arruda-Boyce law (Boyce and Arruda 2000), 
with shear modulus G = 3 MPa, and locking stretch 
λL = 4, as shown in Figure 1.

Fatigue behavior is given via a fracture mechani-
cal description. The efficiency of this approach 
lies in the fact that each test specimen produces 
observations of fatigue behavior over a range of 
conditions.

The crack growth properties under fully relaxing 
conditions are defined by the classical rate laws:

dc
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A T T= −( )max 0
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Here, r = dc/dN is the rate of crack growth, and 
Tmax is the peak crack driving force. When Tmax is 
greater than a transition value Tt, equation (1) is 
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Figure 1. Simple tension/compression stress-strain 
behavior assumed in this analysis.
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used, and when Tmax is less than Tt equation (2) is 
used. T0 is the mechanical threshold, below which 
no growth occurs. Tc is the strength of the mate-
rial, rc is the rate of fatigue crack growth occur-
ring when the crack driving force reaches Tc. F is 
the power-law slope. We used the values given in 
Table 1.

The crack growth behavior under non-relaxing 
conditions is defined by a strain-crystallization 
function F(R) (Mars 2009), which follows the 
Mars-Fatemi model (Mars and Fatemi 2003) in 
regarding that crystallization is implicitly repre-
sented in the relationship of power-law slope to the 
ratio R = Tmin/Tmax. The effect of the strain crystal-
lization function is to retard crack growth under 
non-relaxing conditions, as illustrated in Figure 2.

3.3 Duty cycle

The original duty cycle is plotted in Figure 3. The 
cycle is defined in terms of three components of the 
nominal strain tensor (the remaining 3 components 

being completely determined by incompressibility, 
and by the plane stress condition), with each com-
ponent given as a series of 1000 instants of time.

4 ANALYSIS

The basis of the calculation is integration of the 
damage law da/dN = r(T,R). The integration starts 
at the naturally occurring flaw size a0, and pro-
ceeds to the critical crack size af. We have used here 
a0 = 20 × 10−3 mm, and af = 1 mm.

N
r T R

da
a

af= ∫
1

0 ( , )  
(4)

For purposes of evaluating the damage rate of 
variable amplitude histories, the linear rule studied 
in the work of Harbour et al. (2007b, 2008b) has 
been applied. That is, if  a duty cycle is composed 
of M individual cycle events, then the rate of crack 
growth per application of the entire duty cycle is 
equal to the sum of the rates of the M individual 
cycles.

r r T Ri i
i

M
=

=
∑ ( , )max,

1  
(5)

As shown in Figure 4, the damage law is evalu-
ated for each plane on which a crack might initiate, 
and the plane is then selected which minimizes the 
total life.

The loading history on the plane, which is used 
for evaluating equations (4) and (5), is determined 
through the cracking energy density Wc, obtained 
by integrating the definition

dW S dc = ⋅
� �

ε  (6)

where 
�
S is the traction vector on the specified 

material plane tending to open and shear the crack 
faces, and d

�
ε is the strain increment vector on the 

specified material plane. The energy release rate T 

Table 1. Parameter values for 
fatigue crack growth rate law.

Parameter Units Value

rc m/cyc 10−6

Tc J/m2 104

F – 2
Tt J/m2 450
T0 J/m2 50

Figure 2. Fatigue crack growth behavior. Note the 
crack retardation effect afforded by strain crystallization.
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was estimated through its postulated relation to 
the cracking energy density:

T W ac= 2π  (7)

5 RESULTS AND DISCUSSION

5.1 Haigh and Cadwell diagrams

Representing constant amplitude crack nucleation 
behavior over a sufficient range of conditions is a 
prerequisite to the analysis of variable amplitude 
duty cycles. In our analysis, the specification of 
nucleation behavior is implicit through the defini-
tion of crack growth behavior and initial flaw size. 
As a check, we have computed crack nucleation 
behavior in two formats well-known to fatigue 
practitioners: the Haigh diagram and the Cadwell 
diagram.

The Haigh diagram, sometimes also called a 
‘constant life diagram’, is essentially a contour 
plot in which lines of equal fatigue life are plot-
ted in a space with axes representing the mean 
strain and the strain amplitude of the constant 
amplitude cycle. Figure 6 shows the results of 
our calculation. Contours are labeled according 
to their base 10 logarithm (so that 2 = 100 cycles, 
3 = 1000 cycles, etc). Our computed results for the 
shape of the Haigh contours are consistent with 
experimental observations made by others (Andre 
et al. 1999, Oshima et al. 2007), especially in regards 
to the beneficial effects of large mean tension. For 

example, see Figure 5. Note that the computed 
results cover a wider range of operating conditions 
than has been reported in experimental studies to 
date. The difficulty of testing such a large experi-
mental range is formidable.

The Cadwell diagram is an alternative format, 
first generated by its namesake (Cadwell et al. 
1940), which also summarizes the dependence of 
the crack nucleation life on the oscillation limits 
of the constant amplitude cycle. In the Cadwell 
diagram, the base 10 logarithm of the fatigue life 
is plotted as a function of the minimum strain, 
with the strain amplitude held constant. A family 
of curves is then constructed by varying the strain 
amplitude. For a strain-crystallizing material, typi-
cal features include a local minimum of the crack 
nucleation life at a minimum strain of zero, and 
dual life maxima for compressive and tensile mini-
mum strain. Our computed results are shown in 
Figure 7. Contours are labeled according to the 
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Figure 4. Fatigue life prediction algorithm.
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Figure 6. Computed Haigh diagram for the material 
studied. The white box highlights the region which may 
be compared to results in the previous Figure.



265

strain amplitude. Cadwell’s results for a filled NR 
are shown in Figure 8.

5.2 Loading history on the critical plane

The failure plane was selected from among all pos-
sible planes to minimize fatigue life. The depend-
ence of fatigue life on plane orientation is given in 

Figure 9. The failure plane is predicted to occur at 
an orientation of 4 deg.

The history of cracking energy density depends 
on the plane selected. The history corresponding to 
the plane of minimum life is shown in Figure 10. 
It can be appreciated that, on the selected plane, 
many of the individual loading cycles are non-
relaxing, but the largest cycles are fully relaxing. 
The instant of most severe loading (at t = 653 sec) 
is also easily identified in this view.

5.3 Contribution of events to the damage rate

By applying a rainflow counting algorithm, the 
loading history from Figure 10 can be parsed 
into a list of  individual events, and the dam-
age contribution from each can be computed. 
Figure 11 plots Tmax and R for each of  the 253 
events identified. The events are sorted in order 
from most damaging to least. Not surprisingly, 
the events contributing the most damage on the 
critical plane tend to be fully relaxing cycles with 
large peak values.

Figure 12 plots the initial crack growth rates of 
the sorted events, for a crack with the given initial 
flaw size.

Figure 7. Computed Cadwell diagram for the material 
studied.
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Figure 9. Dependence of fatigue life on crack plane ori-
entation, for the original duty cycle.

3

3.5

4

4.5

5

5.5

6

0 45 90 135 180

L
og

10
 (

Fa
ti

gu
e 

L
if

e)

Crack Orientation, deg

Figure 10. History of cracking energy density on the 
critical plane.

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

C
E

D
, M

P
a

Time, s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

R
 r

at
io

C
E

D
m

ax
, M

pa

Event #

CED

R

Figure 11. Identified events, ordered by contribution to 
damage rate. The peak CED and the R ratio are plotted 
for each event.



266

5.4 Abbreviated strain history

For each individual event considered, the rainflow 
algorithm returns indices enabling the instants 
of maximum and minimum loading to be identi-
fied in the original duty cycle. Knowing which 
events account for the largest damage contribu-
tions, the loading states at the corresponding 
times can be extracted, and used to reconstitute 
an abbreviated duty cycle. The abbreviated cycle 
can then be run through the life analysis to com-
pare the failure plane and the computed fatigue 
life. Figure 13 shows how the life depends on the 
number of events retained.

Depending on the number of events retained, 
the distribution of damage among potential failure 
planes may vary considerably. Figure 14 compares 
the damage distributions for several different sce-
narios. The best approximation to the full cycle 
occurs when 64 events are retained. The life is only 
a factor of two longer, and the damage distribu-
tion is quite similar. The duty cycle corresponding 
to M = 64 events is shown in Figure 15. By remov-
ing 253 − 64 = 189 events from the cycle, and their 
associated heating effects, an opportunity is cre-
ated to shorten the time scale of the test.

Figure 12. Initial damage rate associated with each 
event in the original duty cycle.
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6 CONCLUSIONS

A sufficient representation of fatigue behavior can 
now be made computationally to enable the com-
pletion of important fatigue design and evaluation 
tasks for rubber components. We have demon-
strated, for example, that the Haigh and Cadwell 
diagrams can be computed, and that the damag-
ing effects of a multiaxial, variable amplitude duty 
cycle can be traced to the most critical plane(s), 
and to the particular events that contribute most 
to the damage. This knowledge can be used to miti-
gate design deficiencies, and to construct abbrevi-
ated duty cycles that have nearly the same damage 
effects as the original.
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ABSTRACT: Previous papers presented by the authors at ECCMR in 2003–2007 outlined the 
development of a dynamic equi-biaxial fatigue testing system for elastomers. The design iterations to 
achieve synchronisation of image capture with pressure measurement, instantaneous adjustment of 
parameters to allow constant stress amplitudes throughout testing and influence of test sample geometry 
were amongst the topics discussed. In the research presented in this paper, initially samples were fatigued 
at a constant engineering stress amplitude and a zero minimum engineering stress, allowing full relaxa-
tion of the samples between cycles, but comparative tests were then produced for samples subjected to 
the same engineering stress amplitude, but with non-relaxing conditions, i.e. a constant pre-stress, applied 
throughout the test. Results are presented showing that there is an increase in the fatigue life of the 
EPDM specimens when a pre-stress is applied to the samples within a specific range of peak engineer-
ing stresses. The results from these tests will be analysed in a further study to determine if  failure occurs 
within a predictable range of complex elastic modulus and if  this can provide a reliable basis for fatigue 
life prediction.

1 INTRODUCTION

Most rubber parts fail in fatigue and as a result 
establishing what the fatigue life of an elastomeric 
component will be has become a topic of increas-
ing interest to materials scientists in recent years. 
Fatigue testing to date has generated results using 
equipment which loaded the specimens in uniaxial 
tension, combined tension and torsion or in shear. 
While these methods provide much useful insight 
into the fatigue behaviour of elastomers, they do 
not describe the full spectrum of elastomeric mate-
rial behaviour under cyclic loading. It is desirable 
to test rubber cyclically in a variety of stress-strain 
modes to fully define dynamic material properties.

Dynamic bubble inflation is capable of loading 
test-pieces in equi-biaxial tension for any stress or 
strain amplitude and can record the total cycles 
to failure. This test method allows specimens to 
be fatigued to failure equi-biaxially and facilitates 
completion of the characterisation of fatigue life 
for all loading cases for a particular elastomer.

A fundamental question posed is the manner in 
which pre-stressing affects the fatigue behaviour 
of the rubber, where it is subjected to equi-biaxial 
dynamic loading. This is the motivation for this 
section of the research programme.

2 THEORY

Bubble inflation is assumed to comply with theory 
for applying pressure to a thin spherical shell struc-
ture possessing negligible bending stiffness, alter-
natively described as membrane theory.

Pressure p is applied to one side of a thin sheet 
with thickness t to cause it to inflate and produce a 
bubble-like shell. From the measurement of pressure 
p and the radius of curvature r the equation for stress 
at the pole can be determined from Equation 1.

σ = ⋅p
r
t2

 (1)
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3 OBJECTIVES

Previous work carried out in the Centre for Elas-
tomer Research (CER) at Dublin Institute of 
Technology showed that control of equi-biaxial 
dynamic tests by bubble inflation required cycling 
at constant controlled stress amplitudes.

Abraham et al. found that the fatigue life of a 
uni-axially dynamically loaded sample could be 
increased by pre-stressing (Abraham et al, 2001).

The uni-axial tests conducted on filled EPDM 
resulted in large increases in fatigue life when ten-
sile pre-loads were applied.

The tests presented in this paper were carried 
out in order to establish if  pre-stressing an equi-
biaxially fatigued sample would result in increases 
in fatigue life for similar stress amplitudes.

4 MATERIALS

EPDM rubber of 70 Shore A hardness, cross-linked 
with sulphur and containing low activity carbon 
black was chosen for this investigation.

5 METHODOLOGY

Specimens of  50 mm original diameter and 2 mm 
original thickness were used. For the bubble 
inflation tests, these samples were clamped and 
dynamically inflated and deflated through a 
35 mm diameter orifice. Prepared specimens 
had a pattern of  dots applied to their surface. 
The deformation of  this pattern during inflation 
and deflation was recorded by an optical system, 
allowing correlation to a specific stress value at 
the bubble pole for each image captured. Equi-
biaxial testing of  EPDM was carried out between 
constant stress limits of  σ = PR/2t0, as defined 
by Johannknecht et al for cyclic bubble inflation 
(Johannknecht et al, 2002) where t0 is the original 

specimen thickness. These tests were intended to 
establish if  the effect of  pre-stressing was similar 
to that found by Abraham et al for the uni-axial 
case.

Illustrative results of the equi-biaxial fatigue 
tests are shown in the form of plots of σ = PR/2t0 
versus Stretch Ratio for specimens that have both 
pre-stressing and no pre-stressing (Figure 1).

The DYNAMET system used to carry out these 
tests was developed by the CER at Dublin Institute 
of Technology. DYNAMET enabled the speci-
mens to be cycled between controlled stress limits. 
The bubble volume and pressure were monitored 
during cycling.

6 TEST RESULTS AND DISCUSSION

6.1 Analysis of the effect of pre-stress 
on fatigue life

A series of fatigue tests were carried out using the 
DYNAMET system, where samples were fatigued 
to failure with a minimum pre-stress applied. The 
fatigue lives of these samples were compared to 
those of samples fatigued without pre-stressing. 
These results are shown in the S-N curve in 
Figure 2 below.

As Figure 2 illustrates, pre-stressing for the 
dynamic equi-biaxial case under these conditions 
did not result in definitive increases in fatigue life 
for the EPDM samples. However, the outcome 
of these tests led to further investigation into the 
parameters used for stress control in cyclic bubble 
inflation.

6.2 Stress-strain considerations

Figure 3 shows the geometric relationships for the 
bubble inflation case.

Looking at the case of engineering stress in the 
inflated bubble case gives:

Figure 1. σ = PR/2t0 versus Stretch Ratio for specimens 
that have both pre-stressing and no pre-stressing.

Figure 2. S-N curve for EPDM samples with and with-
out pre-stressing.
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σeng = F/A0 (2)

F = Applied Force (3)

A0 = Original Area = 2 π R0 t0 (4)

Force = Pressure ⋅ Resisting Area (5)

In terms of the resisting area of the bubble, this 
can be described by:

Resisting Area = π R2 (6)

Force = P π R2 (7)

It should be noted that the radius of the bubble 
can be described by:

R = Radius of Inflated Bubble = R0 λ1 (8)

Force = P π R0 2 λ1
2 (9)

σeng = F/A0 (10)

σeng = P π R0
2 λ1

2/2 π R0 t0 (11)

By rearranging and with reference to equation (8),

σeng = PR λ1/2 t0 (12)

When this relationship is compared to the standard 
method of calculating stress for the bubble infla-
tion case (Equation 1), as shown in Figure 4, the 
changes in peak engineering stress with cycling using 
σ = PR/2t as a control parameter are apparent.

This problem illustrates the effect of the princi-
pal stretch ratio λ1,2 on the peak engineering stress 
value. When the value of λ at peak stress is analysed 
with respect to cycles, the relationship changes 
with the accumulation of cycles. To account for 
this change in λ over the duration of a test, com-
pensation in the control system was included with 
respect to the change in λ versus the number of 
cycles accumulated during the test.

This alteration was incorporated into the 
DYNAMET control system. Figure 5 below shows 
the σeng = PR λ1/2t0 control for a series of inflation 
and deflation cycles.

6.3 Analysis of fatigue results 
with pre-stressing

A set of fatigue tests were again carried out where 
samples were fatigued to failure, again with one set 
being subjected to a minimum pre-stress and the 
other set being fatigued without pre-stressing.

In this case, σeng = P R λ1/2 t0 control was used in 
the dynamic testing of all specimens.

The results of these tests are shown in the S-N 
curve in Figure 6 below.

At values of peak engineering stress just below 
the rupture stress of the material, the samples are 
being subjected to fatigue cycles which induce high 
levels of damage into the sample, resulting in early 
failure due to rapid rupture of the specimen. Once 
the material is subject to loading below this region, 
in this case 2.0 MPa for non pre-stressed samples, 
the degree of damage incurred in loading cycles 
is reduced and crack growth conditions manifest 
until failure of the sample occurs.

Figure 3. Geometric relationships for the bubble infla-
tion loading case.

Figure 4. Changes in peak engineering stress with 
cycling using σ = PR/2t as a control parameter.

Figure 5. Plot of first 1000 cycles of a fatigue test, using 
σeng = PR λ1/2t0 control.



272

As shown in Figure 6, the fatigue life for 
pre-stressed samples increased over a specific range 
of stress amplitudes. However in this case, for 
stress amplitudes below σa = 0.8 MPa, pre-stressing 
did not show definite increases in fatigue lives and 
in fact reductions in fatigue life were recorded for 
lower stress amplitudes.

7 CONCLUSIONS

A method of controlling the upper engineering 
stress values in an equi-biaxial fatigue test has been 
developed and the results are presented. By moni-
toring the change in stretch ratio with accumulation 
of cycles, the peak engineering stress throughout 
a fatigue test can be controlled, allowing constant 
engineering stress equi-biaxial fatigue tests to be 
carried out for an elastomer. Using this method of 
loading, S-N curves for an elastomer can be gener-
ated which exhibit lower levels of scatter than those 
typically associated with uni-axial results.

The effect of pre-stressing in dynamic equi-biaxial 
fatigue of EPDM shows that below the high dam-
age region of loading, increases in fatigue life have 
been recorded.

It is apparent from the results presented that 
the fatigue lives of samples cycled to a controlled 
equi-biaxial stress amplitude with pre-stressing is 
greater than that of samples cycled to the same 
stress amplitude with zero pre-stressing.

However, this effect is only apparent for very 
high maximum stress levels in the pre-stressed 
cycles. Figure 7 illustrates the variation in the 
effect of pre-stressing with changing engineering 
stress amplitudes.

The reduction in dynamic stored energy due 
to pre-stressing during any loading cycle is less 
influential on the total dynamic stored energy with 
decreasing peak stress limits and increases in the 
Rratio for the material being tested where,

Rratio = σmin/σmax (13)

A point is reached below which the contribution 
of the stored energy solely attributable to the pre-
stressing is not sufficient to increase fatigue life and 
in fact as the test programme continued, reduced 
fatigue lives of the samples tested were recorded 
for pre-stressed conditions with lower maximum 
engineering stresses.

Similar tests in uni-axial fatigue testing of filled 
EPDM (Abraham et al, 2001) have shown increases 
in fatigue life of EPDM with tensile pre-stressing. 
However, the range over which pre-stressing 
increased fatigue life was larger and pre-stressing 
results were not shown for samples in excess of 
60,000 cycles. This may explain why the phenome-
non shown in the equi-biaxial case has not been dem-
onstrated for the uni-axial case. If uni-axial testing 
with pre-stressing for very high cycle lives does dem-
onstrate a reduction in the effect of pre-stressing, 
it is postulated that equi-biaxial cyclic testing can 
demonstrate material characteristics common to 
both methods in a shorter period of time.

Another aspect to be examined is the possibility 
that pre-loading of EPDM does not give increased 
life across the full service load range in the uni-
axial case. The authors intend to verify this and 
compare the results with equi-biaxial tests on simi-
lar compounds. This will determine conclusively 
if  the effect is relevant within the normal service 
conditions of rubber components.

The results presented in this paper will also be 
investigated in further detail to determine if there is 
a limiting value of elastic modulus (E*) for the mate-
rial at failure. This will determine if failure occurs 
within a predictable range of complex elastic modu-
lus regardless of loading methods and can therefore 
provide a reliable basis for fatigue life prediction.
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Figure 6. S-N curve for EPDM samples with and with-
out pre-stressing, using σeng = PR λ1/2 t0 control.

Figure 7. Effect of dynamic stored energy due to pre-
stressing on fatigue life.
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Extended Wöhler curve to predict fatigue life of elastomeric 
components

M. Rabkin & Th. Brüger
Vibracoustic GmbH & Co. KG, Hamburg, Germany

ABSTRACT: An extension of the celebrated Wöhler curve in order to take into account the mean 
loading effect is presented. This extension describes the fatigue life of elastomeric parts as a function of 
two parameters of the damage variable: the amplitude and the R-ratio. The damage variable is defined on 
basis of the Green-Lagrange strain and can take positive as well as negative values. The parameters of the 
extended Wöhler curve characterise the material properties regarding the fatigue life under cycle loading. 
The experimental program to identify these parameters in a simple manner using a rubber specimen is 
developed. The different output form of the results of the fatigue life analysis is discussed. The compari-
son of the obtained extended Wöhler curves for NR and CR elastomers is given. An example of fatigue 
life prediction for real elastomeric components is demonstrated.

In this case each of this basic strain states can 
be well-defined using only two stretches, for exam-
ple λ1 (maximal principal value) and λ3 (minimal 
principal value). Note that the so called equibiaxial 
tensile strain state is, in strain view, identical to the 
compression state and in the case of the hydro-
static state all stretches are equal 1.

2.2 Damage variable and damage parameters

Here the damage variable is defined based on the 
Green-Lagrange strain. Consider the hyperelastic 
incompressible body under displacement control-
led cyclic load w. It can be introduced two differ-
ent combined damage variables, which react to the 
direction change of the displacement w during a 
loading period:
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ε ε ε
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where ε1 and ε3 are the principal maximum and 
minimum values of the Green-Lagrange tensor 
strain respectively.

The difference between both of the introduced 
combined variables can be demonstrated on the 
example of the uniaxial tensile-compression state 
in a rod of  length L under alternating load w 
(Figure 1).

In the following the damage variable εD is 
defined as

ε ε
ε ε ε
εD D w ww= =

>⎧
⎨
⎪

⎩⎪
( )

( ) ( )
otherwise

1 3 1 3 3 1

3 1

_ _ _

_

, max max
,

 
(1)

1 INTRODUCTION

The fatigue behaviour of natural rubber (NR) is 
commonly characterised by a Wöhler curve, which 
describe the relationship between the amplitude 
of the damage variable and the fatigue life under 
cyclic loading. The damage variable (e.g. stress, 
strain, strain energy density etc.) represents the 
response of the material with respect to its fatigue 
life. It is well-known fact that not only the damage 
variable amplitude but its mean value as well can 
have very significant influence on fatigue behav-
iour of  rubber materials (mean loading effect). 
Neglecting this effect in fatigue life estimations can 
completely invalidate the predictions of the cycles-
to-failure. The goal of this work is the develop-
ment of an analytical description of the material 
fatigue behaviour under cyclic loading in order to 
incorporate the mean loading effect.

2 BASIC TERMS AND DEFINITIONS

2.1 Strain state

In the presented work the material response on the 
cyclic loading will be characterise only by means of 
the strain approach. This seems to be more appro-
priate for rubber parts (Eckwert et al. 2003).

Then there can be selected four different basic 
strain states: uniaxial (tensile and compression), 
plane strain and hydrostatic state (Holzapfel 2000). 
Assume the material is incompressible, i.e. for the 
stretches λi (ι = 1, 2, 3) is valid:

λ1λ2λ3 = 1



276

The damage variable εD (1) depends on the dis-
placement w, on the local space coordinate and is 
as well as w a cyclic time function.

Three parameters of the damage variable func-
tion can be used for the fatigue life estimation: the 
amplitude εa, the mean value εm and the fatigue 
ratio Rε. They are calculated as follows:

ε ε ε ε ε ε ε
εεa m R= − = + =

1
2

1
2

( ) ( )max min max min
max

min

where εmax and εmin are the maximum and minimum 
values of the damage variable εD during a loading 
period. Note that only two parameters, for exam-
ple, εa and Rε, are sufficient to describe definitely 
this damage variable.

2.3 Loading state

The loading state is characterised by means of the 
Rε -ratio, namely:

loading state

tensile,
compression,
static,
al
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< < ∞

=
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1
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tternating, − ∞ < ≤
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⎩
⎪ Rε 0

The changing of the loading state depending on Rε 
can be illustrated with the following diagram:

Notes:

1. There is not direct relationship between the 
loading and the strain states. For example, in 
case of the plane strain state it can be realized 
all loading states, depicted in Figure 2.

2. The normally used damage variables as princi-
pal maximal strain (or stress), strain energy den-
sity etc. cannot describe the alternating loading 
state because they only take the positive values.

3 EXPERIMENT TESTING 
AND ANALYTICAL MODEL

The fatigue life test was performed at room tem-
perature on a NR-blend rubber specimen in the 
form of  a buffer (Figure 3). The measurements 
were carried out under uniaxial displacement con-
trolled sinusoidal loading w in direction of the 
buffer axis at three fixed displacement amplitudes 
(6 mm, 8 mm and 11 mm) and different mean val-
ues (preloads) with the frequency 3 Hz.

The lifetime was defined as a number N of  
cycles-to-failure, at which the specimen stiffness 
(the quotient force amplitude/displacement ampli-
tude) gets lower then 10% of a reference value. Fur-
thermore the test was limited by N = 3 ⋅ 106 cycles.

The damage variable (1) as a function of the 
displacement w was calculated in the critical point 
(Figure 3) using the FE-simulation program MSC.
MARC with the Mooney-Rivlin hyperelastic 
material model. The material model parameters 
were identified from quasi static measurements 
by means of a specially developed technique of a 
uniaxial approximation. The values of the fatigue 
ratio Rε were varied for each value of the displace-
ment amplitude in the range –0.3 < Rε ≤ 0.3.

The proposed analytical approach exhibits the 
generalisation of the known power law equation 
for the Wöhler curve (ε-N-diagram). Whereby the 
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Figure 1. Two combined damage variables in case of 
the uniaxial strain state.

Figure 2. Loading states.

Figure 3. Rubber buffer specimen: height = 36 mm, 
maximum radius = 20 mm, minimum radius = 12.8 mm.

critical point
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life time N can be expressed as a function of two 
arguments, εa and Rε, in the form

N = N (εa, Rε), (2)

whereas the dependence on Rε is piecewise 
described for the tensile and alternating parts of 
the loading state. The fatigue life model (2) has 
four parameters for each of the loading state parts. 
These parameters were determined from obtained 
test results using a fit-procedure.

4 SOME RESULTS AND DISCUSSION

The fatigue life test data and the fitted—accord-
ing to (2)—curves are presented in Figure 4 in the 
form of the R-N-diagram, which indicate the rela-
tionship between fatigue life N and fatigue ratio Rε 
at fixed amplitudes εa.

The presented fatigue life model (2) provides 
the possibility to plot the iso-lifetime lines: the 
curves with constant fatigue life values. These lines 
in the plane εa–Rε (ε-R-diagram) are depicted in 
Figure 5.

An alternative output form of the iso-lifetime 
lines is the well known Haigh-diagram (André 
et al. 1999): the plot in the plane εa–εm. The ε-R-
diagram can be converted into the Haigh-diagram, 
but the proposed visualization form has the advan-
tage that the fatigue life depends directly on Rε.

The presented analytical approach and experi-
mental program were reviewed by several elasto-
meric blends and for all of them have been obtained 
similar results.

For comparison is shown in Figure 6 the R-N-
diagram for a Polychloroprene Rubber (CR).

5 FATIGUE LIFE ESTIMATION

The fatigue life with regards to the mean effect can 
be estimated in case of a non-periodic (stochastic) 
load wS(t) by means of the rainflow counting 
method in combination with the famous Palmgren-
Miner rule.

The process of the fatigue life estimation can be 
performed as follows:

1. Calculation of the damage response 

 ε εD s D st w t( ) ( ( ))=  (3)

 (1) as a time history signal using FE-analysis. 
If  the non-periodic load is given as a force 
Fs(t) it can be converted to the corresponded 
displacement load ws (t) by means of the force-
displacement-diagram F = F (w).
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Figure 4. R-N-diagram for a NR blend: experiment 
(symbols) and model (solid lines).
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Figure 6. R-N-diagram for a CR blend: experiment 
(symbols) and model (solid lines).
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2. Rainflow counting: decomposition of the time 
history signal (2) into single cycles (oscillations) 
with amplitudes εai  and R-ratios R

iε  and count-
ing of those cycles. This procedure can be sym-
bolically expressed in the form

 
ε ε εD s a i i

K
t R n

i i

s
( ) → { } =

, ,
1

  where ni = Number of the repetitions of the sin-
gle cycle si

 
s Ri ai i

= { }ε ε,

 Ks = total Number of the single cycles.
3. Calculation of the accumulated total damage 

D on the basis of the Palmgren-Miner rule as a 
sum of the contributions from the single oscil-
lations si:
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  Note that the event of total failure is defined by 
D ≥ 1.
The described process of the fatigue life esti-

mation is realized and developed by the company 
Vibracoustic in the MATLAB-tool “LDSIM”. 
One example of the using of this tool for a rubber 
component is shown in Figure 7.

6 CONCLUSION

In this study, a new approach to describe the fatigue 
behavior of natural rubber under cyclic loading is 
presented. The proposed fatigue life model is based 

on the extension of the Wöhler curve and involves 
the mean loading effect. There are two important 
aspects of the new approach:

1. use of a damage variable, which is based on the 
Green-Lagrange strain and can take positive or 
negative values depending on the time history load,

2. analytical description of the fatigue behaviour 
as a function of the two arguments, damage 
variable amplitude and corresponded R-ratio.

The test program to identify the fatigue life 
model parameters is curried out using a rubber 
buffer specimen. The experimental data is evalu-
ated by means of the FE-analysis and is repre-
sented in the form of the R-N-diagram at different 
damage variable amplitudes. A comparison of 
the R-N-diagrams for two different rubbers—NR 
and CR—is given. The fatigue life estimation of 
the rubber parts under arbitrary time history load 
is performed using the rainflow counting method 
and subsequent the Palmgren Miner rule taking 
into account the mean loading effect. The pro-
posed approach is developed by Vibracoustic and 
implemented in the MATLAB-tool “LDSIM”. 
An application of the developed tool for a rubber 
mounting is demonstrated.
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ABSTRACT: The present paper presents a simple framework to model continuous volumetric damage 
in elastomers. The formulation predicts phenomenologically the growth of microscopic cavities, and can 
be applied to both static and fatigue loading conditions. This first version of the approach cannot han-
dle cavitation and is limited to small values of porosities. The derivation is based on the use of a simple 
scalar damage parameter, the irreversible volume change, and takes naturally into account the change in 
stiffness through the explicit dependence of the material parameters on the damage variable. The thermo-
dynamic force which drives the volume change contains the hydrostatic stress and also a contribution due 
to stiffness evolution. As a first application, a damage compressible neo-Hookean constitutive equation is 
derived and a simple example is studied.

1 INTRODUCTION

Rubber-like materials are usually considered as 
incompressible. However, under multiaxial or fatigue 
loading conditions, cavitation and cavities growth 
take place, and lead to damage and finally to frac-
ture (Farris 1968; Le Cam et al. 2004; Le Gorju 
2007). Special experiments can be carried out 
to exhibit this behaviour as proposed by Gent 
and Thomas (1958), Gent and Wang (1991) or 
Legorju-Jago and Bathias (2002). For modelling, 
on the one hand the cavitation phenomenon under 
hydrostatic loading conditions is studied consider-
ing the stability conditions for the sudden growth 
of  microscopic cavities in the incompressible bulk 
(see Ball (1982), Horgan and Abeyaratne (1986) 
for example). On the other hand, several phe-
nomenological approaches have been proposed 
to predict the growth of  pre-existing cavities; the 
corresponding models incorporate damage vari-
ables into compressible hyperelastic approaches 
(see Boyce and Arruda (2000) for a short review) 
to quantify the irreversible change of  poros-
ity (Andrieux et al. 1997; Dorfmann et al. 2002; 
Layouni et al. 2003; Li et al. 2007). These models 
can also be extended to cavitation by adapting the 
rate equation of  the damage variable (Dorfmann 
2003). Nevertheless, they are limited to small val-
ues of  the porosity.

In the present paper, similarly to Andrieux et al. 
(1997), we propose a simple theoretical framework 
to model the compressibility induced by damage 
in hyperelastic materials. Our approach is phenom-
enological and is restricted to small values of poros-
ity, such that the growing cavities do not interfere. 
The scalar damage variable is the irreversible vol-
ume change and its influence on the stiffness of the 
material is taken into account through the mate-
rial parameters. The rate equation chosen here is 
not adapted to sudden volume change (cavitation) 
but only to continuous volume change (damage by 
continuous growth of cavities).

The derivation of the model is described in the 
next section, the emphasize being laid on the deter-
mination of the thermodynamic force which drives 
the volume change. Then, a very simple constitu-
tive equation which generalizes the compressible 
neo-Hookean model is considered to illustrate the 
relevance of the method.

2 DERIVATION OF THE CONSTITUTIVE 
EQUATION

2.1 General formulation

2.1.1 Kinematics
It is considered here that under loading, the body 
exhibits an irreversible volume change due to what 
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can be called a volumetric damage. In the general 
framework of large strain, the material is sup-
posed homogeneous, isotropic and hyperelastic. 
Moreover, we assume that it initially contains small 
flaws that can be considered as holes. To simplify 
the derivation, the RVE is assumed to deform as 
sketched in Figure 1; the deformation gradient F is 
separated into two parts:

• an irreversible volume change between the initial 
configuration (C0) and the intermediate configu-
ration (Ci). It is defined by the deformation gra-
dient Jc

1 3/ I, in which Jc is the ratio of irreversible 
volume change between the two configurations. 
In the figure, this volume change is illustrated by 
the irreversible growth of small holes; neverthe-
less, we do not consider their microscopic evolu-
tion: interaction, coalescence, …

• a classical elastic deformation, which gradient is 
denoted f, between the intermediate configura-
tion (Ci) and the deformed configuration (C).

The well-established multiplicative decomposi-
tion of the deformation gradient is adopted:

F f I f= = ./ /J Jc c
1 3 1 3  (1)

Indeed, the deformation process can be descri-
bed by the two following variables: the observ able 
strain (through F) and the internal variable Jc which 
describes damage.

2.1.2 Constitutive equations
First, the reversible deformation between configura-
tions (Ci) and (C) is considered hyperelastic: it exists 
a strain energy function wJc

( )f  per unit of volume 
in (Ci). It is highly important to note that this strain 
energy function depends on Jc in two ways: through 
f, recalling Eq. (1), and through the material param-
eters which explicitly depend on the irreversible vol-
ume change, as notified by the subscript ∙Jc. Second, 
the deformation between (C0) and (Ci) being totally 
irreversible, no elastic strain energy is involved. 
Then, the total strain energy of the material is sim-
ply the strain energy wJc

 written per unit of unde-
formed volume, i.e. unit of volume in (C0):

W J J wc c Jc
( ) ( )F f, = . (2)

Once the strain energy function defined, one can 
easily derive the constitutive equations. Restrict-
ing the problem to a purely mechanical theory, 
i.e. ignoring thermal effects, the Clausius-Planck 
inequality is

Dint = : − ≥ ,P F� �W 0  (3)

where Dint is the internal dissipation and P is the 
first Piola-Kirchhoff stress tensor. Recalling that 
W depends on both the deformation gradient F 
and the internal variable Jc,

Dint = : − : − ≥ .P F F� � �∂
∂

∂
∂

W W
J

J
J c

c
c

F F

0  (4)

Following Coleman and Noll (1963), �F and Jc
⋅  

can be chosen arbitrarily and then the constitutive 
equation for F, i.e. the stress-strain relationship, is

P = ∂
∂
W

Jc
F

,  (5)

and the internal dissipation reduces to

Dint with= ≥ = −G J G W
Jc

c

� 0 ∂
∂ F

 (6)

where G is the thermodynamic force which drives 
the irreversible change in volume. Eq. (6)2 is the 
constitutive equation for Jc.

Stress-strain relationship. One can now derive 
Eq. (5):

P
F

f
F f

f
F

= = = : .∂
∂

∂
∂

∂
∂

∂
∂

W

J

c J
c

J

c

c c
J w

J
w( )  (7)

Introducing p f= ∂ /∂wJc
 the first Piola-Kirchhoff 

stress tensor with respect to the intermediate con-
figuration (Ci), and after some algebraic manipula-
tions, the nominal stress reduces to (see for example 
Holzapfel (2000) for such derivation)

P
f

f
= ./J

w
c

Jc2 3 ∂
∂

( )  (8)

Note that the derivation of p is straightforward: 
once the strain energy function wJc

 is chosen, the 
classical hyperelastic theory applies.

Thermodynamic force for change in volume. The 
thermodynamic force which drives the irreversible 
change in volume isFigure 1. Deformation of the RVE.
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G
J

w J
c

J c
c

c
= − = − − .∂

∂
∂

∂
W w

J
Jc

F F

( )f  (9)

The second right-hand side term can be calcu-
lated as follow

∂
∂

∂
∂

∂
∂

∂
∂

w wJ Jc c
( )f

f
f

J J
w

Jc c

J

c

c

F

= + : ,
expl

 (10)

where the subscript ⋅expl denotes the explicit dif-
ferentiation with respect to Jc, which involves the 
differentiation of the material parameters. Con-
sidering again the intermediate engineering stress 
tensor p, we have

∂
∂

∂
∂

w
J

JJ

c
c

c

f
f

p F: = : −⎛
⎝⎜

⎞
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.− /1
3

4 3  (11)

So, invoking Eqs. (1) and (8), the thermody-
namic force is

G J
J

wc
c

Jc
= − − − :⎛

⎝⎜
⎞
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.
∂
∂
wJc

expl

1
3

p f  (12)

This equation can be transformed by introduc-
ing the Eshelby stress tensor Σ = WI − FT P:

G J
J

Jc
c

c= − − : .−∂
∂
wJc

expl

1

3
Σ I  (13)

Moreover, considering the velocity gradient 
associated with the irreversible volume change Lc, 
which is simply J Jc c

− /1 3� I  here, and its symmetric 
part, the rate of deformation tensor Dc (equal to 
Lc in the present case), the internal dissipation can 
be written as

Dint = − − : ,J
J

Jc
c

c c
∂
∂
wJc

expl

� Σ D  (14)

and the thermodynamic force is then

G J
J

Jc
c

c= − − ⎛
⎝⎜

⎞
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.−∂
∂
wJc

expl

1

3
tr Σ  (15)

Finally, this expression can be simplified by 
rewriting the Eshelby stress tensor as proposed by 
Verron and Andriyana (2008): noting ( ) , ,Ni i=1 2 3 the 
principal strain directions in the reference configu-
ration and recalling that the Eshelby stress tensor is 
symmetric for isotropic elastic materials, Σ becomes

Σ = − ⊗
=
∑
i

i i i iW S
1

2
3

( ) ,λ N N  (16)

where (λi)i=1,2,3 are the principal stretch ratio and 
(Si)i=1,2,3 the eigenvalues of the second Piola-Kirchhoff 
stress tensor. Introducing the relationship between 
these principal stresses and the principal Cauchy 
stresses

σ i i iJ S i= = , ,−1 2 1 2 3λ  (17)

where J = det F characterizes the total change in 
volume between (C0) and C, i.e. reversible and irre-
versible, the Eshelby stress tensor can be written as

Σ = − ⊗
=
∑
i

i i iW J
1

3
( ) ,σ N N  (18)

and

tr Σ
3

⎛
⎝⎜

⎞
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= −W J sσ  (19)

where σs is the spherical part of the Cauchy stress 
tensor, i.e. the hydrostatic stress. So, the thermody-
namic force reduces to

G W
J

J
Jc c

s= − + .∂
∂ expl

σ  (20)

2.1.3 Evolution equation
To close the general formulation of the model, we 
should precise the rate equation for the internal 
variable Jc. Such equation can be written as:

�J f Gc = ,( )F  (21)

where the function f must be positive to ensure the 
positivity of the dissipation. In order to simplify the 
model, we simply choose a very simple “damage-
like” evolution equation under the following form:

�J
k

c =
⎧
⎨
⎩

G G Gif  < 
otherwise.

max

0
 (22)

In this equation, the parameter k is a positive 
real scalar value which depends on the material 
and Gmax stands for the maximum value of the 
thermodynamic force G previously endured by the 
material.

2.2 A particular model

Once the general theory derived, particular mod-
els can be proposed by specifying the strain energy 
density wJc

. We consider the case where the elastic 
deformation (from (Ci) to (C)) is compressible and 
we adopt one of the simplest strain energy densi-
ties for compressible hyperelastic materials: the 
generalization of the incompressible neo-Hookean 
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model proposed by Simo and Pister (1984) and 
adopted later by both Ehlers and Elipper (1998) 
and Bischoff et al. (2001). So the complete strain 
energy density is

W J J C i i D i

CJ J

c c

w

c c

Jc
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,

2 3
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J
J

DJ
J
J

c

c
C

ln

ln

 (23)

where i1 and i3 are the invariants of the right 
Cauchy-Green elastic strain tensor fT f, i.e. its trace 
and determinant respectively. Note that for the 
deformation gradient f, the spherical-deviatoric 
split is not considered. In this equation the mate-
rial parameter C is twice the shear modulus, and 
the material parameter D is proportional to the 
compressibility modulus.

Two cases are now considered.

• The first one for which there is no stiffness decre-
ase due to damage, i.e. material parameters are 
constant, C = C0 and D = D0. In that case, the 
engineering stress tensor P and the thermody-
namic force G are respectively

P F F= − +⎛
⎝⎜

⎞
⎠⎟

/ −2 2 80
1 3

0 0C J C D
J
J

Jc
c

c
Tln  (24)

and
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J
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+ − − −⎛
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⎞
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2 3 1

0 0 0

3
1

2 8 4ln ln .
 (25)

• The second one for which the stiffness decreases, 
i.e. C and D depends on Jc. To specify the 
dependence of these parameters on Jc, we invoke 
the statistical theory of rubber elasticity which 
states that

C nkT= ,
1
2

 (26)

with n being the number of active polymer 
chains per unit of volume, k the Boltzmann con-
stant and T the temperature. Considering the 
mass conservation equation between configura-
tions (C0) and (Ci),

n dV m n dV mi i0 0 chain chain=  (27)

where n0 and ni are the chain densities per unit 
of volume in (C0) and (Ci), dV0 and dVi the 

infinitesimal volumes in (C0) and (Ci), and mchain 
is the mean mass of the chains, and recalling 
that dVi = JcdV0, one can state that

C J C Jc c( ) / .= 0
 (28)

The second parameter D is not directly related 
to the chain density; nevertheless, we consider 
the same relationship with the initial compress-
ibility modulus

D J D Jc c( ) /= 0
 (29)

In that case, the engineering stress tensor P 
and the thermodynamic force G are respectively

P F F = 2 0C J C D
J
Jc

c T− −− +⎛
⎝⎜

⎞
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2 3
0 02 8/ ln  (30)

and

G J I
J
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J

J
Jc

c c

c= −
⎛
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⎞
⎠⎟

−−2
3

1 80
5 3 1 0C / ln .  (31)

3 FIRST RESULTS

In order to illustrate the previous theory, we con-
sider a very simple problem: a sample is first sub-
jected to cyclic triaxial loading conditions, then it 
is uniaxially stretched. More precisely, the loading 
conditions are

• Four equi-triaxial cycles under prescribed stretch 
ratio λ: from λ = 1 to λ = 1.25, then from λ = 1 to 
λ = 1.5, then from λ = 1 to λ = 1.75, and finally 
from λ = 1 to λ = 2. The deformation gra-
dient and the engineering stress tensor are 
respectively

F e e e e e e= ⊗ + ⊗ + ⊗λ( ),1 1 2 2 3 3  (32)

P e e e e e e= ⊗ + ⊗ + ⊗P ( ).1 1 2 2 3 3  (33)

• One uniaxial loading path under prescribed 
stretch ratio from λ = 1 to λ = 3 with

F e e e e e e= ⊗ + ⊗ + ⊗λ 1 1 2 2 3 3μ ( ),  (34)

P e e = 1P ⊗ 1.  (35)

The following values of the material param-
eters are adopted: C0 = 1 MPa, D0 = 10 MPa and 
k = 0.01.

First, for both models, we present the evolu-
tion of Jc as a function of the loading time and the 
stress-strain response during the triaxial loading 
phase: in Figures 2 and 3 for the first model with-
out change in material parameters (Eqs. (24–25)), 
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and in Figures 4 and 5 for the second model with 
change in material parameters (Eqs. (30–31)). The 
comparison of the volumetric damage evolution 
in Figs. 2 and 4 exhibits that ignoring the induced 
change in material parameters leads to a limit in 
the irreversible change in volume (see the two final 
constant steps in Fig. 2), whereas if  this change is 
taken into account the volumetric damage evolves 
continuously during triaxial cyclic loading. This 
mechanical response can be also observed with 
the stress-strain responses in Figs. 3 and 5: for 
the former model a unique curve is reached for 
about λ = 1.5 and unloading parts of the response 
become closer and closer as depicted in Fig. 3. For 
the latter model, Fig. 5 shows that the material 
stiffness evolves in a regular manner and the result-
ing cyclic response is similar to the one encoun-
tered with damage-like constitutive equations, see 
for example Chagnon et al. (2004).

Finally, we examine the mechanical response 
obtained during the final uniaxial extension in 
Figures 6 and 7. For both models, Jc does not 
change under loading (the curves are not shown 
here). Nevertheless, the first model exhibits a 
“strange” behaviour: the stiffness of the material 

is revealed always greater than its initial stiffness 
(before damage), and the undamaged and 
damaged curves intersect which means that for 
stretch ratios greater than 1.75 the stress is greater 
in the damaged material than in the undamaged 
one; this behaviour is physically irrelevant. For the 
second model, the stiffness of the damaged mate-
rial is always lower than the initial stiffness and the 
curves never intersect.
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Figure 2. Model without change in material parame-
ters: evolution of the volumetric damage during the four 
triaxial cycles.
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Figure 3. Model without change in material parame-
ters: stress-strain response during the four triaxial cycles.
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Figure 4. Model with change in material parameters: 
evolution of the volumetric damage during the four 
triaxial cycles.
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Figure 5. Model with change in material parameters: 
stress-strain response during the four triaxial cycles.
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Figure 6. Model without change in material param-
eters: uniaxial stress-strain response.
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4 CONCLUSION

In this paper, a new method has been proposed to 
consider irreversible growth of cavities in rubber-
like materials. The general framework consists 
in introducing a scalar damage variable Jc which 
represents the irreversible volume change at a 
material point; then, the constitutive equations are 
derived with in the framework of Thermodynamics 
or Irreversible Processes. The originality of the 
present approach consists in taking into account 
the stiffness change induced by damage through 
the explicit dependence of the material parameters 
on the damage variable. Moreover, considering the 
statistical rubber elasticity theory, the extension 
of the neo-Hookean model has been derived and 
the dependence of the shear modulus on Jc has 
been easily established. Finally, a first proof of the 
model relevance has been proposed by considering 
a very simple loading history.

Further work will be carried out first to extend 
the model to cavitation through the choice of a 
more complex rate equation for Jc and second to 
implement the model in the finite element context.
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Modelling friction and abrasion in rubber
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ABSTRACT: The exact mechanisms present during frictional sliding and abrasion of an elastomer over 
a hard asperity are discussed. It is widely accepted that the two principal factors in rubber friction result 
from the adhesion and hysteresis behaviour of the elastomer. Through modelling and measurement it has 
been shown an additional geometric factor contributes significantly to the frictional force. This geometric 
term is thought likely to make a contribution to friction experienced in applications such as the sliding of 
tyres over a road surface. Also, the abrasion process has been measured and modelled using a calculated 
strain energy release rate for a specific type of sliding contact and this has been used to compare both 
measured and calculated abrasion rates. The correlation is good for a wide range of conditions and differ-
ent materials and this analysis helps explain why some materials are more abrasion resistant than others.

equation to correlate the measured horizontal friction 
force, F with the strain energy release rate, T:

T F
h

= +( )1 cosθ
 

(1)

where h is the width of the contact line between the 
blade and the surface, and θ is the angle at which 
the crack penetrates into the surface. This equation 
assumes the entire horizontal force is available to 
drive the crack. Liang et al. (2009a) showed the fric-
tion at the various interfaces also has a significant 
effect on the amount of energy available to drive 
the crack. This limits the accuracy of equation 1 in 
determining the strain energy release rate for a wide 
range of different asperity geometries and sliding 
conditions. An alternative approach proposed by 
Liang et al. (2009a) is used to calculate the strain 
energy release rate using a finite element analysis 
approach. The method chosen to do this is the 
virtual crack extension method used by Busfield 
et al. (2005). Here the relation between the strain 
energy release rate and the fatigue crack growth 
rate measured on a pure shear fully relaxing fatigue 
crack growth experiment is used to predict the rate 
of abrasion for four different elastomeric materi-
als. This can be compared to the experimentally 
observed wear rates.

The frictional behaviour is an important param-
eter in determining the strain energy release rate 
but as Gabriel et al. (2009) showed, modelling fric-
tion in elastomers is not a simple task and using 
just a simple Coulomb friction term ignores addi-
tional contributions to sliding friction due to geo-
metric effects. This is discussed next.

1 INTRODUCTION

It has been shown (Champ et al. 1974 & Gent and 
Pulford, 1984) that the abrasion of rubber by a 
blade in a single direction leads to the formation 
of a characteristic surface abrasion pattern con-
sisting of periodic parallel ridges perpendicular 
to the sliding direction. The size and shape of the 
ridges characterise the specific abrasion processes. 
The abrasion mechanisms proposed by Southern & 
Thomas (1979) have the rate determining abrasion 
process being concentrated at the root of these 
ridges. Crack growth takes place in this region and 
the abrasion pattern is observed to move into the 
surface at an angle to the rubber surface that is 
specific to the loading geometry, the load condi-
tions and the material properties.

This crack growth problem can be tackled using 
a fatigue analysis approach (Busfield et al. 2005), 
where a geometrically independent characteristic 
relationship exists between the cyclic crack growth 
rate versus the maximum strain energy release rate 
attained during the loading cycle for a specific 
rubber.

The process of rubber abrasion based on a line 
contact has been investigated by several others 
including Gent & Pulford (1983) and Liang et al. 
(2009a, 2009b). The wear rate during steady state 
abrasion is calculated from the rate of mass lost per 
cycle from the wheel and by measuring the rate of 
advancement of individual ridges over the surface.

The early fracture mechanics based research on 
rubber abrasion only considered the horizontal 
frictional force using an analysis such as that given 
by Southern & Thomas (1979). They proposed an 
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2 MODELLING FRICTION

Persson (2001) states the adhesion contribution 
to friction is negligible in a tyre/road contact, and 
the major contribution to friction is from a hys-
teresis term alone. This is examined using the two 
different test configurations shown in Figure 1 and 
Figure 2 respectively. In configuration 1 the rubber 
is deformed and wraps around the rigid indenter. 
In configuration 2 the rubber becomes plane 
under deformation. Unfilled NR samples were 
made in each configuration as detailed by Gabriel 
et al. (2009). Finite element models were made of 
each configuration and to eliminate time depend-
ent behaviour and the effects of energy losses in 
the model, the behaviour is described by the elas-
tic properties alone using a Mooney strain energy 
function.

A Plint friction tester was used here to inves-
tigate the two different geometrical configura-
tions. The tests were operated at a low velocity 
of 0.0001 ms–1 in order to minimise the effect of 

viscous energy dissipation through hysteresis, so 
an almost static friction measurement could be 
assumed. The remaining hysteretic contribution 
was only indirect through adhesion effects and was 
assumed to be negligible. Further the adhesion 
contribution was decreased by coating the surface 
with a thin layer of talcum powder. The experi-
ments used a polished 12 mm spherical steel slider 
on a rubber block or a rubber hemisphere, having a 
12 mm diameter, on a polished steel track.

The FEA models have two basic geometrical 
parameters. For configuration 1 this includes the 
diameter of the rigid slider D, and the depth of 
deformation d. For configuration 2, D is now the 
diameter of the rubber hemisphere, the depth of 
deformation d is defined as:

d D h= −
2  

(2)

where h defines the height of the deformed hemi-
sphere. The experiments and FEA models use a 
rubber block thickness of 5.5 mm, with a maxi-
mum indentation of around 1.5 mm at the highest 
normal load (20 N). Earlier work by Busfield and 
Thomas (1999) showed how to account for a ratio 
of rubber thickness to the diameter of circular con-
tact less than 10:1, to account for complications 
arising due to the supporting (rigid) boundary 
conditions underneath the rubber block. A similar 
approach was seen to work well here.

Amontons’ friction model (Amontons, 1699), 
also known as Coulomb friction, is employed at 
the interface in the analysis, where a single param-
eter, the (input) coefficient of friction μI, is defined 
as the ratio between the frictional force at the sur-
face divided by the resulting normal force during 
sliding. Even though Amontons’ friction model, 
originally designed for metals, is thought to be 
not applicable for rubber friction it is still used by 
many engineers and scientists (Smith, 2008).

The standard way of inputting the coefficient of 
friction μI in the FEA model is to define it as the 
ratio of the frictional force divided by the normal 
force. The resulting coefficient of friction μR calcu-
lated from the FEA model is therefore the result 
of dividing the calculated output frictional sliding 
force, RFF , by the calculated output normal force 
RFN. At first sight, it would appear, the resulting 
calculated output friction ratio μR should be the 
same as the input coefficient of friction μI, how-
ever, this is not borne out for test configuration 1 
by examining the results shown in Figure 3, where 
the ratio of μR divided by μI is plotted against the 
normalised depth of penetration d/D for the NR 
compound.

For configuration 2, where a rubber sphere 
comes into contact with a flat rigid surface, the 

Figure 1. A flat rubber sheet with a rigid indenter slid-
ing over the surface.

Figure 2. A rubber sphere sliding over a flat rigid 
surface.
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resulting contact is over a plane interface, the ratio 
between μI to μR is an approximately constant value 
of 1 for both the measured data and the predicted 
behaviour irrespective of the extent of deforma-
tion. The apparent increase in friction of test 
configuration 1 can not easily be attributed to the 
increase in contact area or change in normal stress, 
as in both configurations the contact area increases 
with increasing normal load. It appears that a geo-
metric effect of deforming the rubber surface onto 
the curved rigid profile has the effect of adding an 
additional contribution to rubber friction. This is 
considered to be attributed to an increase in the 
wrapping angle of the rubber around the rigid 
indenter. This behaviour can be considered simi-
lar to the increase in friction resulting from a rope 
being wrapped around a capstan (Schallamach, 
1969). The increase in indentation depth creates 
an increase in the angle of contact even when the 
imposed friction coefficient remains the same at 
the interface. This factor can be of considerable 
practical significance for example in explaining the 
increased friction experienced with certain types of 
road surface containing sharp asperities or during 
blade abrasion experiments. In addition, it is of 
interest that the coefficient of friction measured in 
many instances might be higher than if  the friction 
had been measured using a plane surface contact.

3 MODELLING ABRASION

Due to the difficulties described the actual fric-
tion parameter chosen in the abrasion models was 
selected to ensure the average sliding frictional 
force measured during the abrasion experiments 
was reproduced in the finite element model.

In the current work, the abrasion rate was meas-
ured in the bulk at steady state for a range of normal 
loads (4 N, 8 N, 12 N, 16 N & 20 N) by weight loss. 
Also, the rate and angle of the crack growth was 
measured several times for each different loading 
condition for all four rubber compounds. The 
average observed crack growth angle at the root of 

the asperity was used to create a model which could 
be used to calculate the strain energy release rate.

Four materials were chosen for this study. Three 
were unfilled NR0, unfilled SBR0 and unfilled 
BR0. An additional filled SBR25 compound was 
also investigated. The formulations for these mate-
rials are given in Table 1.

The fatigue crack growth rate per cycle dc/dn ver-
sus strain energy release rate, T for each for the four 
materials is plotted over the range of experimental 
significance as the best fit line to represent the data 
shown in Figure 4. The ranking makes NR0 as the Figure 3. The ratio of μR/μI plotted against the depth 

of penetration/indenter diameter for NR-0.
Table 1. The compound formulations, curing condi-
tions and strain energy function coefficients for the dif-
ferent materials used in this work.

Ingredients SBR0 SBR25 NR0 BR0

SBR 100 100 – –
NR – – 100 –
BR – – – 100
Carbon Black 

(N330)
– 25 – –

Zinc Oxide 3.0 3.0 5.0 3.5
Stearic acid 1.0 1.0 2.0 2.0
Antioxidant 

(HPPD)
1.0 1.0 3.0 1.0

Accelerator 
(CBS)

– – 1.5 1.0

Accelerator 
(DPG) 

1.0 1.0 – 0.15

Sulphur 3.0 3.0 1.5 1.0

Curing time/
minute

60 60 60 50

Curing temper-
 ature/°C

160 160 145 150

Mooney SEF

Coefficients

C1 = 0.128

C2 = 0.167

C1 = 0.188

C2 = 0.072

C1 = 0.136
MPa

C2 = 0.167
MPa

Yeoh SEF 
Coefficients

C10 = 0.337
C20 = 0.0053
C30 = 0.00053
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Figure 4. The crack growth rate versus strain energy release 
rate for the different materials examined in this work.
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most crack resistant and BR0 as the weakest with 
the SBR0 somewhere in between with the inclusion 
of the filler greatly improving the crack resistance 
for SBR25. The reason for this comparative weak-
ness of SBR0 to NR0 (Busfield et al. 2002) results 
from the fatigue behaviour in SBR exhibiting 
predominantly a time dependent behaviour with 
a strain induced crystallisation arising in the NR 
materials introducing a cyclic component in that 
improves the fatigue properties of NR. The intro-
duction of fillers make SBR useful in comercial 
applications but the behaviour is still not as good 
as NR filled elastomers (Tsunoda et al. 2000).

Different materials and different abrasion proc-
esses are seen to create different abrasion patterns. 
What is attempted here is to examine experimen-
tally the markedly different patterns developed on 
abrasion wheels during blade abrasion to see how 
the development of the asperity alters the level of 
the strain energy release rate attained during fric-
tional sliding and to see how this might alter the 
wear rate.

3.1 Experimental techniques and results

A Mooney strain energy function (SEF) was used 
to characterise the three unfilled materials and a 
Yeoh SEF was used to characterise the filled rubber 
in the finite element models (Kumar et al. 2007). 
The detail of these models is given in Liang et al. 
(2009a, 2009b). The coefficients for use in the finite 
element model were derived from a tensile test up 
to a principle extension ratio of 3. The coefficients 
thus derived are given in Table 1.

The relationship between the crack growth rate 
per cycle dc/dn is a simple function of strain energy 
release rate T, which can be defined in the range of 
interest as:

d
d

c
n

X
T
T

= ⎛
⎝⎜

⎞
⎠⎟*

ψ

 
(3)

where c is the crack length, n is the number of 
cycles and X and ψ are rubber crack growth param-
eters determined from an independent pure shear 
fatigue crack growth rate test and the strain energy 
release rate T. T* is introduced in Equation 3 in 
order to make the part of the equation raised to a 
power dimensionless. It is given a value of 1 Jm–2. 
The measurements follow the procedure described 
by Tsunoda et al. (2000). All of the experiments in 
this paper were carried out at room temperature, 
which was observed to range from 20° to 25°C. 
The measured crack growth parameters are shown 
in Table 2 and are plotted in Figure 4.

All the abrasion experiments were carried out 
using equipment described by Fukahori et al. (2008). 

Table 2. Values of the crack growth prop-
erties ψ and X measured using a pure shear 
crack growth fatigue test piece for all the 
compounds.

Materials ψ X × 10–17/m

BR0 2.97 398
NR0 2.92 7.88
SBR0 3.61 1.16
SBR25 3.06 9.14

Solid cylindrical rubber wheels were prepared for 
all four materials. The wheels were initially 68 mm 
in external diameter, 12.4 mm in internal diam-
eter and 12.5 mm wide. They were held in a clamp 
and were abraded by rotating against a stationary 
razor blade edge. The wheels were rotated at an 
average sliding speed of 70 mm/s. The normal load 
was applied directly on the abrasion blade using 
weights of 4 N, 8 N, 12 N, 16 N and 20 N on each 
material. The weight of the specimen was moni-
tored regularly by removing the specimens from 
the machine and weighing them. Once the abra-
sion processes reached steady state, the average 
rate of weight loss dw/dn was constant. The differ-
ent rate of weight loss per cycle was measured for 
all the materials and all the loading conditions. The 
method to convert this weight loss into an average 
rate of crack growth is described in detail in Liang 
et al. (2009a). It requires the careful examination of 
micrographs of the abrasion surface which in com-
bination with knowledge of the weight loss allows 
the rate of advancement of the crack at the root of 
the asperity to be calculated as well as the angle at 
which the abrasion pattern is advancing into the 
rubber. Thus the actual crack growth rate per cycle 
dc/dn can be calculated for each point and this is 
plotted in Figure 5. Each of the wheels is sectioned 
perpendicular to the abraded surface to allow the 
abrasion pattern to be more easily observed and to 
allow representative models to be derived for the 
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Figure 5. The resolved crack growth rate per cycle dur-
ing wear versus the normal load.
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finite element work. These representative patterns 
are shown in Figure 6 for a 12 N abrasion force.

All the finite element models used the explicit 
dynamics finite element package ABAQUS/
Explicit, version 6.4. A representative single ridge 
photograph of a steady state condition is shown 
in Figure 7 for SBR0 developed under a 12 N nor-
mal load and in Figure 8 for BR0 developed under 
a 12 N normal load. The FEA model dimensions 
being taken directly from measured abrasion 
patterns. In order to simplify the structure of the 

models, the ridge was assumed uniform through 
its thickness and therefore a plane strain model 
was appropriate. Two dimensional plane strain 
reduced integration elements with hourglass con-
trol (CPE4R) were used.

The same approach was used to calculate the 
strain energy release rate as was described by 
Liang et al. (2009a). The velocity of the abrader 
in the explicit dynamics finite element model was 
the same as the average wheel surface rotation 
speed at 70 mm/s. The abrader was initially moved 
down vertically to compress the rubber until the 
required normal load was achieved. This vertical 
displacement was maintained throughout the 
analysis and the abrader was moved horizontally 
to abrade the ridge until the ridge had been com-
pletely passed over and had been released. The 
virtual crack extension technique was used to cal-
culate the strain energy release rate. The configura-
tion was modelled and the total strain energy in the 
rubber as the asperity is deformed monitored. It is 
then remodelled with the length of the cut at the 
root of the asperity increased slightly in length and 
in the direction measured during the wear meas-
urement. This has the effect of slightly increasing 
the length of the tongue of the abrasion pattern. 
The difference between the two energies at equiva-
lent displacements defines the energy released 
as the cut length is increased. The strain energy 
release rate being the change in energy divided by 
the increase in the crack surface area.

The role of friction in these models is very 
important. To ensure an appropriate coefficient 
was used in each case the friction was altered until 
the measured horizontal force matched that calcu-
lated by the finite element model.

The value of the strain energy release rate cal-
culated for a set of conditions is shown in Figure 9 

NR0

BR0SBR25

SBR0

Figure 6. Sectioned profiles of the saw tooth abrasion 
pattern for each rubber material.

Blade 

SBR0 

Figure 7. The sample geometry for SBR0 developed at 
steady state using a 12 N force and a schematic of the 
finite element model adopted in the analysis.

BR0

Figure 8. The sample geometry for BR0 developed at 
steady state using a 12 N force and a schematic of the 
finite element model adopted in the analysis.
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Figure 9. The crack growth rate plotted versus strain 
energy release rate (SERR) measured from the abrasion 
test shown as the data points for SBR0 compared with 
that measured from the cyclic fatigue crack growth test 
shown as the line.
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against the measured crack growth rate measured 
during the abrasion. Also plotted on the line is the 
independently measured crack growth rate from 
a fully relaxing cyclic fatigue test measured using 
a pure shear crack growth test geometry. For the 
case of SBR0 shown in Figure 9 the prediction is 
excellent as was shown by Liang et al. (2009a).

3.2 Abrasion discussion

Figure 5 shows the rate of advancement of individ-
ual asperities. BR0 has the slowest rate and NR0 
is the fastest with SBR25 showing some improve-
ment in the wear rate when compared to SBR0. 
The size of the abrasion asperities are largest for 
NR0 and they are much smaller for BR0. Also the 
spacing between the asperities is smallest for BR0. 
The abrasion patterns for the SBR0 and SBR25 
are broadly similar to each other and the pattern 
for BR0 is by far the smallest in size, with virtually 
no tongue being developed at the asperity.

The virtual crack extension method allows the 
strain energy release rate to be calculated under 
exceptionally challenging conditions. The calcu-
lated strain energy release rate for a given asperity 
and a given normal force of 12 N is used to look 
up the crack growth rate in Figure 4 and the data 
compared to the measured abrasion rate in Table 3. 
The abrasion rate predictions are good for SBR0 
and SBR25. The rate calculated from the BR0 
is also of the correct order of magnitude, which 
is typically considered a good fit for this type of 
calculation. The calculated rate is about five times 
faster than the measured rate. This difference may 
be due to an increased significance of rate effects. 
From both the measured results and the predicted 
results the abrasion processes for BR0 are slower 
than for NR0 and SBR0.

Table 3 shows for NR0 the measured abrasion 
is about thirty times faster than expected from the 
fracture mechanics prediction alone. It is likely 
strain induced crystallisation improves the cyclic 
fatigue crack test results measured at 5 Hz to a 
much higher degree than the much faster abrasion 
process. This theory has been checked previously 

by Southern and Thomas (1979) using isomerised 
NR, which by virtue of suppressing the crystalli-
sation in NR repositioned the NR back into the 
correct ranking. This would suggest the speed of 
loading during abrasion is fast enough to beat the 
rate of crystallisation.

Even without the complications of strain induced 
crystallisation, the materials do not rank in the same 
order for the abrasion data as they do using the 
fatigue behaviour measured at 5 Hz. One possible 
thought is that in the weaker materials the asperities 
are torn off easily and the resulting tongue is on 
average much shorter. This results in a much lower 
strain energy release rate being available to drive the 
wear process at the root of the asperity. This lower 
strain energy release rate dominates the behaviour 
and therefore results in a lower abrasion rate than 
for the other materials.

This finding helps explain why weak materials 
are sometimes surprisingly good in abrasion. There 
are however some significant problems left still to 
tackle in abrasion of rubber. What determines the 
average asperity length and the angle at which the 
cut advances into the rubber surface? Also, how 
might a dramatic rise in the rate of loading, in par-
ticular if  we could beat the crystallisation, change 
the predictions using this technique?

4 CONCLUSIONS

Friction is typically attributed to both adhesion 
forces that are related to the intermolecular proc-
ess taking place on the interface surface and hyster-
esis, being the viscoelastic energy lost in a certain 
volume of deformed rubber. This work reveals an 
additional geometrical factor also exists. This con-
tribution is dependent on the depth of penetration 
of the rigid surface into the elastomer, changing 
the angle of contact between both surfaces. In 
contrast, tests using a different geometry (rubber 
hemisphere) did not show this effect. The entirely 
geometric contribution considerably increases the 
actual coefficient of friction in comparison to the 
input value and is anticipated to make a significant 
contribution to many everyday frictional sliding 
applications.

The strain energy release rate when combined 
with an independent measure of the rate of crack 
growth measured using a fatigue crack growth test 
gives a reasonable prediction of the abrasion rate 
for SBR0, SBR25 and BR0. However, NR0 appears 
to be about 30 times worse in abrasion than would 
be expected from the cyclic fatigue crack growth 
measurements. This is most likely to result from 
the strain induced crystallisation being suppressed 
by the very rapid loading rates encountered during 
blade abrasion.

Table 3. Calculated wear rate and the meas-
ured wear rate under for a 12 N normal force.

Materials
Rate from 
FEA & PS

From abrasion 
test

BR0 0.3 × 10–7 m 1.6 × 10–7 m
NR0 1.3 × 10–7 m 39.8 × 10–7 m
SBR0 4.4 × 10–7 m 11.7 × 10–7 m
SBR25 2.7 × 10–7 m 4.8 × 10–7 m



293

It is apparent the low strength of BR0 results in 
much smaller asperities being formed under steady 
state abrasion. When these asperities are modelled 
they create low values of strain energy release rate 
which result in a much slower abrasion rate. Con-
versely the strongest material NR0 has the longest 
tongue on the asperity and this in turn generates 
much larger values for the strain energy release rate 
at the root of the asperity and this contributes to 
the poor abrasion resistance.
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Wet and dry friction of elastomers in advanced simulation 
compared to experiment

L. Busse & M. Klüppel
Deutsches Institut für Kautschuktechnologie (DIK), Germany

ABSTRACT: Friction is an elemental process in any mechanical system. Understanding the parameters 
is vital for controlling friction, either to maximize or to minimize it. We investigate the influence of silica 
filler content in SBR rubber on the friction behaviour on wet and dry surfaces (rough granite and asphalt) 
at different velocities by tribologic experiments and by simulation. We present an advanced method 
based on a recently developed friction model for rough fractal surfaces, which can also predict other 
friction parameters, like the true contact area, by knowing the surface descriptors of the substrate and the 
viscoelastic behaviour of the elastomer. It is shown that by calculating relaxation time spectra, the number 
of free fit parameters can be reduced. Still, the results of simulations can well be adapted to the measure-
ments. Generally, friction increases with filler concentration on wet substrates. The dry (adhesion) friction 
turns out to establish a high velocity plateau that becomes lower but more pronounced with increasing 
filler amount.

1 INTRODUCTION

Understanding Friction means understanding the 
interaction of material properties, surface properties 
and lubricant. Surfaces can be regarded as fractal 
in many cases (Mandelbrot 1982) as prerequisite of 
a mathematical description of friction phenomena.

Based on a fractal analysis, Klüppel & Heinrich 
(2000) developed a friction model for rubber on 
rough surfaces that can be expanded to any number 
of scaling ranges (Le Gal 2007). Originally used for 
wet friction systems described by Kummer (1986), 
dry systems became accessable with additional fit 
parameters (Le Gal & Klüppel 2005). The next 
logical task is to reduce the number of free fit 
parameters by material constants.

This shall be done by investigating how different 
amounts of filler in elastomers change the wet and 
dry friction on granite and asphalt with a silica 
amount up to 80 phr. Parameters gained from 
bifractal surface profile analysis and relaxation time 
spectra gained from viscoelastic properties are used 
to simulate friction and other features with a mini-
mum of free fit parameters.

2 THEORY

2.1 Self-affine surfaces

The granite and asphalt of our experiments both 
are self-affine in surface, so a magnification α in 
the lateral xy-plane corresponds to a magnification 

αH in vertical z-direction (Mandelbrot 1982). The 
implied Hurst coefficient H gives the fractal 
dimension D = 3 − H. This self-affinity is true only 
below the macroscopic scale denoted by the lateral 
cut-off  length ξ|| and its corresponding vertical 
length ξ⊥. They can be calculated with the height-
difference correlation function:

C z x z xz ( ) ( ( ) ( ))λ λ= < + − >2
 (1)

which describes the correspondence of two points 
separated laterally by the distance λ with heights 
z(x) and z(x + λ). Applied over the complete surface 
profiles, “< >” denotes the average operator.

Above ξ|| and ξ⊥, the flat surface shows no corre-
lation between the analyzed points whereas below 
these cut-off  length, self  similar surfaces display 
in the correlation function a graph with slope H. 
When two self  similar structures superpose on the 
surface, the graph can be described by two linear 
parts separated at the cross over lengths λ2, λ3 etc. 
and corresponding Hurst coefficients and thus 
fractal dimensions. The linear relationship between 
Cz and the surface descriptors ξ⊥, ξ||, λ2, D1 and D2, 
for two self  similar structures for λ > λ2 is (Le Gal 
et al. 2006)
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( )λ λ
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If  more than two scaling ranges should be nec-
essary, these formulas can be expanded to any 
wanted number of multifractality (Le Gal et al. 
2007).

2.2 Hysteresis friction simulation

The total friction μtot = μAdh + μHys consists of the 
adhesion friction μAdh and hysteresis friction μHys. 
The latter appears when local asperities deform 
the rubber sample and cause energy dissipations. 
According to our model the hysteresis friction 
under normal force FN is for two scaling ranges 
depending on velocity v (Müller et al. 2002)
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using the Fourier transformed power spectrum 
densities S(ω) (Meyer et al. 2008) with ωmin = 2πv/ξ|| 
and ω2 = 2πv/λ2
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for ω2 < ω , with β1 = 7 − 2D1 and β2 = 7 − 2D2.
E″ is the loss modulus of the elastomer, σ0 is the 

applied pressure and < δ > = b < zp > is the mean 
excitation depth inside the rubber with the mean 
penetration depth zp of the asperities into the 
rubber, scaled by the factor b.

The true contact area Ac in contrast to the 
nominal contact area A0 is (Le Gal et al. 2007)
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are the Greenwood-Williams functions (Green-
wood & Williamson 1966) with the normalized 
distances t = d/σHD and ts = d/σSHD with the gap 
distance d and the standard deviations σHD of the 
height distribution and σSHD of  the summit height 
distribution.

2.3 Adhesion friction simulation

On dry systems, adhesion has to be considered addi-
tionally to hysteresis friction, because molecular 
interactions with the force FAdh appear, leading to the 
adhesion friction coefficient (Le Gal & Klüppel 2005)

μ τ
σAdh

Adh

N
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with the applied pressure σ0 and the interfacial 
shear stress τs (Le Gal & Klüppel 2006)
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The static shear stress τ0 and the critical velocity vc, 
where the τs converges to a maximum (De Gennes 
1996), are free fit parameters. E∞/E0 and n (Persson & 
Brener 2005) are material parameters.
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is gained from the linear part H = τ −m of the exponent 
m(τ) < 1 in the glass transition range of the relaxa-
tion time spectra H(τ) (Williams & Ferry 1953)
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which can be evaluated from master curves of the 
storage modulus G′ with the relaxation time τ = 1/ω, 
applying the local slope α to the gamma function Γ.

3 EXPERIMENTS & RESULTS

3.1 Surfaces

Two substrates are involved in our experiments: 
granite and asphalt. For both, height distributions 
Φ (z) were achieved from surface profiles. The granite 
distribution is more symmetric and steeper than 
asphalt. Height-difference correlations were calculated 
according to equation (1) and their surface parameters 
found for two scaling ranges, summarized in Table 1.
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Both surfaces have similar fractal dimensions 
and their vertical roughnesses are only slightly 
different. Their horizontal cut-off  lengths differ 
and make a higher parallel-orthogonal ratio on 
granite, which is less sharp. The cross-over length 
on asphalt is larger due to the grain size.

3.2 Material

Samples with a thickness of 2 mm consist of 
S-SBR 2525 unfilled and with 20, 40, 60 and 
80 phr silica Ultrasil GR7000. To find their 
viscoelastic behaviour, dynamic-mechanical analy-
sis has been performed and extracted into master 
curves for functions of the shear moduli G′ and G″. 
Frequency sweeps give discrete branches for every 
temperature, which can according to the time-
temperature-superposition principle be shifted 
horizontally in order to form a continuous curve 
with a fix branch at 20°C. Above the glass transi-
tion temperature, the shift factors obey the WLF 
relationship with WLF constants C1 = −3.85 and 
C2 = 91.2°C, for the unfilled sample. Though filled 
samples also apply these factors, vertical shifting is 
necessary as well.

The master curves in Figure 1 show how the 
glass transition is broadened with rising filler con-
tent and how the filler increases G′ monotonously 
in the low frequency range and leaves the high fre-
quencies unchanged, so the ratio ′ ′ = ′ ′∞ ∞E E G G0 0
as used in equation (11) decreases (Table 2).

The loss modulus G″ in Figure 2 also increases 
monotonously with filler content at low frequen-
cies, whereas its maximum and the higher frequen-
cies keep their position.

The maximum of tan δ  = G″/G′ decreases strongly 
when filler is added but does not change frequency 
(Figure 3).

Relaxation time spectra with can be calculated 
from DMA measurements with equation (12) 
using the Ferry method with two iteration steps. 
The linear negative slope m < 1 in Figure 4 between 
absolute maximum at τ < 10−7 s and beginning min-
imum at τ > 10−3 s, is flattened by increasing filler, 
thus increasing n as given in equation (11). Values 

Table 2. Material fit parameters.

phr Silca E∞/E0 (f  ) Slope m Exponent n

 0 473.2 0.714 0.209
20 298.2 0.711 0.211
40 541.1 0.594 0.283
60 389.2 0.441 0.357
80 177.8 0.358 0.390

Table 1. Surface descriptors for 
granite and asphalt. 

Surface 
descriptors Granite Asphalt

D1 2.37 2.39
D2 2.14 2.09
λ2 [ μm] 93.0 332
ξ|| [ μm] 2490 1440
ξ⊥ [ μm] 310 430
ξ||/ξ⊥ 7.96 3.35
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for it are noted in Table 2. We use these exponents 
to fit simulation to adhesion measurements.

3.3 Friction

Friction has been measured with 50 mm * 50 mm 
samples sliding stationary between 0,01 mm/s and 
30 mm/s on dry and wet surfaces with a pressure 
of 12.3 kPa at room temperature. To validate our 
model, simulations based on material and surface 
parameters have been conducted and fit to the exper-
iments with parameters from Table 2 and Table 3.

To exclude adhesion, the substrate has been 
covered with a 5% vol tenside in water solution. 
These wet systems result in hysteresis friction 
solely, as shown in Figure 5: Friction increases with 
velocity. This holds over the whole investigated 
range, though on asphalt the increase is diminished 
when sliding fast because of its smoother sur-
face. In general, friction is augmented by applying 
more filler to the samples as the filler increases the 
shear moduli of the elastomer and thus hysteresis. 
Both substrates establish comparable friction 
coefficients. The measured curves can be simu-
lated well for low and moderate velocities, but 
less accurate when sliding faster than a few mm/s. 

Table 3. Free fit parameters.

Granite Asphalt

phr 
Silica

b 
–

τ0 
kPa

vc 
mm/s

b 
–

τ0 
kPa

vc 
mm/s

0 70  5.91 0.020 – – –

20 27  6.56 0.045 10 64 0.62

40 7 15.4 1.90 4.5 150 9.00

60 6.8 18.8 0.90 5.5 110 0.60

80 7.5 48.8 0.33 7 420 1.00

Figure 4. Relaxation time spectra of the sample pool.
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Figure 5. Wet friction for granite (top) and asphalt (bottom).
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Simulations for high fillings are less steep and thus 
less dependent on velocity because their elasticity 
depends less on temperature and thus less on fre-
quency than for weak filling. The scaling factor b 
drops from high to constant values as soon as 40 phr 
silica is reached, and is higher on asphalt where 
penetrating asperities propagate more deeply.

Even in dry state, substrates do not differ much 
in friction. Here, an adhesion part is added to the 
hysteresis part, which drastically increases friction, 
as seen in Figure 6. Growing filler content does 
not necessarily increase total friction but estab-
lishes a plateau at higher velocities, like it was 
observed by Le Gal & Klüppel (2008) and Grosch 
(1963) in similar systems. The reason is that the 
adhesion friction contrarily to hysteresis decreases 
above moderate velocity (some mm/s) and also 
with filler amount because the true contact areas 
decreases with velocity. The higher hardness of 
filled elastomers prevents the rubber from intense 
contact, too. The paramount friction for 40 phr 
filling corresponds well to the maximum of the 
fitted critical velocity. The simulation is excellent 
for all samples on both substrates, even though the 
number of free fit parameters has been reduced 
by deriving n from material properties, except 
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for the fast velocities on asphalt. Temperature 
effects by friction heating may not be ruled out 
on dry substrates when the sliding speed is high 
enough, resulting in increased elasticity and thus 
in decreased hysteresis as part of total friction.

3.4 Contact simulation

The gap distance d between the rubber bottom 
and the mean substrate height < z > can directly be 
predicted by simulation. It increases with velocity 
(Figure 7), as the time for the elastomer to enter the 
cavities of the substrate is reduced. Filler increases 
the gap distance as decreasing the elasticity prevents 
the rubber to fill cavities. On asphalt the distance is 
a bit higher due to the slightly higher ξ⊥.

The true contact area in Figure 8 decreases to 
the per mille range with filler content and velocity, 
caused by the vanishing ability of rubber to fill the 
gaps and thus get in contact with its interface when 
either the elasticity or the contact time is dimin-
ished. Contact on granite is larger than on asphalt 
because the larger ratio ξ||/ξ⊥, meaning a flatter sur-
face, allows more contact, even for high velocities.

The shear stress τs as free adhesion fit parameter 
in equation (10) rises and converges with velocity, 
as seen in Figure 9. It also rises with filler amount 
due to a decrease in elasticity for both granite and 
asphalt, just like its starting values τ0. Shear stress 

is definitely higher on asphalt and rises about one 
decade later. The exponent n distorts the curves 
with increasing filler. Increasing n, decreasing E∞/E0 
and increasing τ0 let the critical velocities vc reach a 
maximum at 40 phr, indicated by dots in the graph.

4 CONCLUSIONS

Silica in steps of 0, 20, 40, 60, 80 phr has been mixed 
in SBR252. Surface, material and friction experiments 
have been conducted and compared to simulations 
on wet and dry granite and asphalt, based on a model 
for fractal surfaces. Master curves for G′ and G″ 
show a low frequency increase, a tan δ decrease with 
filler and a rising n for the relaxation time spectra.

Hysteresis friction increases with velocity quite 
similarly on both substrates, and is increased by 
filler. On dry substrates friction is augmented 
for low velocities, then converges to higher veloc-
ity with rising filler amount, especially on granite, 
which can well be confirmed by simulations for all 
substrates and lubrications. Accuracy is not limited 
by reducing the number of free parameters when 
regarding n as a given material parameter.

Further simulation results with increasing filler 
include a higher gap distance, a decreasing true 
contact area and a rising shear stress, which is 
much higher on asphalt.
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Figure 6. Dry friction for granite (top) and asphalt (bottom).
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Figure 8. True contact area for granite (top), asphalt (bottom).
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Figure 9. Shear stress for granite (top) and asphalt (bottom).
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Compression of rubber disks between frictional surfaces

A.N. Gent, F.M. Discenzo & J.B. Suh
Departments of Mechanical Engineering & Polymer Science, University of Akron, Akron, Ohio, USA

ABSTRACT: A review is given of the compression of a rubber disk sandwiched between two rigid 
surfaces and either bonded to them or held by friction. Distributions of normal and shear stress are deter-
mined in both cases, and the overall compressive stiffness is evaluated as a function of disk aspect ratio 
a/h, where a is the radius and h is the thickness. Force-displacement relations during retraction are also 
derived, and the total energy expended in frictional sliding is calculated. A large fraction (about one-half  ) 
of the input energy is found to be dissipated against friction for disks of large aspect ratio, compressed 
between low-friction surfaces. Finite Element Analysis (FEA) was also carried out. The stress distribu-
tions and force-displacement relations were generally quite similar to the analytical results, even though 
the stress singularity at the edge of the disk is ignored in the analysis.

1 INTRODUCTION

Rubber blocks are widely used as compression 
springs and cushioning devices. Frictional con-
straints at the loaded surfaces prevent a block 
from expanding freely outwards, and the apparent 
compression modulus is therefore greater than the 
actual modulus. Approximate solutions are given 
for blocks of circular cross-section, sandwiched 
between rigid frictional surfaces. The compressive 
strains are assumed to be small and the rubber is 
taken to be linearly-elastic and incompressible in 
bulk. Coulomb’s frictional law is assumed to hold.

Finite element (FE) calculations of the inter-
facial stress distributions were also made, using 
ABAQUS software. The ratio a/h of  radius to 
thickness was given values between 1 and 12. The 
compressive strain was increased from zero to 2% 
in increments of 0.1%, and then decreased back to 
zero. The friction coefficient μ was assigned values 
between 0.1 and 1.

2 SMALL COMPRESSIONS OF BONDED 
BLOCKS (GENT 1994)

The deformation is regarded as the superposition 
of a homogeneous compression and shear defor-
mations that restore points in the planes of the 
bonded surfaces to their original positions. An 
originally-vertical plane becomes parabolic, with 
a maximum outwards displacement k, obtained 
from the conservation of volume as 3er/4 at a 
radial distance r and a compressive strain of e. 
Both FE calculations and direct observation show 
that the outwards displacement of the free surface 

of a thin block is quite close to a parabolic shape 
(Fleischman & Gurvich 2003). The outwards 
deformation is assumed to be maintained by an 
internal pressure P, given by:

P/Ee = (a2 − r2)/h2 (1)

where E is Young’s modulus of the rubber and h 
is the block thickness. Shear stresses t set up at the 
bonded interfaces are given by

t = Eer/h. (2)

Measurements of the interfacial stresses for 
bonded blocks under small compressions were 
in good agreement with Eqs. 1 and 2 (Gent et al 
1974).

The contribution F1 to the compressive force 
arising from restraints at the bonded surfaces is 
obtained by integrating Eq. 1 over the loaded area. 
Adding the contribution from simple compression, 
the total force F is obtained as:

F/π a2Ee = 1 + (1/2)(a/h)2. (3)

Constraints due to bonding thus raise the 
apparent modulus for thin bonded blocks by a 
large factor.

3 COMPRESSION OF A DISK BETWEEN 
FRICTIONAL SURFACES (DISCENZO, 
1975, THORNTON ET AL. 1988, 1989)

Slipping outwards will occur when the shear stress 
t reaches the maximum permitted by friction. 
The amount k of  lateral bulging is then reduced 
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to 3(er − 2u)/4, where u is the slip distance at a 
radial distance r. The corresponding shear stress 
t becomes − μ(P + Ee), and P in the slip region is 
obtained as

P(r ≥ r1) = Ee {exp [2μ(a − r)/h] − 1} (4)

where r1 is the radial distance at which slipping 
starts. On equating dP/dr from Eq. 4 and Eq. 1, r1 
is obtained as μh exp [2μ(a − r1)/h]. Note that this 
result does not include the amount of compres-
sion. Thus the size of the slip zone is predicted to 
be independent of the applied load.

4 COMPARISON WITH FE RESULTS

Calculated shear stresses t are shown in Figure 1 
for a disk of aspect ratio a/h = 12. Correspond-
ing curves from FEA are included. They are quite 
similar. Initially, the stress increases linearly from 
the disk center up to r1. Then a sharp transition 
occurs; the stress decreasing exponentially with r 
to the edge of the disk.

5 APPARENT MODULUS EA AND 
ENERGY DISSIPATED IN SLIDING

The compressive force F can be obtained by inte-
gration as before, yielding:

F/πa2Ee = [(R1
4 a2/2h2) + (R1

3 a/μh)) + (R1
2/μ2)

 + (R1 h/2aμ3) − (h/aμ) − (h2/2a2μ2)] (5)

where R1 = r1/a. The right-hand side of Eq. 5 is 
the ratio of the apparent modulus Ea to the actual 

modulus E. Values are plotted in Figure 2 against 
a/h for selected values of μ. Even small amounts 
of slipping are seen to cause large reductions in 
apparent modulus.

The energy Ws expended against friction can 
be calculated by integrating contributions from 
sliding motions at corresponding shear stresses t. 
Values are plotted in Figure 3. They are seen to 
approach 50% for blocks of high aspect ratio com-
pressed between low-friction surface.
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Figure 1. Shear stresses from analysis and FEA for a 
disk of aspect ratio a/h = 12.

0

4

8

12

0
r/a

t/Ee

μ = 1

0.5

0.2

10.5

Figure 2. Effective compression modulus Ea vs aspect 
ratio a/h of  disks compressed between surfaces with fric-
tion coefficient μ. Ens denotes the effective modulus for a 
bonded disk, from Eq. 3.

0.0

0.2

0.4

0.6

0.8

1.0

86420

a/h

Ea/Ens

μ = 2

1
0.6

0.4

0.2

0.1

10

Figure 3. Energy Ws dissipated in frictional sliding as 
a fraction of input energy W vs aspect ratio a/h for disks 
compressed between frictional surfaces.

0

0.2

0.4

0.6

120 4 8

a/h

Ws/W

0.1
μ = 0.2

0.4

0.6

1



303

REFERENCES

Discenzo, F.M. 1975. Compression and retraction of a 
circular disk between flat parallel rigid surfaces. M.S. 
Thesis, University of Akron (1975).

Fleischman, T. & Gurvich, M.R. 2003. A simple approach 
to characterize finite compressibility of elastomers. 
Rubb. Chem. Technol. 76: 912–922.

Gent, A.N. 1994. Compression of rubber blocks. Rubb. 
Chem. Technol. 67: 549–558.

Gent, A.N., Henry, R.L. & Roxbury, M.L. 1974. Interfa-
cial stresses for bonded rubber blocks in compression 
and shear. ASME J. Appl. Mech. 41: 855–859.

Thornton, J.S., Montgomery, R.E.,Thompson, C.M. & 
Dillard, D.A. 1988, 1989. Analysis of interfacial stresses 
for elastomeric disks in compression. Polymer Eng. 
Sci. 28: 655–659; 29: 432 (1989).





305

Constitutive Models for Rubber VI – Heinrich et al. (eds)
© 2010 Taylor & Francis Group, London, ISBN 978-0-415-56327-7

The mechanics of sliding friction between a rigid indenter 
and a rubber surface
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ABSTRACT: The frictional behaviour of rubber is explored in this paper. Two principal factors, 
adhesion and hysteresis, are commonly considered to make the greatest contribution to rubber friction. 
Gabriel et al. (submitted) also highlighted the contribution from an additional geometric factor. The geo-
metrical influence for a range of different indenters on rubber friction is investigated further here using 
finite element analysis. The frictional force resulting from the dynamic contact between a rigid cylinder 
and rubber can be considered in several ways: the first defined as rolling where the cylinder roles over the 
surface, which is believed to have a significant hysteresis term; the second where a cylinder is rotated in 
a fixed position relative to the sheet, where the geometry does not change and hence the adhesion term 
would be the dominant contribution. The third situation requires a locked cylinder to be dragged without 
rotation over a rubber surface. In this case there will be a contribution from adhesion and hysteresis. 
The detailed relationship between these terms is explored here for a rubber with a high glass transition 
temperature and hence large viscoelasticity at room temperature.

1 INTRODUCTION

Different contributions to rubber friction are inves-
tigated in this paper. The main sources for the fric-
tional force arise when an elastomer is slid over a 
rigid surface are described as a combination of both 
an adhesional and a hysteresis term. The adhesional 
term is a surface effect resulting from the intermo-
lecular interaction between two surfaces (Roberts & 
Thomas 1975). The hysteresis term, also sometimes 
known as the deformation contribution, results 
from the energy lost through the deformation proc-
ess of a certain volume of rubber (Roberts 1992). 
Gabriel et al. (submitted) showed the geometry of 
the contacting surfaces can also make an additional 
contribution. Two cases were compared, in which 
a rubber was in sliding contact with a flat or hemi-
spherical shaped surface. In the former case, the 
rubber stays in plane contact, whereas in the latter, 
the rubber conforms to the hemisphere, resulting 
in an increase in the frictional force. As shown in 
Figure 1 the contact area between a tyre and a road 
surface is governed by the geometry of the individ-
ual surface asperities. The arising frictional force is, 
therefore, influenced by the typical average shape 
and sharpness of individual asperities.

Extending the investigations on geometric effects, 
the influence of different interface geometries 
(conical and hemispherical) on the resulting fric-
tional force is investigated to examine how both 
very smooth, as well as extremely rough surfaces 
can have a high coefficient of friction. In addition, 

three different frictional contact situations have 
been monitored experimentally: The first case 
uses a cylinder that rolls over a flat rubber surface 
where the frictional force results predominantly 
from the hysteresis contribution alone (Moore & 
Geyer 1972). The second case arises when a 
cylinder rotates in a fixed position, so there is no 
change in the deformed rubber state and hence the 
hysteresis term does not significantly contribute 
to the friction, once sliding is established. A third 
scenario arises when a cylinder slides over the rub-
ber surface without rotation. In this third case both 
adhesional and hysteresis friction contribute to the 
overall  behaviour. An experimental setup has been 
developed to investigate the different frictional 
forces arising during these rolling/sliding/rotation 
contact situations. It is often assumed the frictional 
forces from the three different frictional setups can 

θ1 R1R2
θ2

Figure 1. Schematic drawing of tyre and road contact. 
The different angles, θ, and radii, R, show the different 
idealised asperities.
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be expressed in a simple summation where the 
 frictional force from sliding alone is expected to be 
the combination of the other two terms:

FSLIDING = FROTATION + FROLLING (1)

2 EXPERIMENTAL

The formulation, processing conditions and essen-
tial mechanical properties for the investigated rub-
bers are all shown in Table 1.

A number of steel cones from angles of 10° to 
170° and polished steel hemispheres with diameters 
ranging from 6 mm to 240 mm were manufactured 
and tested on SBR. A pin-on-plane friction tester, 
developed by Roberts (1994), was used to measure 
the Coulomb coefficient of friction, which results 
from the frictional sliding force as the normal load 
FN is varied from 1 N to 20 N. The sliding velocity 
was kept slow and constant at 0.0001 m/s in order 
to avoid flash temperature effects as investigated 
by Persson (2006). All experimental investigations 
throughout this work have been done at ambient 
temperature (23°C). Since the surface finish of 
bodies in contact has a significant influence on 
frictional force output the rubber was vulcanised 
in a grit blasted mould. This procedure dimin-
ishes the stick-slip effect often observed when two 
smooth, mirror-like surfaces are in contact. This 
rougher moulded surface produced more repro-
ducible results than abrading the rubber surface 
manually with sand paper, as adopted previously 

(Grosch 1963). In a tyre/road contact the adhe-
sional contribution to rubber friction is often 
neglected (Persson 1999), however, in a laboratory 
experiment without contaminations such as wear 
and dust particles, the adhesional term can make a 
significant contribution to the frictional force. The 
measured frictional force results, therefore, from 
a combination of hysteresis as well as adhesion 
components.

For the finite element analysis (FEA), ABAQUS 
Explicit (Version 6.7, by Simulia) was employed to 
investigate changes in geometry and maximum prin-
cipal stresses. Two-dimensional (axis-symmetric) 
models (Busfield & Thomas, 1999) as well as three-
dimensional models have been used in indentation 
and friction simulation. As suggested by Jha et al. 
(2008) a Mooney stored energy function was used 
to model the elastic behaviour.

In the second experimental series rolling, sliding 
and rotation have all been investigated. Three fric-
tion testers, shown schematically in Figure 2 have 

Figure 2. a) Setup to investigate rolling: Cylinder 
rotates due to moving rubber block with velocity v, while 
in position b) sliding is measured as the cylinder centre 
is fixed c) Setup to investigate rotational forces, where a 
screw driven cylinder rotates on a fixed rubber block.

v

FN

FROLLINGRubber

v

FN

FSLIDINGRubber

FN

FROLLINGRubber

a)

b)

c)

Table 1. Details of the two rubber compounds used in 
this work.

SBR IR

Ingredients [phr]
SBR-0 Type 1500 100 0
3,4 Polyisoprene 0 100
Stearic Acid 2 1.5
Zinc Oxide 5 3
Antioxidant 6-PPD 3 1.5
Accelerator DPG 1.3 0
Accelerator MBTS 1 0
Accelerator CBS 0 2
Sulphur 1.5 1

Processing conditions
Vulcanisation temp/°C 160 160
Vulcanisation time/min 60 60

Key properties
Glass transition temp/°C −45 −8
Young’s modulus/MPa* 1.8 1

*10% strain chord modulus at 22°C.
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been developed in order to measure the force 
output of each of the above named states individu-
ally. Each uses geometrically identical contact situa-
tions, where a rubber block contacts a steel cylinder 
(the outer race of ball bearing, ∅ = 13 mm) under a 
given normal load ranging from 1 N to 10 N. Both 
FROLLING or FSLIDING were measured directly whilst 
the rubber block is moved over the rubber roller. In 
contrast, the screw-driven roller in friction tester 
was rotated in a stationary position on the fixed 
rubber block to measure FROTATION.

As the force due to rolling is known to be small, 
a high loss 3, 4 polyisoprene rubber (with a high Tg 
of −8°C) was used, since the losses due to deforma-
tion in the rubber are higher and will be easier to 
measure than in a normal SBR-0 (with a lower Tg 
of −45°C) as shown in Figure 3.

Furthermore, the rubber surface was vulcanised 
with a mirror-like, smooth finish, resulting in an 
increase in the adhesional term of the total friction 
force. Similarly, the cylinder has a polished surface. 
The velocity (either sliding or rolling) at the point 
of contact of each system was kept constant at 
0.01 m/s.

3 DISCUSSION AND RESULTS

While the indentation for hemispheres (Timoshenko 
& Goodier 1973) and conical indenters (Sneddon 
1975) on infinite rubber blocks can be predicted 
mathematically, in case of finite block thicknesses 
(here 5.5 mm) these formulae fail to predict the 
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Figure 3. Temperature dependence of the loss modulus 
E″ measured for both rubbers via dynamic mechanical 
analysis (DMA) in tension mode. The maximum peak of E″ 
is located in the region of the glass transition temperature.

Figure 4. The indentation behaviour of cones and 
hemispheres on SBR can be predicted well using FEA 
code. Data points reflect experimental data, whereas lines 
show FEA calculation.
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indentation behaviour well. Therefore, the inden-
tation of all the indenters was experimentally 
measured and confirmed using FEA (Busfield & 
Thomas, 1999). Whereas the hemispheres indent 
little into the rubber block, as shown in Figure 4, 
the indentation level of the cones increases rapidly 
with load. In the analytical approach the square of 
the penetration depth is proportional to the nor-
mal load. So the figure is plotted as depth squared 
versus load.

Figure 5 shows the influence of cone angle on 
dry rubber friction. Both, blunt cones and needle-
like, sharp cones result in higher friction. From a 
cone angle of 160° up to 50°, the coefficient of fric-
tion was almost independent of the normal load 
and no scratch patterns were observed within the 
test range. With increasing cone sharpness a frac-
ture pattern on the surface was observed even with 
just a single pass.

When the indenting cone is moved horizon-
tally over the rubber, elastic energy is stored in the 
system and sliding occurs when the shear forces 
are exceeded by the horizontal frictional force. 
According to Gent (2001) the stored energy can 
be the driving force for propagating cracks, and, 
as described by Fukahori et al. (2008), cracks 
propagate in abrasion processes if  the local stresses 
are bigger than the tensile stresses. The sharper 
the cone, the higher the stress  concentration 
underneath the tip in the rubber  creating a higher 
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probability tearing can be established. In addition 
to adhesional and hysteresis losses, the energy lost 
due to fracture of rubber contributes to the total 
frictional force, resulting in an increase of the coef-
ficient of friction with normal load for the sharper 
cones. With increasing cone sharpness the depth of 
indentation increases under similar normal loads, 
so a volume of rubber is deformed to a larger extent 
horizontally by a sliding indenter, increasing the 
energy losses due to deformation. In the extreme 
case of needle-like cones, the indentation can lead 
to penetration into the rubber, leading to an infinite 
coefficient of friction due to large horizontal defor-
mation of rubber. When the cone angle increases 
to say a 160° cone angle the friction force is again 
seen to increase. While the maximum stresses at the 
tip of each cone increase with cone sharpness, for 
blunt cones the contact area increases, increasing 
the adhesional friction term. A flat surface with a 
cone angle of 180° would give in theory, a further 
increase in friction, as shear forces become greater 
for the two flat surfaces. Supporting this, as shown 
in  Figure 6, with an increase in the radius of 
curvature producing a flatter profile, the friction 
increases. In contrast to cones, it decreases with 
load. These hemispheres under these normal loads 
did not generate abrasion, as the pressure distribu-
tion underneath the slider was lower.

It is shown, depending on the geometric contact 
situation, the frictional force differs significantly. 
For sharp, needle-like, asperities, the frictional 

force is a contribution from the deformation term 
(a well as a contribution from a tearing term), 
whereas with blunt asperities the influence in 
friction is more commonly due to the adhesional 
term. In order to replicate the friction behaviour 
different FEA models such as those suggested by 
Liang et al. (2009) are required.

The frictional forces in the three measured states 
of friction: rolling, sliding and rotation are shown 
in Figure 7. As expected the frictional sliding force 
FSLIDING is greater than the values for FROTATION and 
FROLLING, as both, adhesion and  hysteresis  contribute 
during sliding. The force from rotation has a lower 
contribution from hysteresis as the rubber is just 

Figure 5. Frictional sliding of conical indenters over 
SBR. The resulting frictional force broadly increases with 
increasing cone sharpness.
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Figure 6. The coefficient of friction versus normal load 
for hemispherical indenters on SBR.
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deformed at the start and a smaller force is required 
to maintain deformation once sliding is established. 
The rolling force is considered to result from a single 
hysteresis term alone. This could only be measured 
using a high loss, high Tg rubber, since similar tests 
on unfilled SBR and natural rubber compounds 
generated horizontal force outputs in the rolling 
state that were too small to measure. However, from 
Figure 7 it is clear, a simple summation of FROTATION 
and FROLLING would not express FSLIDING satisfacto-
rily. Reasons for this can be the different amounts 
of deformation of rubber between sliding and rota-
tion. Furthermore, as the rubber block conforms to 
the cylindrical indenter, wrapping of the rubber con-
tributes to sliding, whereas less wrapping occurs for 
rolling and rotation contact. Further tests have to 
be undertaken to separate the different influences.

4 CONCLUSIONS

The frictional force for two different indenter 
geometries, conical and hemispherical, represent-
ing idealised asperities, in contact with a rubber 
block has been investigated. Two effects can be 
observed from different cones in contact with a 
rubber block: While the frictional force arising 
from nearly flat cones has a contribution due to 
a combination of adhesion and hysteresis, with 
increasing cone sharpness the frictional force results 
from additional tearing and a larger contribution 
from the deformation of a rubber volume. Further-
more, three different frictional contact conditions, 
namely rolling, sliding and rotation under the 
same geometric conditions have been investigated. 
The common assumption that a simple summa-
tion of the frictional rolling and rotational forces 
can express the frictional sliding force is shown to 
be not entirely valid. Further work is required to 
understand this behaviour further.
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ABSTRACT: The energy release rate of small cracks governs fatigue crack nucleation. A method is 
presented here to efficiently and accurately evaluate the energy release rate of such cracks, arbitrarily 
oriented, under general conditions of finite multiaxial loading. As a motivation, the dependence on crack 
length is then investigated. It is demonstrated that the energy release rate of small cracks is proportional 
to the crack length and that the proportionality factor is a function of the far-field parameters only. An 
attempt is then made to search for a general expression of this proportionality factor under simple load-
ing conditions.

1 INTRODUCTION

Studies carried out in the recent years have 
brought to light the physical phenomena gov-
erning fatigue life of  rubber (Cam et al. 2004; 
Le Gorju 2007). It turns out to be driven by the 
growth of  small cavities transforming then into 
small cracks and propagating throughout the 
material up to a critical size that leads to a major 
loss of  material properties. The propagation of 
these small cracks represents the main stage of 
fatigue life.

Regarding small crack growth prediction two 
distinct approaches are usually considered. The 
crack initiation approach is based on the evaluation 
of the mechanical fields of a crack-free material in 
order to study how a small flaw would propagate 
when subjected to these mechanical  conditions; 
this approach lies thus within the framework 
of continuum mechanics. Some predictors have 
already been developed to predict crack initiation 
(Mars 2002; Verron and Andriyana 2008). To the 
contrary, the crack propagation approach studies 
the propagation of an existing small crack embed-
ded in the material (Gent et al. 1964; Lake and 
Lindley 1965).

Actually, in some simple cases it is possible to 
reconcile these two approaches. Indeed, consider-
ing a small crack of length c under plane stress 
uniaxial tension, Rivlin and Thomas have been 

able to factorize the energy release rate T (Rivlin 
and Thomas 1953):

T = 2kWc (1)

where W stands for the strain energy  density 
of  the far-field region and k is a factor that 
depends only on the far-field loading conditions. 
This result has later been extended to both pure 
shear and equibiaxial tension (Yeoh 2002). Thus, 
it turns out that for a small crack subjected to 
simple loading conditions, the energy release rate 
is proportional to the crack length and the pro-
portionality factor is a function of  the far-field 
parameters only.

In this paper we aim at developping a method 
to easily estimate the energy relase rate of small 
cracks under arbitrary plane stress loading con-
ditions and then at investigating the factorization 
of the energy release rate with respect to the crack 
length.

2 METHODS

2.1 A simple tool to model a small crack under 
arbitrary loading conditions

A method is needed first to model a small crack, 
arbitrarily oriented, under general conditions of 
far-field multiaxial loading.
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2.1.1 Present definition of a small crack
In order to define the concept of  small crack we 
introduce first the notion of  “boundary” as a 
 circular region drawn around the crack, on which 
we compare solutions for the “body” and the 
“crack neighbourhood” (see Figure 1):

• “body” refers to the solution obtained for a 
deformed body without considering the effects 
of a crack. As we move away form the edge, the 
gradients induced by edge effects get smaller 
and imply an upper limit on the size of the 
“boundary”.

• “crack neighbourhood” refers to the solution 
obtained for a crack embedded in an infinite 
medium, with specified far-field loading con-
ditions. As we move away from the crack, the 
gradients induced by the crack get smaller 
and imply a lower limit on the size of  the 
“boundary”.

A crack is then said to be small when one can 
draw a boundary around it such that the solution 
on the boundary, in both the “body” and in the 
“crack neighbourhood”, is constant to within a 
given tolerance.

Note here that this definition is very general 
because edge effect is considered. However, in the 
present study, the body is made up of an isotropic 
hyperelastic material and is subjected to multiaxial 
homogeneous loading conditions; thus gradients 
of the mechanical fields in the body are nul. The 
body-crack neighbourhood boundary is then cho-
sen at a location where gradients tend to zero.

2.1.2 Modelling boundary displacements under 
plane stress multiaxial straining

The small crack assumption permits us to impose the 
far-field state of stress directly via the  displacement 
at the boundary. Indeed, except in a very small 
region around the crack, the stress and strain fields 
are homogeneous and are the same as in the crack-
free model for which the analytical expressions of 
strain and stress fields along with the strain energy 
density are  completely known.

The original model consists of a small through-
crack with orientation θ (in the undeformed 
configuration) under a far-field equibiaxial strain-
ing (λ1, λ2) in the frame of reference ( , )e e

� �
1 2  

(see Figure 2). Throughout the deformation the 
crack rotates and ends up with an orientation ψ 
with respect to its orientation in the undeformed 
configuration. The problem with this method is 
that a new geometry is required whenever the crack 
orientation θ is to be changed.

However, from the perspective of the crack, 
changing the crack orientation boils down to chang-
ing the far-field loading (or equivalently the far-field 
straining) (see Figure 3). Thus, by performing first 
a change of basis and then a pull-back to maintain 
the crack orientation fixed throughout the deforma-
tion, we can express the associated far-field strain in 
the crack-based frame and capture the same range 
of conditions with a single FE model. Moreover, no 
restriction is made on the geometry of the far-field 
boundary which requires working out a very gen-
eral expression of the displacement to be imposed 
to a node at the boundary. In order to conven-
iently study the effect of biaxiality, far-field load-
ing parameters (λ1, λ2) are replaced by (λ, B) with 
λ2 = λ and λ1 = λB. Thus B = log λ2/log λ1 quantifies 
the biaxiality and can be called the biaxiality 

Figure 1. Body (whitish grey), crack neighbourhood 
(dark grey) and boundary (grey).

Figure 2. Small through-crack under finite biaxial 
straining with arbitrary orientation.
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 factor (Mars 2002). The relationship between the 
 undeformed  coordinates (X, Y) and the deformed 
coordinates (X′, Y′) of a point P in the crack-based 
frame ( , )′ ′e e1 2

�� ���
 (see Figure 2) under the far-field load-

ing conditions described above is given by:

′
′

⎛
⎝⎜

⎞
⎠⎟

=
⎛

⎝⎜
⎞
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( ) ( ) ( )ψ θ λ
λ
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cos sin
sin cos
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 (3)

and

R( )
cos sin
sin cos

ψ
ψ ψ
ψ ψ

=
−⎛

⎝⎜
⎞
⎠⎟

 (4)

It should be pointed out that the implementa-
tion of the previous calculation (Eq. 2) and fur-
ther computations carried out in this study were all 
obtained with the finite element software Abaqus 
in which the displacement of a node at the far-field 
boundary was imposed via a DISP subroutine.

2.2 Basic validations 

First we have validated the calculations described 
in 2.1.2 by verifying that a crack-free model gives 
homogeneous loading for all B, λ and θ.

We then focused our attention on the “small 
crack” requirement. Indeed, far from the crack, 
it is desired to get a homogeneous stress field. This 
condition can never be met rigorously because of 
the finite dimension of the model and the pres-
ence of the crack. However, on using the method 
presented in section 2.1.1 a criterion was set to 

check accuracy of the approximation. The latter 
was considered acceptable when the relative error 
on the far-field stress when compared to the crack 
free model was less than 1%. From the experience 
a crack length 40 times smaller than the dimension 
of the model fits well into this criterion.

Note here that an additional satisfactory way to 
validate the calculations is to compare the energy 
release rate computed by Abaqus (J-integral) with 
the fracture mechanics solutions and from some 
studies carried out in finite strain (Yeoh 2002).

2.3 Energy release rates of small cracks 
and their factorization

It is first desired to develop a method that ena-
bles us to capture the influence of the presence of 
a small crack on the variation of the mechanical 
fields in the crack neighbourhood and that reveals 
how that variation makes up for the energy release 
rate. Using this method, the factorization of the lat-
ter with respect to the crack length is then investi-
gated. Finally, on the basis of the numerical results 
obtained via finite element analysis, we examine 
the dependence of the energy release rate of small 
cracks on the farfield parameters B, λ and θ.

2.3.1 J-integral
The J-integral represents a way to calculate the 
energy release rate. It was first introduced within the 
framework of planar small strain as a contour path 
integral around the crack tip (Rice 1968). Thereaf-
ter, it was extended to planar finite strain. Indeed, 
on considering a contour Γ surrounding the crack 
tip and leaning on both faces of the crack in the 
undeformed configuration, the J-integral writes:

J q NdS= ⋅ ∑∫� ���
Γ

 (5)

where ∑ stands for the Eshelby stress tensor, q→ is 
the crack direction vector and N

→
 is the outward 

normal vector to the surface element dS in the 
under formed configuration.

We remind the reader that, for an elastic mate-
rial, the J-integral is path-independent which 
permits the arbitrary choice of the contour sur-
rounding the crack tip to calculate the energy 
release rate (Rice 1968). For the sake of simplic-
ity, the far-field Eshelby stress tensor is denoted ∑∞ 
throughout the rest of this paper.

Let us focus now our attention on the contour. 
A rectangular contour of characteristic dimen-
sion R has been chosen (see Figure 4). On choos-
ing R such that R/c → ∞ the evaluation gets highly 
simplified (see Table 1). Indeed, ΓA, ΓB and ΓC lie 
then in the far-field region wherein the Eshelby 
stress tensor is uniform and is equal to ∑∞.

Figure 3. Original and new models after performing the 
appropriate change of basis (undeformed configuration).
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It follows that

J l dlR
R

R
= −( )→ + ∞

∞

− ∑ ∑∫lim ( )11 11  (6)

Using the symmetry with respect to the crack 
line, we deduce that:

J l dl= −( )∞+ ∞ ∑ ∑∫2 11 110
( )  (7)

Note here that the expression above is not an 
approximation but the exact formula of the energy 
release rate. However, because the model has finite 
dimension, the upper bound for the integral is 
necessarily < + ∞. Thus, we can only compute an 
approximation of the energy release rate:

J l dl
L

≅ −( )∞∑ ∑∫2 11 110
( )  (8)

where L is the maximum distance to the crack face 
in the ′e2

���
-direction.

2.3.2 Proportionality of J with respect 
to the crack length

Let us consider two different small cracks: one with 
length cand the other one with length kc where k is 
a real number. Both are subjected to the same far-
field loading conditions. Using Eq. (7), the energy 
release rate of a crack of length cwrites:

J c l dl
c( ) ( )= −( )∑∑∫ ∞+ ∞

2 11110
 (9)

while the energy release rate of a crack of length 
kc writes:

J kc l dl
kc( ) ( )= −( )∑∑∫ ∞+ ∞

2 11110
 (10)

where ∑11
c  (respectively ∑11

kc) denotes the Eshelby 
stress associated with the crack of length c (respec-
tively of length kc).

By using the substitution l = kl′, we obtain that 
dl = kdl′. It follows that:

J kc k kl dlkc( ) ( )= − ′( ) ′∑∑∫ ∞+ ∞
2 11110

 (11)

Let us focus now on the effect of multiplying the 
crack length by a factor k on the transformation 
of the mechanical fields with respect to the origi-
nal problem of a crack of length c. We recall that 
the latter consists in a small crack embedded in a 
medium that has infinite dimension; thus changing 
the crack length by a factor k boils down to per-
forming a homothetic transformation with a scale 
factor k and where the homothetic center is the 
center of the crack. And as the segment Γ+ goes by 
the center of the crack, the mechanical fields along 
its length obey the homothetic transformation with 
respect to the crack length. Hence we have:

( ) ( )kl lckc = ∑∑ 11
on +11

Γ  (12)

and we deduce that:

J kc k kl dl
kc( ) ( )= −( )∑∑∫ ∞+ ∞

2 11110
 (13)

= −( )∑∑∫ ∞+ ∞
2 11110

k kl dl
c ( )  (14)

= kJ c( )  (15)

Note here that no limits were placed on the par-
ticular plane stress loading condition. Thus, the 
argument we have just made is completely general 
and is valid for all λ, B and θ.

This result implies that it is sufficient to work 
out the energy release rates for one crack size, and 

Figure 4. Contour for the evaluation of the J-integral.

Hence we have: 
Table 1. Contributions to the energy release rate.

Segment N
��� q Nd

� ���
⋅ ∑∫ Γ

Γ

Γ+ − ′e1
��

− ∑∫ 110
( )l dl

R
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���

∑∞
12 R
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��
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− ∑∞
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Γ– − ′e1
��

− ∑
−∫ 11
0

( )l dl
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that the energy release rate of all other crack sizes 
are then determined.

3 NUMERICAL RESULTS

The behaviour of the isotropic hyperelastic material 
was modeled by an incompressible neo-Hookean 
model.

3.1 Variation of the energy release rate versus 
crack length

In order to validate the proportionality law demon 
strated previously (see Eq. (15)), the dependence 
of the energy release rate on the crack length has 
been investigated for various far-field loading con-
ditions (B ranging from –0.5 to 1, λ ranging from 
1 to 5 and θ ranging from 0° to 90°). Indeed, for 
each and every far-field state of stress, the energy 
release rate has been computed twice for two differ-
ent crack lengths: c and 2c. All the results obtained 
so far show that, for Bincreasing from –0.5 to 1 with 
an increment of 0.25, for λ increasing from 1.1 to 5.0 
with an increment of 0.1 and θ increasing from 0° to 
90° with an increment of 15°, we always verify:

J B c
J B c
( , , , )
( , , , )

λ θ
λ θ

2 2=  (16)

3.2 Variation of the energy release rate versus 
crack orientation

For various biaxiality factors (B ranging from –0.5 
to 1), the influence of λ on the variation of the 
energy release rate versus the crack orientation has 
been investigated.

As we can observe (see Figure 5 and Figure 6), for 
B in [−0.5, 1] the energy release rate strictly decreases 
as the crack orientation increases in both small and 

Figure 5. Energy release rate under simple loading 
conditions (uniaxial tension ---, pure shear – - – and 
equibiaxial tension —) in small strain (λ = 1.1).
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Figure 6. Energy release rate under simple loading con-
ditions (uniaxial tension ---, pure shear – -– and equibiax-
ial tension —) in large strain (λ = 2.5).
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finite strain: the maximum is reached at θ = 0° and 
the minimum is reached at θ = 90°. However, under 
equibiaxial tension (B = 1), the energy release rate 
is independent from the crack orientation in both 
small and finite strain and thus only depends on λ.

4 DISCUSSION: FAR-FIELD PARAMETER 
OF THE SCALE LAW

The proportionality of the energy release rate with 
respect to the crack length (section 2.3.2) permits 
the following factorization:

J (λ, B, θ, c) = f (λ, B, θ) c (17)

where f is a function of the far-field parameters 
only.

4.1 Comparison with linear elastic fracture 
mechanics (LEFM)

From the solution of LEFM for a rubberlike mate-
rial (Mars 2006), f can be factorized into: 

f B f B( , , ) ( , ) (cos sin )λ θ λ θ β θ= +0 2 2 2  (18)

where

β =
+

+
2 1

2
B

B
 (19)

and f 0 is a function of λ and B only. f 0(λ, B) is basi-
cally the value of f(λ, B, θ) at θ = 0°. Thus, regard-
ing the original problem (see Figure 2), f 0 depends 
only on the far-field state of stress.

Note here that all the energy release rates com-
puted in small strain for B ranging from –0.5 to 
1 and θ ranging from 0° to 90° completely match 
this theoretical factorization.
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4.2 Factorization of the energy release rate 
in finite strain under simple loading cases

Under equibiaxial tension, because the energy 
release rate is independent from the crack orienta-
tion, the previous factorization of f remains obvi-
ously valid. Under uniaxial tension, we can draw 
the same conclusion from the numerical results. 
Indeed, on comparing the factorization with the 
energy release rate values computed for λ ranging 
from 1.1 to 5, we always have:

f (λ, −0.5, θ) = f (λ, −0.5, 0°) cos2 θ (20)

However, under pure shear and actually for all B 
in [−0.5, 1.0], a simple comparison with numerical 
results clearly shows that the previous factoriza-
tion (Eq. 18) cannot be extended to finite strain.

As for now, all the arguments that we made in 
this subsection are based only on finite  element 
results but they have the benefit to guide us towards 
the simplification of the expression of f under 
simple loading cases. From the remarks above we 
deduce that:

J (λ, −0.5, θ, c) = (f 0(λ, −0.5) cos2 θ) c (21)

and

J(λ, 1, θ, c) = f 0(λ, 1) c (22)

wherein the general expression of f 0 still needs to 
be determined.

5 CONCLUSIONS

A new method for modelling small cracks under 
arbitrary loading states and finite straining has 
been presented. The latter was successfully tested 
against the most known cases (uniaxial tension, 
equibiaxial tension and pure shear).

We have also investigated how the energy 
release rate is balanced by the distribution of 

configurational stresses. It has then been proved 
that the energy release rate of a small crack (suit-
ably defined) always follows a linear scale law with 
respect to crack size, regardless of loading state.

Finally some progress has been made towards a 
general-purpose expression for energy release rate 
under arbitrary loading.
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In-situ SEM study of fatigue crack growth mechanism in carbon 
black-filled natural rubber
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ABSTRACT: A micro-tensile testing machine placed in the chamber of a scanning electron microscope 
is used to perform in-situ fatigue tests on a 43 phr carbon black-filled cis-1,4-polyisoprene rubber; the 
crack tip is observed in realtime during crack propagation. These observations lead to a detailed descrip-
tion of the crack tip morphology, to the understanding of the fatigue crack growth mechanism and to the 
microstructural explanation of crack branching phenomenon. Finally these results are related to the great 
fatigue properties of natural rubber and to strain-induced crystallization.

1 INTRODUCTION

Carbon Black-filled Natural Rubber (CB-NR) 
exhibits longer fatigue life than other elastomeric 
materials (Beatty 1964). Number of  mechanical 
studies have been proposed to quantify the long-
term durability of  this material (see Lake (1995, 
Mars and Fatemi (2002) and the references 
herein). Nevertheless, only few recent papers 
investigate the microstructural aspects of  fatigue 
crack growth in rubber (Le Cam et al. 2004; 
Hainsworth 2007); in these studies, fatigue tests 
are first conducted until a sufficiently long fatigue 
crack develops in the sample, then this sample 
is stretched and the open crack is observed in a 
Scanning Electron Microscope (SEM). Moreover, 
Le Cam et al. develop an original “microcutting” 
technique which permits to observe fatigue dam-
age behind the crack tip and then to propose a 
scenario of  fatigue crack growth in NR (Le Cam 
et al. 2004).

The aim of the present paper is to verify this 
previously proposed mechanism and to enrich the 
understanding of the phenomena involved during 
fatigue crack growth at the microstructural scale. 
In this purpose, in-situ SEM fatigue experiments 
are conducted and crack propagation is observed 
in real-time. Indeed, we believe that only such 
observations enable to unquestionably establish 
the scenario.

The experimental procedure is first described in 
details. Then, the next section presents the thor-
ough description of the crack tip, clarifies the 
scenario of crack propagation and explains how 
secondary cracks appear. Finally, these results are 
discussed in the light of both macroscopic fatigue 

properties and straininduced crystallization of 
natural rubber.

2 EXPERIMENTAL

The aim of the present experiments is to observe 
the evolution of the crack tip during rubber fatigue 
crack propagation, in real-time. The experiments 
are conducted in three steps: i. the specimen is 
precut with a scalpel, ii. a classical fatigue experi-
ment is then conducted in a standard machine until 
a fatigue crack propagates and iii. the experiment 
is continued in a micro-tensile testing machine 
placed in a SEM.

2.1 Apparatus

The micro-tensile testing machine used for this 
study is sufficiently small-sized to be placed in the 
chamber of a SEM and the double screw driving 
system leads to easy observation because the cen-
tre of the sample, i.e. the position of the crack tip, 
does not change during loading. Nevertheless, two 
major difficulties are due to the characteristics of 
the machine. First, its size and the limited distance 
between the clamps (from 20 mm to 40 mm) con-
strain both size and shape of the samples. Indeed, 
a special design of samples is needed to induce 
large strain in the vicinity of the crack. Second, 
as the relative speed of the clamps can vary from 
0.1 mm/min to 2 mm/min, the maximum frequency 
of a fatigue test is 0.83 mHz, such value leading 
to days-long experiments. This is the  reason why 
samples are pre-cut and the fatigue crack is first 
propagated in a classical tensile-testing machine.
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2.2 Material and design of the sample

The material considered here is an industrial 43 phr 
CB-NR, provided in 2 mm thick calendered sheets.

As mentioned above, a special shape of sample 
was chosen in order to achieve large strain in crack 
vicinity and to propagate it; the corresponding 
geometry is shown in Figure 1.

2.3 Procedure

i.  The first step consists in pre-cutting the sam-
ple to localize the crack in its centre. This cut 
is made with a scalpel and the resulting crack is 
less than 1 mm deep and between 1 and 2 mm 
long.

ii.  To reduce the duration of the fatigue experi-
ment, a fatigue crack is initiated from the precut 
in a standard fatigue machine. Fully relaxing 
cycles of stretch amplitude 200% are considered 
and the frequency is chosen to limit self-heating, 
i.e. less than 1 Hz. This first part of the fatigue 
test is stopped after the crack has propagated of 
about 50% of precut deepness.

iii.  Finally, the experiment is continued in the small 
scale tensile machine. Loading conditions are 
identical to those of  ii. except the frequency 
which is 0.83 mHz. Observation is made in a 
Jeol 6060LA SEM using secondary electrons 
imaging. Note that if  a too high power elec-
tron beam is used, crack tip is damaged: micro-
scopic cracks develop perpendicular to the 
loading direction. To overcome this difficulty, 
four parameters need to be lowered to reduce 
the energy of  the electron beam per unit area: 
the probe current, the accelerating voltage, the 
magnification and the exposure time. Once 
these parameters set, the fatigue experiment is 
stopped once per cycle at maximum stretch to 
photograph the crack tip.

3 MECHANISM OF FATIGUE CRACK 
PROPAGATION

3.1 Description of the crack tip

Figure 2 presents the front view of  the fatigue 
crack tip. In the former figure, tensile direction 
is indicated by white arrows and the propagation 
direction is normal to the photomicrograph. As 
observed previously (Le Cam et al. 2004; Hains-
worth 2007), the crack tip is composed of  number 
of  diamond-shaped zones separated by ligaments. 
The pattern of  ligaments and diamond-shaped 
zones can be described as multi-scaled as large 
diamond-shaped zones delimited by large liga-
ments are themselves made up of  smaller zones 
delimited by smaller ligaments. The diamond-
shaped zones are flat and smooth compared to 
the ligaments, and those ligaments emerge from 
the smooth surfaces. The most noticeable char-
acteristic of  the crack tip is the pattern regular-
ity. Surprisingly, the ligaments are not parallel to 
the tensile direction. In fact, they are parallel to 
two directions which are symmetric with respect 
to the tensile direction. The angle between the 
direction of  ligaments and the loading direc-
tion decreases with the extension of  the sample. 
Consequently, at a given deformation even if  the 
size of  diamond-shaped zones varies, all of  them 
have the same length-width ratio. For instance, in 
Fig. 2, this ratio is 4 to 1. Nevertheless, the size 
of  the diamond-shaped zones is not uniform; 
indeed the knots of  the pattern are not regu-
larly located. Finally, the crack tip also contains 
another relief  feature: as it will be established in 

Figure 1. Geometry of samples. Figure 2. Top view of a representative crack tip.
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the following, it corresponds to previously broken 
and then shrunk ligaments. They are located at 
the knots of  the pattern, i.e. at the intersection of 
the ligaments.

The previous description was devoted to rubber 
matrix, but as the material considered in this study 
is an industrial CB-NR, it contains a lot of differ-
ent inclusions. Most of them are zinc oxides or car-
bon black agglomerates. In most of the cases, they 
are contained in elliptical cavities.

Finally, Figure 3 summarizes the description of 
the crack tip microstructure: the left-hand drawing 
shows the front view and presents the different ele-
ments described above, and the right-hand draw-
ing is a side view which highlights the relief  of the 
crack front.

3.2 How does the crack propagate?

Figure 4 shows six SEM images of  a 0.5 mm2 area 
of  the crack tip taken respectively for the maxi-
mum stretch of  in-situ fatigue cycles 1, 10, 21, 31 
and 41. The micromechanism of  fatigue crack 
growth in rubber can be established thanks to this 
figure. From one SEM image to another, it clearly 
appears that all the crack tip zones are affected 
by crack growth: positions of  ligaments change 
with loading as shown by the white lines drawn 
on images. It means that the crack front is a sur-
face rather than a line. Moreover, the evolution of 
the diamond-shaped zones suggests a three-step 
mechanism for crack propagation as emphasized 
in Figure 5. In order to describe this evolution, we 
choose Fig. 5 (a) as the reference state of  the zones. 
Under loading, zones become larger (see changes 
between Fig. 5 (a), (b) and (c)), and cavities and 
inclusions appear on the surface (see Fig. 5 (c)). 
It means that the matter tears and the zone grows 
deeper in the direction normal to the crack sur-
face, i.e. the direction of  crack growth (it cannot 
be seen in the figure). The more the zone goes 
deeper, the more the ligaments which delimit it 
are stretched. Then after a few number of  cycles, 
one of  these ligaments breaks (see Fig. 5 (d)) and 
shrinks (see Fig. 5 (e)). Two different evolutions of 
the microstructure are observed: a new ligament 
may emerge or the two diamond-shaped zones 

Figure 3. Open crack tip (top view and section).

Figure 4. Evolution of a crack tip during cyclic loading 
after respectively 1, 10, 21, 31 and 41 in-situ cycles.
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separated by the broken ligament may coalesce 
as shown in Fig. 5 (f). In both cases, the matter 
reorganizes itself  in a large vicinity of  the broken 
ligament through the displacement of  ligaments 
and diamond-shaped zones. In fact, this mecha-
nism repeats itself  in every diamond-shaped zone 
of  the crack front. From a temporal point of  view, 
this phenomenon occurs in a continuous manner 
with different velocities in each point. From a spa-
tial point of  view, it can happen simultaneously in 
different locations of  the crack front.

To close this section, we summarize the main 
elements of the previous mechanism with the help 
of a five-step scenario as depicted in Figure 6.

a. Fig. 6 (a) presents the initial state of a diamond-
shaped zone and its delimiting ligaments; it is a 
detail of the drawing of the crack tip in Fig. 3,

b. the diamond-shaped zone grows larger and 
deeper, showing new inclusions and ligaments 
(see Fig. 6 (b)),

c. as a consequence, ligaments which delimit the 
zone are stretched and one of them gets thinner 
than in the previous cycle (see Fig. 6 (c)),

d. eventually, this ligament breaks (see Fig. 6 (d)),
e. finally, the matter reorganizes itself  through 

coalescence of the diamond-shaped zone with 
one of its neighbours (see Fig. 6 (e)).

3.3 How do secondary cracks appear?

In the previous sections, the crack was observed 
only when opened. However, the study of the closed 
crack exhibits the path of a fatigue crack in natural 
rubber. To perform these observations, samples are 

cut in two with a scalpel along the plane defined by 
the tensile and propagation directions in the middle 
of the crack. Figure 7 presents the side view of the 
crack which is slightly open to observe more easily 
the crack path. It highlights the main crack path 
which is normal to the tensile direction and several 
secondary cracks. Similarly to (Hamed 1994), the 
term “secondary crack” refers to short deviated 
cracks developed from the main one. Their length 
varies from 10 μm to 100 μm. In order to establish 
the scenario of secondary cracks formation also 
called “crack branching phenomenon”, it is nec-
essary to determine how diamond-shaped zones 
evolve relatively to the others. In this purpose, the 
crack tip is observed with a different orientation 
from the previous images (Figs. 4 and 5): samples 
are rotated 90º in the SEM chamber to change the 
orientation of the ligaments with respect to the 

Figure 5. Successive photographs of the same detail of 
a crack tip during the rupture of a ligament after respec-
tively 1, 3, 4, 5, 6 and 8 in-situ cycles.

Figure 6. Fatigue crack propagation mechanism.
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secondary electron detector. The obtained image is 
presented in Figure 8; it emphasizes the relief  of 
the crack tip due to the shadow contrast. It shows 
that all diamond-shaped zones are not in the same 
plane: some of them are deeper than others (see 
those indicated by white arrows in Fig. 8).

The crack propagation mechanism proposed 
in Section 3.2 does not take into account kinetics. 
The presence of diamond-shaped zones of differ-
ent deepness in Fig. 8 suggests that even though 
the diamond-shaped zones evolve in a continuous 
manner, they do not grow deeper at the same speed. 
Moreover, recalling that the crack front is a surface 
rather than a line, the crack branching scenario will 
be established with the help of Figure 9. It shows 
the evolution under fatigue loading of three con-
tiguous diamond-shaped zones (a, b, c) located at 
the crack front surface. It is a simplified representa-
tion of the crack tip cross-section: the right-hand 
drawings describe the close crack with the same 
view as in Fig. 7 and the left-hand drawings show 
the same crack but opened. To simplify the dis-
cussion, the scenario is established by considering 
three successive steps:

1. Initially, the three diamond-shaped zones a, b and 
c are separated by ligaments (grey in the figure) 
and have the same depth. When the crack is 
closed, there is only one branch.

2. Later on, when the crack has propagated, zones 
a and c have grown deeper than zone b. So, the 
close crack presents two similar branches. The 
main crack will develop from one or the other 
(a or c).

Figure 7. Crack path observed in a cut sample.

Figure 9. Branching phenomenon mechanism.

3. As the crack continues to propagate, one of the 
two previous branches will become the main 
crack due to both local mechanical conditions 
and microstructure. In the figure, zone a has 
become the main crack, and turned into two 
new diamond-shaped zones e and f because 
the former ligaments which delimited zone a 
broke and new ones appeared; zone b does not 
evolve anymore because it is partially relaxed; 
and zone c forms a secondary crack.

During crack propagation, the elementarysce-
nario described above repeats: zones e and f will 
evolve in the same manner as zones a, b and c in 
step (1). It is to note, that zones a, b, c can be three 
single diamond-shaped zones or three groups of 
several zones.

4 DISCUSSION

Recently, some authors performed interrupted 
fatigue tests and observed stretched samples in 
SEM (Le Cam et al. 2004; Hainsworth 2007). 

Figure 8. Top view of a crack tip −90° rotated specimen 
in the chamber of the specimen.
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Le Cam et al. observed the damage induced by 
fatigue and proposed the mechanism of crack 
propagation in natural rubber. Nevertheless, only 
observations performed during crack propa-
gation enable to unquestionably establish this 
mechanism. Here, in-situ SEM experiments have 
been conducted to observe fatigue crack propa-
gation in rubber in real-time. If  such experiments 
have been already conducted for metallic materials 
(Crepin et al. 2000), to our knowledge, the present 
work is the first attempt to apply this technique to 
rubber materials.

With the careful procedure used during this 
study, we are able to highly improve the descrip-
tion of both crack tip morphology and propa-
gation mechanism we previously published (Le 
Cam et al. 2004). First, the crack tip description 
is enriched: ligaments morphology and orientation 
were thoroughly investigated. Second, the present 
mechanism of crack propagation is in good agree-
ment with the previous one, except for the perpen-
dicular micro-cracks and the cavities which were 
observed by Le Cam et al. and not here. In fact, 
those micro-cracks were due to the electron beam; 
moreover, we believe that what was called a cavity 
in our previous study was only a smooth hollow 
which deepness was overestimated. Third, addi-
tional experiments allow to explain crack branch-
ing in NR under fatigue loading conditions.

The microscopic mechanism presented above 
explains the great fatigue properties of  NR at the 
macroscopic scale: long fatigue life (Mark et al. 
2005) and low crack growth rate (Lake 1995; Papa-
dopoulos et al. 2008). Indeed, the ligaments of  the 
crack tip resistto crack propagation in two ways: 
they induce a surface crack front rather than a 
tearing line as well as branched cracks which both 
help to dissipate energy and then hold up crack 
advance as previously argued by Hamed (Hamed 
1994).

The great fatigue properties of NR are usu-
ally correlated with its ability to crystallize under 
deformation. In order to relate this property to our 
results, we now compare NR to Styrene Butadiene 
Rubber (SBR), an elastomer which does not exhibit 
strain-induced crystallization. More precisely, a 
similar study has been conducted for a SBR mate-
rial with the same amount of carbon black fillers 
than in the NR considered here. It highlights three 
main differences between NR and SBR fatigue 
crack growth mechanisms:

• SBR crack tip does not present ligaments. Even 
though we observe sort of filaments parallel to 
tensile direction, the crack tip is very smooth 
and experiments reveal that those filaments do 
not resist to crack propagation as ligaments do 
in NR,

• the in-situ crack propagation observation also 
shows that in SBR the crack front is a line rather 
than a surface as in NR,

• crack branching does not occur in SBR contrary 
to what is observed in NR.

This comparison demonstrates that the hetero-
geneity of the microstructure at the crack tip (liga-
ments, diamond-shaped zones) is a consequence of 
strain-induced crystallization in NR.

At the close of this study, the mechanism of 
fatigue crack propagation in NR is qualitatively 
well-established; further investigations are now 
required to quantify the heterogeneity of some 
physical quantities, for example crystallinity and 
strain, at thecrack tip.
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Applying infrared thermography to determine heat sources at the 
crack tip of rubber specimens
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ABSTRACT: This study deals with the thermal response of elastomeric materials subjected to cyclic 
mechanical loading. An infrared camera is used to measure the temperature fields at the surface of a 
notched specimen. Rather than analyzing temperature fields, which depend on the heat diffusion within 
the specimen and the heat exchanges with the outside of the specimen, heat sources produced by the mate-
rial are calculated by using the heat diffusion equation. Because of large displacements that occur during 
the tests, a motion compensation technique is performed in order to track the material points during the 
stretching of the specimen. The results obtained enable us to highlight the well-known thermoelastic 
inversion phenomenon and to observe a strong localization of heat sources close to the crack tip.

1 INTRODUCTION

The study deals with the thermal response of 
notched elastomeric materials. Studying the crack 
propagation in elastomeric materials is a critical 
issue which has been thoroughly studied in the past 
(see for instance, Lindley et al. 1964 and Thomas 
1958). Different experimental techniques can be 
used to investigate physical phenomena involved 
during crack propagation, such as scanning elec-
tron microscopy or X-rays microtomography. In the 
present study, the authors propose to use infrared 
(IR) thermography. To date, infrared thermogra-
phy has proved to be a relevant technique for non-
destructive analysis of materials and structures, as 
well as for studying the thermomechanical response 
of materials subjected to mechanical loading. The 
so-called thermoelastic stress analysis is classically 
used for the measurement of stress fields: a high-
frequency cyclic loading is applied to elastic struc-
tures, leading to a temperature oscillation due to 
the thermoelastic (isentropic) coupling. Another 
approach consists in estimating the heat sources 
produced by the material (Chrysochoos et al. 1989). 
Indeed, temperature fields are sometimes difficult to 
analyze because of the heat conduction within the 
specimen and the heat exchange with the outside of 
the specimen. Heat source fields can be obtained 
by processing the thermal data with the heat dif-
fusion equation. This approach, which has been 

successfully applied to various materials, is applied 
in the present study to analyze the thermomechani-
cal response at the crack tip of elastomeric materials. 
The large deformations undergone by this kind of 
material lead to large displacements of the material 
points. Consequently, the tools usually developed 
for processing temperature maps for small deforma-
tion are no longer suitable, especially in case of het-
erogeneous temperature fields. The objective of the 
present work is first to develop a motion compen-
sation technique to process the temperature fields 
provided by an IR camera, before calculating and 
analyzing heat source fields at the crack tip.

2 THERMOMECHANICAL 
BACKGROUND

In this section, the thermomechanical framework 
to analyze temperature maps is briefly recalled.

2.1 Heat diffusion equation

The thermodynamic process involved in the mate-
rial deformation is considered as quasi-static. Any 
material volume element is defined by n state vari-
ables: temperature T, a strain tensor denoted E 
and some internal variables V1, V2,… , Vn–2 such as 
plastic strain or volume fractions of phases existing 
in the material. The specific free energy potential is 
denoted ψ (T, E, Vk).
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Assuming the Fourier’s law to model the heat 
conduction, the heat diffusion equation can be 
written as follows (Chrysochoos & Louche 2001):

ρC T div K grad T r sE Vk, ( )� − − =  (1)

where ρ is the density, CE,Vk is the specific heat at 
constant values of E and Vk, K is the thermal con-
ductivity tensor and r the external heat source. The 
quantity s is the heat source produced by the mate-
rial. It is composed of different terms:

s d T
T E

E T
T V

V
k

k= +
∂

∂ ∂
+

∂
∂ ∂1

2 2
ρ ψ ρ ψ� �  (2)

where:

• the first term d1 is the mechanical dissipation (or 
intrinsic dissipation). This positive quantity cor-
responds to the heat production due to mechani-
cal irreversibilities such as internal friction or 
plasticity;

• the second term is the thermomechanical coupling 
between temperature and strain. It is called ther-
moelastic coupling (or isentropic coupling). It is 
negative for a positive strain rate, and conversely.

• the third term corresponds to the thermome-
chanical couplings between temperature and the 
state variables Vk. They correspond for instance 
to latent heat production in case of first-order 
phase transformation phenomenon.

2.2 Hypothesis for heat source assessment

The classical approach used to assess the heat 
sources from the temperature fields provided by an 
IR camera (Chrysochoos & Louche 2001) is now 
recalled. For the sake of simplicity, the heat conduc-
tion is considered isotropic. Equation 1 can be then 
rewritten using the laplacian operator and k. The 
latter is the conductivity coefficient that replaces the 
thermal conductivity tensor K. As temperatures are 
obtained by an IR camera on the specimen surface, 
it is assumed that the problem is a bidimensional one 
if the specimen is flat and thin. Let us now consider 
the z-direction perpendicular to the (x, y) plane of 
the problem. The specimen is assumed to be thin, 
so the through-thickness temperature T is assumed 
to be almost constant. However, the temperature 
gradient ∂T/∂z is different from zero near the front 
and back sides of the specimen because of heat 
exchanges with ambient air. Averaging Equation 1 
through the thickness of the specimen leads to:

ρ
τ

C T
T T

k T r sE Vk
amb

D,
� −⎛

⎝⎜
⎞
⎠⎟

− Δ − =2
 

(3)

where Δ2D is the 2D-dimensional laplacian operator 
in the (x, y) plane, Tamb is the ambient temperature 
and τ a time constant which characterizes the heat 
exchanges with the ambient air on the external sur-
faces of the specimen.

As the external heat source field r is difficult to 
assess, this quantity is removed from Equation 3 by 
subtracting a so-called reference temperature field 
T0. This field corresponds to any temperature dis-
tribution when the specimen does not produce heat 
source s. It is obtained in practice just before load-
ing the specimen for instance.

Let θ be the temperature variation from the ref-
erence temperature field T0:

θ = T – T0 (4)

One can deduce from Equation 3:

ρ θ θ
τ

θC
T T

k sE Vk
amb

D,
� +

+ +⎛
⎝⎜

⎞
⎠⎟

− Δ =0
2  (5)

3 EXPERIMENTAL SET-UP

3.1 Material

The material under test is a 34 part per hundred 
of rubber in weight (phr) carbon black filled 
natural rubber (CB-NR). It is obtained from a 
compound that is allowed to cure for 7 minutes at 
160 degree C. The chemical composition and some 
of its mechanical properties are given in (Le Cam 
et al. 2004). Thermophysical properties involved in 
Equation 5 are given in Table 1.

3.2 Specimen geometry

Figure 1 presents the geometry of the specimens. 
The thickness is equal to 4 mm. A 2 mm long crack 
is initiated with a razor blade at the center of the 
specimen before testing. Two metallic inserts have 
been bonded at the top and bottom of the elasto-
meric material to be able to grip the specimen in 
the testing machine.

3.3 Specimen preparation for thermal analysis

The surfaces of the specimens are slightly polished 
and cleaned. Carbon black fillers make surfaces 

Table 1. Thermophysical properties.

Property Value

Density 1.13
Specific heat (J/Kg.K)* 2100
Thermal conductivity (W/m.K)* 0.8

* (Granta 2006).
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naturally black, so no specific surface preparation 
is required. Thermal emissivity is supposed to be 
close to one.

For the motion compensation technique detailed 
in Section 4.2 below, a limited number of material 
points are chosen on the specimen surface (see 
Figure 1). Reflective spots are plotted on the rub-
ber surface before testing. Due to the difference of 
emissivity between ink and plain elastomer, reflec-
tive spots appear on the temperature maps.

The spot density is adjusted in such a way that 
more spots are placed in the vicinity of the crack. 
Far away from the crack, the distance between the 
reflective spots is about 4 mm.

3.4 Loadings

A 15 kN MTS testing machine is used to test speci-
mens under uniaxial cyclic loading. The signal is sinu-
soidal with a loading frequency fL equal to 0.5 Hz. 
The stretch ratio λ is defined by the ratio between 
the maximum and the initial lengths. It oscillates 
between 1.03 and 1.67. In order to avoid the Mul-
lins effect, specimens are previously tested under the 
same loading conditions and over 10 cycles.

3.5 Measurement

Temperature measurements are performed at room 
temperature with a Cedip Jade III-MWIR infrared 
camera which features a local plane array of 
320 × 240 pixels and detectors with a wavelength 
range of 3.5−5 μm. The integration time is 1500 μs 
and the acquisition frequency fa is 150 Hz. The 
thermal resolution (Noise Equivalent Temperature 
Difference) is equal to 20 mK around 20 degree C.

Two zones are investigated in this study. Their 
location and size are shown in Figure 1:

• Domain #1: this zone enables us to observe the 
whole surface of the specimen, even for the max-
imum stretch ratio (1.67).

• Domain #2: this zone focuses on the area around 
the crack.

For the IR camera used, the spatial resolution is 
the size of the surface observed by any pixel. The 
value depends on the magnification of the objec-
tive, and therefore on the size of the zone under 
investigation. For domains #1 (the whole surface) 
and #2 (the zone surrounding the crack), it is equal 
to 219 and 131 μm, respectively.

In order to ensure that the internal temperature 
of the camera is optimal for performing the meas-
urements, it is set up and switched on for one hour 
before the experiment. The stabilization of the 
camera temperature is necessary to avoid any drift 
of the measurements during the test.

3.6 Characterization of the time constant

Time constant τ involved in Equation 5 is deter-
mined experimentally. This constant mainly depends 
on the convection phenomenon that defines the 
heat exchange at the interface with ambient air. Its 
value is expected to vary on the specimen surface as 
the convection depends on the velocity. As a first 
approach, the value is here supposed to be a con-
stant. It is obtained when the specimen temperature 
returns to ambient temperature after heating. The 
mean experimental temperature evolution is fitted 
with the solution of Equation 5 (where s = 0) and τ is 
deduced. The following value is obtained: τ = 345 s. 
It must be noted later that the heat exchanged by 
convection is in fact negligible compared to the 
absorption term ρCE,Vk ∂θ/∂t for the loading condi-
tions defined in the present experiments.

4 DATA PROCESSING FOR HEAT 
SOURCE ASSESSMENT

4.1 Problem

The objective of the post-processing technique is 
to calculate the left-hand side of Equation 5 by 
processing the experimental data. In case of large 
displacements, a given pixel of the IR detector 
matrix does not correspond to the same material 
point while loading. The objective is then to track 
the material points before processing the tempera-
tures. It seems that constructing a suitable motion 
compensation technique in the context of mechan-
ical testing and temperature measurement using an 
IR camera has only seldom been addressed in the 
literature (Sakagami et al. 2006).

Figure 1. Specimen geometry and zones observed by 
the IR camera.



328

4.2 Motion compensation technique

A “reference geometry” is defined. In the present 
case, it corresponds to the sample geometry when 
a slight initial displacement is applied to avoid any 
local buckling. Calculations will be carried out in 
the current configuration, but results will be dis-
played in the reference one.

A suitable algorithm is developed using the 
Matlab package and a ‘reshaping’ operation of 
the temperature maps is performed. Full details 
concerning the numerical implementation can be 
found in (Pottier et al. 2009). From a practical point 
of view, the co-ordinates of the reflective spots are 
localized. The spots are tracked during the cyclic 
load. The displacement fields are then interpolated 
between the spots using the shape functions of the 
elements of a mesh whose nodes are the spot cent-
ers. Temperature maps are then ‘reshaped’ in the 
reference geometry. Finally, the heat sources (in the 
current configuration) are calculated and displayed 
in this reference geometry.

It must be noted that a specific procedure when 
subtracting the reference temperature T0 (see Equa-
tion 4) must be used because the IR detectors of 
any matrix array camera feature a slight non-
uniformity for instance due to the Narcissus effect. 
Full details are given in (Pottier et al. 2009).

5 APPLICATION TO A RIGID BODY 
MOTION

Before applying the technique to a notched elas-
tomeric specimen, a first test is performed with 
a simple motion: a rigid-body translation. One 
side of the specimen is fixed in the moving grip 
and the other side remains free. The moving grip 
describes a cyclic linear translation whose ampli-
tude is 29.45 mm. A temperature gradient of about 
6 degrees C is generated within the specimen using 
a frozen steel block placed on the free side. The 
temperature field is measured by the IR camera for 
a few seconds (the temperature field in the speci-
men does not change during this short acquisition 
time).

The motion compensation technique is applied 
to obtain the temperature evolution at each material 
point. No heat is produced by the material during 
this rigid-body motion. Thus, no temperature vari-
ation is expected to appear once the post-processing 
method is applied. The results obtained for a given 
material point are shown in Figure 2. The efficiency 
of the motion compensation technique is verified 
for this motion of the specimen. In particular, it 
clearly appears that taking into account the IR 
detector non-uniformity is important for a correct 
analysis of temperature fields.

6 RESULTS ON STRETCHED 
ELASTOMERIC SPECIMENS

6.1 Analysis on the whole surface (domain #1)

Figure 3 presents the seven material points consid-
ered here for the analysis.

Figure 4 presents their temperature evolutions. 
Several points are worth noting:

• The thermal response of the material is not 
strictly sinusoidal. Indeed, the thermal response 
is caused by two types of coupling, namely the 
thermoelastic and the entropic couplings. For 
a small deformation increase from the unde-
formed state, heat sources are negative (first 
order effect of the thermoelastic coupling). If  
the deformation is large enough, the entropic 
coupling becomes greater than the thermoelastic 
coupling; so a positive heat source is produced. 
A minimum is obtained in the thermal response 
curve when the two coupling phenomena exhibit 
the same order of magnitude. This phenomenon 
is usually referred to as thermoelastic inversion.

• The temperature variations in zones 3, 4 and 5 are 
always greater than the temperature  variations 
in zones 1, 2, 6 and 7. The maximum tempera-
ture is obtained for zone 4. Indeed, the gauge 
section is more stretched, thus leading to more 
heat production and consequently to highest 
temperature variation in the specimen.

• The temperature in zones 1 and 7 on the one 
hand, and the temperature in zones 2 and 6 on 
the other hand, are different. This is simply due 
to the temperature difference between the fixed 
grip and the moving grip.

Heat sources calculated using the procedure 
above are presented in Figure 5. For the sake of sim-
plicity, only results obtained for zone 3 are plotted. 

Figure 2. Temperature variation of a given material 
point in a specimen subjected to a rigid body motion. 
Curve a: without motion compensation; curve b: with 
motion compensation but without taking into account 
the IR detector non-uniformity; curve c: with complete 
motion compensation technique.
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However, with such an analysis of the whole spec-
imen surface, the spatial resolution is not sufficient 
to perform a correct calculation near the crack.

6.2 Analysis near the crack (domain #2)

The same method as above is now applied in the 
domain #2 (see Figure 1) where significant strain 
gradients are expected. Figure 6 presents the seven 
material points considered here for the analysis.

Figure 7 presents the temperature evolutions of 
these material points. The following conclusions 
can be drawn:

• The temperature variations in zones 1 and 7 as 
well as zones 2 and 6 are quite similar. This can 

Other zones exhibit a similar response. In this fig-
ure, the stretch ratio, the temperature variations and 
the heat sources are plotted versus time. It must be 
noted that the stretch ratio considered here is a mac-
roscopic quantity (λmacro), i.e. it is calculated from 
the displacement of the moving grip.  Calculation 
 performed by the Finite Element Method has shown 
that the microscopic stretch ratio (λmicro) reaches 
1.14 and 5 at the crack tip when λmacro is equal to 
1.03 and 1.67, respectively.

The following conclusions can be drawn:

• As expected, the heat sources are almost equal to 
zero when the strain rate dλ/dt is null.

• As already explained above, temperature vari-
ations in Figure 5b are not strictly sinusoidal. 
For small strain amplitudes (λ < 1.1), a short 
plateau is observed. It is related to the ther-
moelastic  inversion that takes place when both 
the  thermoelastic and the entropic phenomena 
exhibit the same order of magnitude. The 
 thermoelastic inversion does not clearly appear 
in the curve plotted in Figure 5b, but a signifi-
cant change in slope is observed in Figure 5c, at 
about λmacro = 1.1.

Figure 3. Seven zones considered along the specimen.

Figure 4. Temperature evolutions.

Figure 5. Evolutions of the stretch ratio, temperature 
variations and heat sources for zone 3 in the specimen.
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be explained by the symmetry of the crack and by 
the fact that these zones are close to each other.

• The temperature evolution in zones 1 and 7 (i.e. 
the less stretched zones) clearly highlights the 
thermoelastic effects discussed above.

• The thermoelastic effect does not appear in zones 
3, 4 and 5 in which the minimum strain level is 
higher. As explained above, as λmacro between 1.03 
and 1.67 at the macroscopic scale, λmicro varies 
between 1.14 and 5 at the crack tip.

Finally, Figure 8 shows an example of heat 
sources map in the zone surrounding the crack tip 
(λmacro = 1.3, during unloading). As may be seen, the 
crack is slightly open because of the preloading. In 
this figure, it clearly appears that the maximum value 
in terms of heat source is obtained at the crack tip. 
A high gradient of heat sources is observed when 
moving from the crack tip to the bulk material. 
Note also that no heat sources are detected along 
the crack lips, close to the free boundary.

7 CONCLUSION

A motion compensation technique has been devel-
oped to process the temperature fields provided by 
an infrared camera when large displacements exist 
in the specimen under test. The technique enables 
us to track the material points while the specimen 
stretches. So the heat sources produced by the mate-
rial can be calculated. The relevancy of the motion 
compensation technique has been first shown using 
a simple displacement field: a translation. Notched 
elastomeric specimens have then been tested at 
room temperature. Temperature evolutions have 
been analyzed using two different scales: a large 
scale corresponding to the whole sample surface 
and a refined scale around the crack. Finally, heat 
sources have been assessed and analyzed. The 

competition between thermoelastic and entropic 
couplings is observed at low  elongations. A strong 
localization of the heat sources at the crack tip has 
been clearly evidenced.
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1 INTRODUCTION

Elastomeric materials are widely used in industry 
e.g. for tyres, seals and print rollers. The required 
service life of such components is usually decreased 
due to the formation and propagation of cracks. 
Hence, the modification of material structure in 
order to increase the resistance against crack initia-
tion and crack propagation is an important branch 
of materials science. The fracture of a material gen-
erally involves a number of complex processes on 
multiple length scales. An increased fracture tough-
ness can be achieved by modifying the structure of 
the material by way of inducing dissipative processes 
on various lexngth scales, which result in increasing 
the energy adsorption accompanying the process of 
crack propagation through this material.

Elastomeric materials are weakly cross-linked 
polymers. Above the glass transition temperature, 
even weak external forces can cause large deforma-
tions of these materials, owing to the high internal 
flexibility of network chains. These materials are 
typically blended with fillers in order to enhance 
their mechanical properties such as hardness, stiff-
ness or abrasion resistance. Because of the large 
deformations in the vicinity of the crack front, 
the stress and strain fields are not known, neither 
quantitatively nor qualitatively. Hence, the use 

of local fracture mechanical parameters is not 
appropriate for the characterisation of cracks in 
elastomeric materials. The global energy balance in 
a specimen undergoing crack propagation seems 
to be the only candidate for the characterisation 
of fracture in these materials. Therefore, the tear-
ing energy defined as the total amount of energy 
to advance a fracture plane by one unit area for 
charactersiation of crack propagation in elasto-
meric materials was introduced in order to charac-
terise fracture in elastomeric materials (Rivlin and 
Thomas 1953). However, such a quantity does not 
contain information about the nature and the inter-
play of the accompanying dissipative processes.

2 STRUCTURAL MODIFICATION AND 
ITS INFLUENCE ON TEARING ENERGY

In elastomeric materials there are at least two main 
dissipative processes in the bulk. The first is related 
to the Brownian dynamics of network chains at 
temperatures above the glass transition. As a con-
sequence, elastomeric materials show a viscoelastic 
deformation behaviour characterised by the relaxa-
tion time spectrum. Hence, the external loading 
rate is important for the way the material deforms 
and the amount of viscelastic energy dissipation 

Structural influence on crack propagation behaviour
in elastomeric materials

T. Horst & G. Heinrich
Leibniz Institute of Polymer Research Dresden, Dresden, Germany

ABSTRACT: The tearing energy, defined as the total amount of energy required to advance a fracture 
plane by one unit area, is generally used for the characterisation of crack propagation in elastomeric 
materials. This quantity is highly affected by the various dissipative processes in elastomeric compounds. 
Modifying the structure of elastomers influences both the energy dissipation outside of the fracture proc-
ess zone and the fracture process itself. Energy dissipation mechanisms outside of the fracture process 
are mainly due to viscoelasticity of the polymeric network characterised by the relaxation time spectrum 
and due to the breakdown and re-aggregation of filler clusters when the material is reinforced with hard 
fillers such as carbon black. The dissipative processes in the vicinity of the crack front within the fracture 
process zone are influenced e.g. by the the crack velocity. In order to study its influence, steady crack tip 
fields were calculated at various crack tip velocities within the linear viscoelastic theory. Results will be 
discussed qualitatively with respect to possible fracture mechanisms. Beside the crack velocity, the inho-
mogeneous structure of the material influences the fracture process as well. Structural modifications lead 
to different fracture surface morphologies, as it can be seen mostly with the naked eye. A statistical analy-
sis of a particular fracture surface topography by means of height-height correlation functions allows for 
an estimation of corresponding length scales of the fracture process.
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which shows a maximum at charactersitic loading 
times that are comparable to the relaxation times 
(Strobl 2007). The second dissipative mechanism 
is related to the blended filler especially at higher 
filler concentrations. Above the percolation thresh-
old a weakly bonded superstructure is formed from 
the interpenetrating filler clusters as a result of the 
flocculation of primary filler aggregates. Mechani-
cal connectivity between the filler particles that 
belong to different primary aggregates is provided 
by a flexible, nanoscopic bridge of glassy polymers, 
formed due to the immobilization of the rubber 
chains close to the gap between different primary 
aggregates (Klüppel 2003). With increasing strain, 
the stress-induced breakdown of rigid filler clusters 
occurs due to destroying nansocopic bridges con-
necting them. This leads to a filler induced energy 
dissipation, that can be observed as hysteretic stress-
strain cycles during quasistatic harmonic loading 
of an elastomeric specimen. If an elastomeric spec-
imen or component contains a crack then a third 
source of dissipation must be taken into account. 
The so-called small scale dissipation contains all the 
complex dissipative processes changing the mate-
rial from an intact to a broken state. This separa-
tion process is located in the immediate vicinity of 
the crack front within the fracture process zone.

As a consequence, the locations of the processes 
of energy dissipation in elastomeric materials are not 
restricted to the immediate surrounding of the crack 
front and they are caused not only by the propagat-
ing crack, but also by the specific loading condi-
tions and the loading history. Modification of the 
structure of elastomers influences both the energy 
dissipation far from the crack front and the frac-
ture process leading to different crack propagation 
behaviour. A crack can propagate mainly either in a 
slow stable or in a fast unstable manner. To study the 
influence of crack velocity and the reasons for the 
change between both propagation regimes is there-
fore of high interest. The increase of tearing energy 
with increasing crack velocity can be ascribed to the 
viscoelastic losses in the vicinity of the crack front 
but outside the fracture process zone due the huge 
change of shear modulus accompanying the dynamic 
glass transition (Persson et al. 2005). However, stable 
and unstable crack propagation leave different marks 
on the fracture surface of elastomeric materials, as it 
can be seen with the naked eye. Though, the fracture 
process in the immediate vicinity of the crack front, 
where the material is extensively stretched and the 
inhomogeneous structure of the material has a pro-
nounced influence on it, has not been investigated 
well so far. Fracture surfaces as a result of stable 
crack propagation show generally higher roughness 
than those created by unstable crack propagation. In 
order to explore the reasons for these differences, the 
influence of crack velocity on the stress and strain 

field in the vicinity of the crack front was studied 
qualitatively within linear viscoelastic theory in sec-
tion 3 where beside the shear also the dilatational 
behaviour was taken into account. Analysing the 
fracture surface has been prooven to be an important 
tool to draw conclusions from the fracture process. 
On the basis of a particular fracture surface it will 
be shown in section 4 by means of statistical analysis 
how characteristic length scales of the fracture proc-
ess can be estimated.

3 STATIONARY VISCOELASTIC CRACK 
TIP FIELDS

Due to viscoelasticity the deformation behaviour 
of elastomeric materials depends on the time scale 
of external loading with respect to the relaxation 
times of the material. In the case of crack propa-
gation, the local loading rate of a material point in 
the vicinity of the crack tip is not only controlled 
by the external loading rate but also by the crack 
tip velocity. Even though the change of bulk behav-
iour from uncompressible to compressible does 
not contribute to a large extent into the viscoelas-
tic energy dissipation, its influence on the fracture 
process must be taken into account. In order to 
find a hint for the fact that fracture surfaces are 
generally smoother when the crack has propagated 
in an unstable than in a stable manner, viscoelastic 
fields were analysed as a function of crack velocity. 
Due to the fact that growth of existing voids are a 
consequence of a critical hydrostatic stress (Gent 
and Wang 1991), shear and dilatational contribu-
tions will be considered separately.

For an isotropic linear viscoelastic deforma-
tional behaviour, the relation between the strain 
and the stress tensor is given by
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splitting shape change from volume dilatation con-
tributions. Hence, the shear compliance function 
J(t) and the compressibility function B(t) charac-
terise the shape change and the dilational behav-
iour of a linear viscoelastic material.
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For the study, the specific case of a thin plane 
viscoelastic specimen loaded in tension mode 
(Mode I) was considered. Then, by means of the 
correspondence principle of linear viscoelasticity 
(Kanninen and Popelar) the viscoelastic fields can 
be derived from the solution of a corresponding 
elastic boundary value problem by inverse Laplace-
Transformation. Hence, the viscoelastic plane near 
tip stress field is given by
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and the corresponding plane near tip displacement 
field is
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in a Cartesian frame with its origin attached to 
the crack tip moving with velocity υ in direction 

�e1 
(Horst and Heinrich 2008). It can be seen in Equa-
tion (3), that not only the actual value but also the 
history of the stress intensity factor KI and the 
polar coordinates (r,ϕ) of a material point influ-
ence the near tip displacement and consequently 
the near tip strain field.

In order to study the steady linear viscoelastic 
crack tip fields qualitatively, the stress intensity fac-
tor was assumed to be nearly constant and only the 
crack velocity determines the position vector of a 
material point in the moving frame. The viscoelastic 
material parameters were chosen of the same order 
of magnitude as that of a real rubber material. The 
shear compliance, that describes the shape change 
behaviour, increases at long times to a thousandfold 
of the short time value. The bulk compliance, that 
describes the dilatational behaviour, decreases from 
a finite value at short times to zero at long times. 
For both transitions we used the same retardation 
time. Hence, the transition from a glassy and com-
pressible material at short times to a rubbery and 
uncompressible material was described.

(a) Deviatoric fields

(b) Dilatational fields

Figure 1. Normalised stress and strain field in the vicinity of the crack tip at various crack tip velocities, velocity is 
increasing from left to right, same scale used (a) σ22

dev
IK/  and ε22

dev
IK/ , (b) σtr/KI and ε tr/KI.
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Results of the characteristic near tip fields at 
various crack tip velocities can be seen in Figure 1 
where it can be shown that a transition from a rub-
bery to a glassy material behaviour occurs in the 
vicinity of the crack tip with increasing crack tip 
velocity. The increase of tearing energy at higher 
crack tip velocities is due to the dissipation of vis-
coelastic energy in the vicinity of the crack tip out-
side of the fracture process zone that can be ascribed 
to the dramatic decrease of the shear modulus in 
glass transition (Persson et al. 2005). The change of 
bulk behaviour in the vicinity of the crack tip from 
uncompressible to compressible does not contrib-
ute to a large extent in the viscoelastic dissipation. 
However, it can be seen that the dilatational behav-
iour influences the fracture process. At low crack 
tip velocities the volume of the material cannot 
increase due to a positive hydrostatic stress unless 
cavities are formed or existent cavities has grown. 
Whereas at higher crack tip velocities cavity forma-
tion is suppressed at macroscopic length scales.

The investigation of fracture surfaces of non-
crystallising SBR compounds confirms this result 
that in the low crack tip velocity range the surfaces 
are rather rough, at least on the macroscopic scale. 
In contrast, in the high velocity range the fracture 
surfaces are much smoother. We postulated that 
the surface roughness originates from cavitations 
ahead of the crack tip due to a critical hydrostatic 
stress state.

4 FRACTURE SURFACE ANALYSIS

The morphology of the fracture surfaces is a signa-
ture of the complex fracture process on the scale of 
microstructure of the material. Even though rough-
ness varies with different microstructures, it was 
found that roughness scaling properties are com-
parable for many materials. Recent studies reveal 
that these fracture surfaces are anisotropic objects 
that show self-affine scaling characterised by 
different roughness exponents for profiles extracted 
across and along the crack propagation direction, 
see Equation (6) for the definition of the roughness 
exponent. For a wide range of materials including 
glass, mortar, wood, quasi-crystals and metallic 
alloys, roughness exponents determined across and 
along the crack propagation direction are found to 
be ζ ≈ 0.8 and β ≈ 0.6, respectively. However, it was 
found that the fracture surface roughness expo-
nents in glassy ceramics and sandstone are sig-
nificantly lower: ζ ≈ 0.4 and β ≈ 0.5, respectively, 
which put the universality of the higher roughness 
exponents in question. Furthermore, it is found 
that higher roughness exponents describe the scal-
ing behaviour on the length scales of the fracture 
process zone, where a ductile mechanism prevails. 

On length scales that are larger than the size of the 
fracture process zone, the morphology proves to be 
well described by the smaller roughness exponents, 
see (Ponson 2007) and references herein.

As an example, fracture surfaces created by 
unstable crack propagation in an emulsion styrene-
butadiene rubber (SBR) vulcanisate, which was 
reinforced with 50 phr carbon black N330 (Reincke 
2005), were analysed by height-height correlation 
functions (Horst et al.). Fracture surfaces were 
obtained from single edge notched tension speci-
mens (SENT) under quasi-static tensile loading 
at room temperature. The surfaces were scanned 
in several areas with 1024 × 1024 data points by 
means of  an AFM Q-Scope 250 (Quesant Instru-
ment Corporation, USA) using intermitting mode. 
Scanning was carried out in both directions, i.e. 
across and along the crack propagation direction.

Profiles along the crack propagation direction �
e1 and across the crack propagation direction �

e3 
of the scanned surface were analysed by means of 
height-height correlation functions

Ck r h r r h r
r

kk
( ) ( ) ( )Δ = +Δ

1

−  (4)

based on the k-th moment of the height fluctuations

Δ Δ = + Δ −h r h r r h r( ) ( ) ( )  (5)

on a scale Δr. The angular brackets in Equation (4) 
denote the average over the profile coordinate r.

In the case of height fluctuations Δh obeying a 
Gaussian distribution with a self-affine scaling of 
the variance with Δr, the height-height correlation 
functions become

C rk
G

k
k

= Δ
( )/

/
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with ξ being the roughness exponent, which is 
denoted as β and ζ for fracture surface profiles 
along and across the crack propagation direction, 
respectively. The ratio defined by

R
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for the Gaussian case and as a consequence, the 
height-height correlation functions (6) normalised 
by (8) collapse for all k (Santucci et al. 2007). Devi-
ations from the Gaussian distribution of height 
fluctuations result in multi-affine scaling regime, 
i.e. a k-dependent roughness exponent caused 
by vertical jump discontinuities in the roughness 
profile.

Typical results of the height-height correlation 
functions (4) normalised by the Gaussian ratio 
(8) for profiles along and across the crack propa-
gation direction are plotted in Figure 2. It can be 
seen, that there exist a self-affine regime within a 
certain range of length scales. The upper cut-off  
length of the indicated scaling regime is about 
400 nm for profiles extracted along the crack front 
and along the propagation direction. The lower 
cut-off  is about 80 nm for profiles along the crack 
propagation direction, determined by the observed 

deviation of the height fluctuation distribution 
from the Gaussian law that results in a multi-affine 
scaling regime. In the case of the profiles along the 
crack front, height fluctuations obey a Gaussian 
distribution, at least on the scales exceeding that of 
the lateral resolution of the measurements, which 
leads to a self-affine scaling. Jump discontinuities 
can also take place, but their influence is limited to 
the length scales that are smaller than the lateral 
resolution of the measurements. A power law fit 
within the range of self-affine roughness scaling 
for every profile of seven measured topographic 
AFM images leads to the roughness exponents 
ζ = 87 ± 0.03 for profiles across the crack propaga-
tion direction and β = 0.70 ± 0.06 for profiles along 
the crack propagation direction. These values 
determined for the fracture surfaces formed in the 
considered highly filled rubber material as a result 
of fast crack propagation are found to be close to 
those determined for other materials, on the length 
scales where a ductile fracture process prevails, i.e. 
on length scales where the coalescence of voids or 
microcracks is the dominant mechanism. Hence, 
the upper cut-off  length of about 400 nm can be 
used as a rough estimate of the dimension of the 
fracture process zone within the fracture plane.

It is interesting to note that the lower cut-off  
length of about 80 nm for profiles along the crack 
propagation direction is slightly smaller than the 
size of the carbon black aggregate, i.e. 130 nm. 
The large strains in the ligament developed during 
quasistatic loading of the sample before final fast 
crack propagation induce a total breakdown of the 
filler network implying cluster sizes of the order 
of the aggregate size. Consequently, the concentra-
tion of destroyed nanoscopic bridges between filler 
aggregates is quite high due to the high filler con-
tent. The multi-affine scaling regime on the scales 
smaller than 80 nm for profiles along the crack 
propagation direction can therefore be attributed 
to profile overhangs due to voids developed from 
destroyed nanoscopic bridges between different 
filler aggregates.

5 CONCLUSIONS

It was shown that structural modification of an 
elastomeric material modifies the tearing energy in 
such a way that both energy dissipating contribu-
tions outside and within the fracture process zone 
are generally affected. In order to understand espe-
cially the influence of viscoelastic energy dissipa-
tion on the tearing energy and the fracture process, 
steady viscoelastic crack tip fields were calculated 
for various crack tip velocities. It was shown that 
a transition from a rubbery to a glassy mate-
rial behaviour takes place with increasing crack 
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tip velocities. Whereas the increase of tearing 
energy can be ascibed to the shear behaviour, the 
transistion from a (nearly) incompressible to an 
compressible behaviour influence the fracture 
process. Thus, a damage mechansim in form of 
formation, growth and coalescence of cavities is 
favoured in slow crack growth leading to a rougher 
fracture surface compared to the case of fast crack 
propagation, where the damage mechanism is pre-
vented at least on macroscopic length scales.

In order to show how relevant length scales of 
the fracture process can be estimated, a particulate 
fracture surface of an highly filled SBR compound 
was analysed by means of height-height correla-
tion functions. For a specific range of length scales, 
a self-affine regime with characteristic roughness 
exponents along and across the crack propaga-
tion direction was determined. The values of these 
roughness exponents are close to those observed 
for fracture surfaces of non-rubber materials where 
the roughness exponents characterise the scaling 
behaviour at length scales within the fracture proc-
ess zone. Consequently, the upper cut-off  length 
scale of this regime was used to estimate the size 
of the fracture process zone. Furthermore, multi-
scaling features on the smallest length scales indi-
cate steep height discontinuities on the roughness 
profiles. These are the result of poor measurement 
of profile overhangs caused by the damage proc-
ess. The corresponding range of length scales up to 
lenght scales comparable to the size of filler aggre-
gates give further insight into the fracture process 
in highly filled elastomeric compounds.
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1 INTRODUCTION

Fracture mechanical investigations are of special 
importance for rubber materials. In order to pre-
dict the safety and durability of a component by 
a finite element simulation, the fracture mechani-
cal sensitivity as well as the potential crack path 
have to be investigated. Common approaches to 
simulate the propagation of cracks include the 
application of softening material formulations to 
continuum elements leading to a smeared repre-
sentation of the crack path or the application of 
adaptive crack propagation algorithms. However, 
these strategies are not able to represent the proc-
ess of crack growth within the process zone. In 
contrast, the implementation of cohesive surfaces 
between the continuum finite elements in order to 
model discrete cracks provides a mesh independent 
framework to represent failure processes.

First discrete crack models on basis of cohesive 
finite elements were proposed by Dugdale (1960), 
who investigated steel sheets, and by Barenblatt 
(1962), who conducted theoretical studies on an 
atomistic scale. First numerical implementations of 
cohesive process zones by Hillerborg et al. (1976) 
featured a staggered substitution of the symmet-
ric supports with equilibrium forces related to the 
crack opening displacement to simulate the local-
ized failure of the structure. Needleman (1987) 
introduced a formulation with coincident nodal 
points in the initial configuration and stated the 
now common representation of the cohesive con-
stitutive relations in terms of a traction separation 
law providing so a first representation of a crack 
and interface delamination in the framework of the 

finite element method. This separate description 
of the cohesive zone and the spatial bulk material, 
which is represented by stress-strain-dependencies, 
allows to account for a realistic modelling of the 
crack opening process zone.

Since the cohesive elements can only be located 
at the bulk elements’ boundaries, a priori consid-
ered cohesive surfaces are usually integrated in the 
original finite element mesh. This conventional 
method is well suited if  the crack path is known in 
advance, e.g. in case of the delamination of com-
posite materials or glued structures. For computa-
tions with unknown crack paths, cohesive surfaces 
must be provided between all internal continuum 
element boundaries, as shown in Xu & Needleman 
(1994) as well as in Tijssens et al. (2000). The second 
technique suffers from two main disadvantages: 
Firstly, it leads to an exorbitant increase of the sys-
tem’s degrees of freedom and, secondly, the effec-
tive stiffness of the structure is seriously decreased. 
In case of a one-dimensional analysis, the effective 
stiffness yields

E E
E

K h E
E K

E n Keff
e e

= −
+ /

=
+0

0

0 0

0 0

0 01
 (1)

depending on the bulk material’s modulus E0, the 
initial stiffness of the traction separation law K0, 
and the uniform cohesive element spacing he or the 
number of surfaces ne, respectively.

In this contribution, a new approach is presented 
which does not rely on an initial implementation 
of cohesive surfaces but uses instead an adaptive 
insertion of these elements in dependence on a 
crack growth criterion.

Discrete modelling of fracture processes in rubber material

Christiane Morgner, Michael Kaliske & Gordon Geißler
Institut für Statik und Dynamik der Tragwerke, Technische Universität Dresden, Germany

ABSTRACT: The consideration of the fracture mechanical sensitivity and the failure process is of 
substantial significance in order to gain reliable simulation results with regard to the safety and durabil-
ity of rubber components. A novel adaptive implementation of the cohesive finite element method is 
presented which allows a discrete modelling of the fracture process by inserting cohesive elements into 
the initial discretization of the structure depending on a crack growth criterion. Instead of the stress-
strain-dependencies used for the bulk material, the behaviour of the opening crack faces is described by 
an initially rigid traction-separation-law. The new adaptive modification of node coordinates and element 
boundaries on basis of the anticipated crack propagation direction suggested by the failure criterion 
allows furthermore the representation of arbitrary crack patterns. It is shown how different crack growth 
criteria affect the predicted crack path.
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2 THE INITIALLY RIGID COHESIVE 
ZONE MODEL

The conventional method of a priori considered 
cohesive elements is based on an initially elastic 
traction separation law, as shown in Figure 1a). 
Due to the failure criterion as an inherent compo-
nent of the cohesive phase, it is also referred to as 
an intrinsic model (cf. Kubair & Geubelle (2003)).

In contrast, the proposed approach is based 
on an initially rigid traction separation law as 
shown in Figure 1b). Such initially rigid descrip-
tions of the cohesive constitutive relations have 
been used for example by Hillerborg et al. (1976) 
or Carpinteri & Colombo (1989) who proposed an 
algorithm to model the prescribed state of a certain 
crack extension with the help of an equilibrium 
iteration based on the crack tip opening δ and the 
corresponding cohesive forces Fc. The first applica-
tion of an initially rigid traction separation law in 
the context of a general finite element framework 
was presendet by Camacho & Ortiz (1996). Recent 
publications covering three-dimensional investiga-
tions (Pandolfi & Ortiz (2002)) as well as several 
applications (e.g. Pandolfi et al. (1999), Ruiz et al. 
(2001)) are so far limited to short time dynamics in 
an explicit time integration scheme.

Since in case of most real fracture processes the 
crack will evolve slowly and stably, the initially rigid 
description of the cohesive zones was therefore 
derived and implemented for a quasi-static implicit 
finite element code. While procedures basing on an 
initially elastic traction separation law involve only 
a cohesive element formulation at an appropriate 
programming interface, the initially rigid approach 
requires an additional consistent modification of 
the global data structure in every time step asso-
ciated with crack growth. Based on the bound-
ary representation update procedure proposed by 
Pandolfi & Ortiz (2002) for tetrahedral elements 
with quadratic interpolation for explicit dynami-
cal applications, a model adaptive discrete fracture 
simulation on basis of hexahedron elements with 
linear interpolation was derived for an implicit 
finite element framework. Following a constitutive 

analysis of the structure, where the non-linear 
system of equations has to be solved by a Newton 
iteration accounting for the residual vector and 
the stiffness matrix, a modification of the finite 
element system depending on the extrinsic crack 
growth criterion is carried out.

If  the value of the particular failure criterion (cf. 
Section 3) at one element point exceeds the criti-
cal value (encircled nodes in Figure 2a)), a separate 
boundary update routine is applied. According 
to the anticipated crack propagation direction 
suggested by the failure criterion, the relevant 
corresponding surface is selected for further sys-
tem modification. In this surface, all nodes which 
exceed the critical value are duplicated and new 
cohesive faces are created between them (Fig. 2b)). 
The nodal connectivity is modified for one of the 
two associated volume elements. In further crack 
propagation steps, an additional modification of 
the nodal connectivity for the preceding cohesive 
elements is required (Fig. 2c)). In order to ensure 
robustness and convergence of the proposed solu-
tion procedure, the equilibrium state of a dupli-
cated nodal point before and after the boundary 
update has to be preserved, i.e. the initial traction 
in the cohesive elements has to adopt the forces 
released by the separation of the bulk elements. 
Considering the equilibrium state of the assembled 
structure

K u K u 0ji
E

i ji
E

i
1 2

1 2+ = + =F F  (2)

where ui represent the current deformations and Kji 
the corresponding element stiffness contributions, 
the opposite forces F1 and F2 have to be mapped by 
an affine initial traction of the particular traction 
separation law. Detailed information regarding 
the so-called time continuity task of initially rigid 
implementations can be found in the publications 
of Papoulia & Vavasis (2003) and Sam et al. (2005) 
where the demand for an initial stress state result-
ing in individual parameters for each cohesive 
softening function is thoroughly discussed. The 
correct initial traction vector T can be computed 
from the equation of the resultant nodal forces of 
the volume and the cohesive element at the time of 
node duplication, which is given as
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Figure 1. Comparison of a) initially elastic and b) ini-
tially rigid traction separation law.
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Figure 2. Adaptive implementation of cohesive 
elements.
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F T u
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c ji
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c
N= = = ∂

∂∫ ∫Γ Ω
Γ Ωd dK u σ  (3)

without consideration of inertia effects. The reac-
tion force of the volume element can be computed 
from the decomposed stiffness K and the displace-
ment u of  node i, respectively, from the integration 
over the element domain Ω. The resultant mate-
rial description of one cohesive surface consists 
of different material models for each node. In this 
context, a numerical integration scheme of the 
Newton-Cotes type for the element matrix compu-
tation is used.

3 CRACK PROPAGATION DIRECTION

The discrete modelling of crack growth under real-
istic loading conditions requires a crack growth 
criterion which provides information on the crack 
propagation itself  as well as on the direction of 
crack growth. While the use of crack intensity fac-
tors is limited to problems with specified geometry, 
loading and crack configuration, the application 
of energy or stress criteria offers the possibility 
to model arbitrary crack propagation. In order to 
evaluate the capability of stress criteria to provide 
reliable information regarding the crack propaga-
tion direction, an averaged stress criterion and a 
criterion of averaged principal stress directions are 
examined.

3.1 Crack growth criteria

The averaged principal stress criterion (e.g. Wells & 
Sluys (2001) and Dumstorff  & Meschke (2004)) 
allows a realistic evaluation of the stress field 
around the crack tip by analysing not only the 
stress at the crack tip but in the crack tip vicinity. 
In order to average the stresses around the crack 
tip, a weight function is used

ij
ijR L

R L
σ

ω σ

ω
=

,( )
,( )

.
∑
∑  (4)

The anticipated crack propagation direction can 
be determined as the normal vector of the prin-
cipal stress direction calculated from the averaged 
stresses.

In contrast, the averaged principal stress direc-
tion criterion is based on an averaging of the field 
of the prinicipal stress eigenvectors in the vicinity 
of the crack tip.

The weight function ω (R, L) can be for example 
of the Gaussian type (e.g. Wells & Sluys (2001) and 
Dumstorff  & Meschke (2004))

ω
π

R L
L

R
L

,( ) =
( )

−
⎛
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⎠⎟/
1

2 23 2 3

2

2exp  (5)

or linear

ω R L
R
L

R L

R L
,( ) =

− + <

≥

⎧
⎨
⎪

⎩⎪

1

0

for

for  
(6)

depending on the distance from the crack tip R, 
and the form parameter L. Figures 3 and 4 show 
the influence of both parameters on the area 
around the crack tip affected by averaging for both 
types of weight function.

3.2 Adaptive mesh modification

In order to represent the arbitrary crack paths 
within the finite element model, an adaptive 
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Figure 3. Gaussian weight function.
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modification of the initial disretization with respect 
to the location of nodes and element boundaries 
on basis of the anticipated crack propagation 
direction suggested by the failure criterion is addi-
tionally required. The relocation of the new crack 
tip dx from the original to the modified nodal 
coordinates x and x′, respectively, is obtained from 
the interpretation of the crack growth criterion 
(Fig. 5). The remaining mesh is then modified sub-
sequently for each crack propagation step. Consid-
ering constant nodal locations in normal direction, 
the external boundaries of the numerical model as 
well as restrictions regarding the shape of the con-
tinuum elements are taken into account by weight 
functions Nx and Ny set for each individual reloca-
tion of a node in x- and y-direction depending on 
the distance from the crack tip.

4 EXAMPLES

4.1 Rubber plate

The application of  the averaged stress criterion 
is shown for a square rubber plate under tension 
and shear loading leading to Mode I and Mode II 
fracture, respectively. The plate features an initial 
notch with a horizontal orientation starting at the 
left edge and ending with a sharp crack tip at the 
midpoint of  the specimen, which has a uniform 
side length of  l = 1 mm. The geometry and the 
FE mesh are shown in Figure 6. The Neo-Hooke 
material has a Young’s modulus of  E = 2 MPa 
and a Poisson’s ratio of  ν = 0.49. Tension open-
ing loading conditions are realised by vertical dis-
placements (Fig. 7) and for the pure shear mode 
by a horizontal load pair (Fig. 8). The system 
is fixed in the third direction to represent plane 
strain boundary conditions. In order to assess the 
influence of  the weight function on the predicted 
crack propagation direction, different values of 
the parameter L are investigated for the Gaussian 
weight function.

For Mode I, all values of L lead to straight crack 
paths in accordance with the anticipated Mode I 
crack direction (Fig. 7).

In case of Mode II, all investigated values of L 
yield reasonable results which correspond to the 
anticipated crack path of 45° under pure shear 
loading. Figure 8 shows that the simulated crack 
paths for L ≤ 0,075 mm deviate from the antici-
pated direction but that the consideration of a 
sufficient large part of the stress field around the 
crack tip will lead to good accordance. The same 
effects could also be observed for linear weighting 
functions and for different variations of the finite 
element discretization.

Figure 5. Anticipated crack propagation angle α.

Figure 6. Rubber plate: Geometry and mesh.

L=0.0150
L=0.0750
L=0.1500
L=0.2000
L=0.4000

Figure 7. Rubber plate, simulated crack paths for Mode I.
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4.2 L-panel specimen

In order to assess the reliability of  the proposed 
mesh adaptive cohesive finite element model for 
arbitrary crack growth, a L-panel specimen is 
studied in addition to the rubber plate. On the 
basis of  the experiments of  Winkler (2001), who 
investigated a concrete L-panel specimen, the 
proposed method is validated with regard to the 
predicted crack shape as well as the comparison 
of  the experimental and the numerical global 
response of  the system during ongoing crack 
propagation.

The dimensions of  the experimental setup 
and the applied boundary conditions are shown 
in Figure 9. The lower horizontal edge is fixed 
by a compact reinforcement construction within 
the concrete. This reinforcement construction is 
welded on a massive steel plate with a thickness 
of  50 mm to eliminate deformation effects from 
the specimen’s support. The vertical load at the 
horizontal leg is applied uniformly at the lower 
horizontal surface with a distance of  30 mm from 
the right vertical end. The applied load-control 
is changed to a displacement-driven experiment, 
shortly before the maximum load is reached. The 
global response of  the system until complete fail-
ure is characterised by a vertical displacement 
value over the applied load. The vertical displace-
ment is measured at the position indicated in 
Figure 9.

The average values of the characteristic material 
parameters are given by a Young’s modulus of 
E = 25850 MPa and a Poisson’s ratio of  ν = 0.18. 
The axial tensile strength of  the concrete material 
has a value of  ft = 2.70 MPa and, for the fracture 
energy, a value of  Gc = Γ0 = 0.09 N/mm is deter-
mined experimentally. A structured mesh with 
eight node linear displacement bulk elements is 
used for the finite element discretization. The 
finite element model depicted in Figure 10 con-
sists of  a regular part with 20 × 20 elements in 
the upper left corner (zone A). The resultant ele-
ment size is lm = 12.5 mm in the zone of  expected 
crack propagation. For the remaining area, a 
structured mesh with a constant size of  the bulk 
elements is defined (zone B). For the lower left 
part, a discretization with a coarse mesh at the 
support and a finer mesh in the upper region 
is used to provide smaller elements close to the 

L=0.0150
L=0.0750
L=0.1500
L=0.2000
L=0.4000

Figure 8. Rubber plate, simulated crack paths for 
Mode II.

measurements in [mm]ground plate

se
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A
b = 100 mm

2020210
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0
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250250
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0
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Figure 9. L-panel specimen, experimental setup.

A

A B C

D

Figure 10. L-panel specimen, finite element model.
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zone of  crack propagation (zone D). Along the 
constant thickness of  b = 100 mm, one element 
is used.

The specimen fails in the test with a single 
crack starting at the internal corner and moving 
upwards with a decreasing gradient. The gray 
lines in Figure 11 show the experimental results 
of  both the front and the back surface for three 
investigations. The black line represents the result 
of  the predicted crack path of  the numerical sim-
ulation for an applied vertical displacement of 
uν = 0.4 mm and shows a good agreement with 
the experimental results. The computed crack is 
found mainly within the area of  the experimental 
investigations. The application of  the mesh adap-
tive algorithm results in the final discretization of 
Figure 12.

The relationship between the applied verti-
cal load and a characteristic displacement value 
is used to describe the global response of  the 
fracture specimen. The load F is depicted with 
respect to the vertical displacement uν at the 

position of  load application (measured by WTK 1 
as depicted in Figure 9). The load-displacement 
dependencies for the experimental investigation 
of  three identical panels is shown in the diagram 
of  Figure 13 as dotted lines. In oder to evaluate 
the computational model as well as the speci-
fied material parameters, a computation without 
any crack consideration was carried out. It was 
observed that the computed initial stiffness is 
not able to represent the elastic behaviour of  the 
experiment and that the reaction forces for the 
early deformation states are too large. The differ-
ence between the determined Young’s modulus 
and the value of  the fracture specimen or a small 
rigid body motion with resultant larger deforma-
tion values are seen as possible reason. Apart 
from the initial deviation, the numerical simula-
tion agree well with the observed characteristics 
of  the experiment.

5 CONCLUSIONS

A unique implementation of the cohesive zone 
model within the finite element method was pre-
sented. Based on an adaptive system modification 
and the evaluation of the preferred crack direc-
tion, the model also allows the representation of 
arbitrary curvilinear crack propagation independ-
ent of the initial discretization. The simulations 
of a rubber plate and of an L-panel specimen in 
comparison with experimental results validated 
the applicability of the proposed method to clas-
sical fracture modes as well as to realistic loading 
conditions.
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Figure 11. L-panel specimen, experimental and com-
puted crack path.

Figure 12. L-panel specimen, final mesh configuration.
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The influence of the test properties on dynamic crack 
propagation in filled rubbers by simultaneous tensile-
and pure-shear-mode testing
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ABSTRACT:  Crack growth characteristics of rubber materials are important for determination of 
strength and durability of the materials. In classical studies of fracture mechanics of rubber, it was featured 
tensile- and prominently pure-shear-test pieces. In this paper a fatigue crack growth of rubber materials 
is determined by using a method of simultaneous Tensile- and Pure-shear-Mode Testing. Measurement 
were made in order to characterize the fatigue crack growth behavior as a function of the tearing energy, 
determined by strain energy density in test piece of tensile- and pure-shear geometry. Measurements were 
made to observe the effects of loading frequency and amplitude. Comparison of the fatigue crack growth 
behavior between tensile- and pure-shear-test pieces was observed for verification of experimental data 
measured by simultaneous tensile- and pure-shear-mode testing.

1 INTRODUCTION

An important criterion for determination of 
dynamically loaded rubber materials is their resist-
ance to fatigue crack growth. The problem of crack 
growth in rubber materials was first studied by work 
of Rivlin & Thomas (1953) and they determined a 
critical value of the tearing energy. It was demon-
strated (Lake 1983, Lake 1987), that the critical tear-
ing energy is independent of the geometry of test 
piece and can be formulated as a material property.

The important parameters are also test condi-
tions such as loading method, load mode (sine-, 
triangle-waveform, pulse-loading), frequency, tem-
perature and amplitude. The loading methods are 
the most important tensile- and pure-shear-method. 
With the pure-shear-method it is amenable to a 
simple fracture mechanics analysis provided the 
crack length c is long relative to its high H (distance 
between the clamps in the undeformed state). With 
the data from the pure-shear-method, it is possible 
exactly to describe the fatigue behaviours of rubber 
materials. The geometry of test piece is the base for 
the selecting of test method. For the tensile-mode, it 
is required the test piece with the geometry H >> W 
(high >> width) (Fig. 1). The pure-shear-test piece 
consists of a thin, rectangular strip of rubber held 
by rigid clamps along its long edges. The require-
ment from the geometry criterion is H << W for the 
pure-shear-test piece (Fig. 2).

Measurements used in the study was a new 
method for analysis of dynamic crack propaga-
tion in filled rubber by simultaneous tensile- and 
pure-shear-mode testing based on a theoretical 
approach of fracture mechanic of rubber.

Figure 1. Tensile test piece.

Figure 2. Pure-shear test piece.
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In the present work the crack growth behavior 
and tearing energy in pure-shear-test pieces in 
comparison with tensile-test pieces were investi-
gated. Measurements were made to observe the 
effects of  different loading conditions (ampli-
tude, frequency) to demonstrate the simultaneous 
testing of  two different methods and comparison 
of  the different theoretical background.

2 THEORETICAL BACKGROUND

2.1 Tearing energy

Tearing energy is defined as the energy released 
per unit area of crack surface growth (Rivlin & 
Thomas 1953)
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where T = tearing energy; W = elastic energy stored 
in specimen; A = area of fracture surface of the 
crack; c = crack length; t = thickness of sample; 
l = sample length.

The tearing energy (Eq. (1)) represents the energy 
input at which catastrophically progressive crack 
growth that is initiated. Experimental measurements 
show that, when crack propagation is expressed in 
terms of the tearing energy, the relation is independent 
of specimen type and geometry. Rivlin and Thomas 
(1953) gave the expression for tearing energy for a test 
pieces with tensile- and pure-shear-geometry.

2.2 Tearing energy for tensile-test piece

T k w ct = ⋅ ⋅ ⋅2  (2)

where w = strain energy density per unit volume; 
c = crack length; k = strain-dependent term.

An approximate relation for k was determined 
by Lake (1995)
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where λ = extension ratio; ε = strain, and thus, the 
Eq. (2) takes the form
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The strain energy density term w can be deter-
mined from measurement of the tensile stress-
strain curve, where the area under the curve is the 
strain energy density.

2.3 Tearing energy for pure-shear-test piece

The next type of test piece that was used in this 
work is pure-shear-specimen (Fig. 3).

Pure-shear-test piece is characterized as fol-
lowing: crack c is sufficiently long and wide to 
high ratio that is sufficiently great. The specimen 
could be divided into different regions. Region A is 
unstrained and region B is in pure-shear. Further-
more there is an area of complicated strain around 
the crack tip in region C, and a region of edge 
effect shown as D. If  the maximum cyclic defor-
mation remains constant and the crack length is 
increased by dc, the region of complicated strain 
C moves along by dc, but the pattern of strain, 
and hence the energy stored, remains unaltered. 
The net effect is, therefore, to decrease region B 
and increase region C by a volume H D dc⋅ ⋅  and 
thus decrease the total elastic energy w H D dc⋅ ⋅ ⋅ , 
where w is the elastic energy density in the pure-
shear region B. The most important equitation for 
characterization of pure-shear mode is:

T w Hp = ⋅  (5)

The value w can be found from the strain in the 
pure-shear region and knowledge of the pure-shear 
stress versus strain relationship.

2.4 Determination of fatigue crack propagation

Fatigue crack growth behavior under the applied 
dynamic stress is expressed as the length of crack 
growth per each repeating cycle as a function of 
tearing energy

dc
dn

f T B Tt p= = ⋅( ) ,
β  (6)

where the value of dc/dn is the rate of fatigue crack 
growth and B and β are polymer-specific constants 
(Lake 1983). If  the cut length c changes only slightly, 
the quantity actually determining crack growth in 
the equation is the elastically stored energy Tt in 
tensile- and Tp in pure-shear-test piece.

Figure 3. Model of strained Pure-shear-test piece.
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3 EXPERIMENTS

3.1 Realisation of crack propagation 
measurement by simultaneous tensile- 
and pure-shear-mode testing

Figure 4 show a schematic diagram of  a machine 
for investigating the fatigue crack growth of 
rubber materials by simultaneous tensile- and 
pure-shear-mode testing. It is possible to meas-
ure four tensile- and simultaneous three pure-
shear-test pieces. Each bottom clamp attachment 
of  samples is fixed to the traverse. The traverse 
is connected to the piston, whereby dynamically 
powers a hydropulser. The hydropulser is driven 
by a frequency sweep generator through sinu-
soidal waveform, within the frequency range of 
0,1–20 Hz. Each upper clamp attachment of  sam-
ples is fixed to the load cell and its correspond-
ing sample clamp attachment is connected to a 
separate computer-controlled stepping motor to 
ensure constant pre-stress during the whole time 
of  testing.

The crack growth of each rubber test piece is 
monitored through an image process system with 
high-speed CCD monochrome camera mounted 
on the linear motion axis system. The camera 
moves along the x-axis from test piece to test piece 
and takes a picture of involved sample. After that 
the picture has been digitalized and then the soft-
ware localizes the crack position and determines 
the crack length.

3.2 Preparation of rubber test pieces 
and conditions of fatigue crack 
growth measurement

For measurement, SBR rubber material was filled 
with 50 phr waste rubber powder as well as silica 
and carbon black. The material was vulcanised at 
180°C and 190 bar. The vulcanisation time was 

obtained using Rheometer AR 2000 ex and assessed 
at 30 min. Fatigue tests were conducted on three 
types of tensile- and three types of pure-shear-test 
pieces.

The test pieces were subjected to isolated cham-
ber of test machine and tested with three different 
test conditions.

1. The first measurement was done for analyses 
of influence of height of pure-shear-test piece 
under the identical loading amplitude and 
frequency. The amplitude of test pieces was 
10 mm. Thus, the extension ratio varied from 
1.23 to 1.67 for test pieces. The frequency was 
10 Hz.

2. The second measurement was done by identical 
extension ratio of 1.67 for test pieces 1 and 2 
with the frequency of 10 Hz.

3. The third measurement was done by identical 
extension ratio of 1.67 for test pieces No. 2 and 
reduced frequency of 5 Hz.

The waveform of  the fatigue tests for all load-
ing conditions was sinusoidal. Tests were con-
ducted at room temperature and at atmospheric 
pressure.

4 RESULTS

4.1 Influence of different extension ratio
on crack growth

Figure 5 shows the dynamic crack growth curve 
for test pieces of various high of geometry tested 
under the identical loading amplitude. Thus, the 
each of test piece was loaded under different exten-
sion ratio (1.23–1.67). As it can be expected, the 
higher the extension ratio uses, the higher the crack 
growth obtain. Thus, all of test pieces displayed 
in this plot follow different trend. With the lower 
extension ratio, the curves are characterized by 
trends, where the crack lengths are slow. Compar-
ing tensile- and pure-shear-test pieces, the trends 
are roughly the same. Because of the extension 

Figure 4. Schematic diagram of the test machine: 
1-frequency generator; 2-hydropulser; 3-CCD mono-
chrome camera; 4-isolated chamber; 5-pure-shear test 
piece; 6-tensile test piece; 7-clamps; 8-load cells; 9-stepper 
motors; 10-PC1; 11-PC2; 12-control unit 2; 13-control 
unit 1.

Table 1. Test pieces geometry.

Type of
test piece

Height
mm

Width
mm

Thickness
mm

Crack length
mm

Tensile 1 15.0 15.0 1.6 2.5

Tensile 2 25.0 15.0 1.6 2.5

Tensile 3 43.0 15.0 1.6 2.5

Pure-shear 1 15.0 120.0 1.6 20.0

Pure-shear 2 25.0 120.0 1.6 20.0

Pure-shear 3 43.0 120.0 1.6 20.0
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ratio of similarity, the same trend can be measured 
in the range of the crack growth for width of dif-
ferent test pieces.

The crack growth rate dc/dn of  tensile- and 
pure-shear-test pieces for different extension ratio 
are plotted as a function of the tearing energy Tt,p 
using a log-log scale. The experimental results are 
shown in Figure 6. Over the range of tearing energy 
the range of crack propagation increased. These 
results are dependent upon the power law as indi-
cated in Eq. (6). The lower value of the exponent 
β for lower extension ratio denotes more resistance 
to crack growth at a given tearing energy.

4.2 Identical extension ratio for all test pieces

Figure 7, the dynamic crack growth plot for test 
pieces strained under the identical extension ratio 
of 1.67, shows in comparison with Figure 5. As 
it can be expected, all test pieces displayed in this 
plot follow roughly the same trend.

The cracks growth rates dc/dn of  tensile- and 
pure-shear-test pieces for identical extension ratio, 
plotted as a function of the tearing energy Tt,p 
in a log-log scale show roughly identical values 
(Figure 8). The differences depend on complicated 

rubber matrix consisting of rubber and waster rub-
ber powder.

4.3 Influence of loading frequency 
on crack growth

In Figure 9, it can be seen the experimental results 
showed the dynamic crack growth curve as the effect 
of variable frequency. The effect of frequency up 
to 10 Hz on the crack growth behavior was evident 

Figure 5. Dynamic crack growth curve for test pieces at 
various extension ratio.

Figure 6. Crack growth rate as a function of tearing 
energy for tensile- and pure-shear-test pieces at various 
extension ratio.

Figure 7. Dynamic crack growth curve for test pieces at 
identical extension ratio.

Figure 8. Crack growth rate as a function of tearing 
energy for tensile- and pure-shear-test pieces at identical 
extension ratio.

Figure 9. Dynamic crack growth curve for test pieces at 
various frequency and identical extension ratio.
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Figure 10. Crack growth rate as a function of tearing 
energy for tensile- and pure-shear-test pieces at various 
frequency and identical extension ratio.

but it is not significant. As the frequency increased 
from 5 to 10 Hz, the rate of crack growth increased 
to about 29% of the rate at a given tearing energy 
for tensile- and pure-shear-test piece.

5 CONCLUSION

A study of the fatigue behavior of filled rubber by 
simultaneous tensile- and pure-shear-mode test-
ing was undertaken using a new concept of test-
ing machine Tear Fatigue Analyzers. An advanced 
test method was successfully applied to determine 
fatigue crack growth characteristics by variable test 
conditions (extension ratio, frequency). The test 
method makes it possible to measure simultaneous 
two different modes and to observe in situ the 
length of the crack growth.

Some measurements were made of fatigue crack 
growth for simultaneous tested tensile- and pure-
shear-test pieces by different loading conditions. The 
fatigue data were presented as power law relations 
between the crack growth rate and tearing energy. 
The experimental data verified the theoretical back-
ground for the determination of crack propaga-
tion in filled rubber by simultaneous tensile- and 
pure-shear-mode testing.
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1 INTRODUCTION

Examination of Harris’ results (1987), and others 
has led to the suggestion that a dissipative proc-
ess is responsible for both the amplitude effect and 
the hysteresis in filled rubber (Ahmadi, Gough, 
Muhr & Thomas 1999 and Gough 2000). There-
fore any generalized 3 dimensional model for filled 
rubber should exhibit a dissipative process that fol-
lows the “retraction rule” observed during  Harris’ 
uniaxial simple shear tests. The exact nature of 
the micro-mechanical processes responsible for 
this dissipative behavior in filled rubber is not well 
understood. However, in the absence of this knowl-
edge the computational mechanics community can 
either model filled rubber using a phenomenologi-
cal approach or use models based on physical proc-
esses that exhibit such behavior. Plasticity models 
are one possible candidate material model that do 
exhibit a “retraction rule” which may provide an 
approach to modeling the phenomena studied by 
Fletcher & Gent, Payne and Harris mentioned 
above. The two major advantages of using such 
models are a) the existence of extensive scien-
tific theories, developed primarily for steel indus-
try, in the form of plasticity literature and b) the 

Appraisal of nonlinear plasticity models for filled rubber using 
benchmark tests

H.R. Ahmadi & A.H. Muhr
Tun Abdul Razak Research Centre-TARRC, UK

T. Dalrymple
SIMULIA, Great Lakes Region, USA

S. Govindarajan
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ABSTRACT: The paper describes the desired hardening rule for a proposed viscoplastic model for 
filled rubber. The suitability of plasticity models currently available in a commercial FE code for this 
purpose is then examined. It is concluded that a recently implemented Multilinear Kinematic Hardening 
Plasticity (MKHP) material model is capable of providing the desired Masing rule for filled rubber and is 
indistinguishable from a previously proposed overlay approach by Austrell, leading to a significant reduc-
tion in computation time. In addition, results are presented for the overlaid model where a newly offered 
finite strain plasticity model is used to calculate the response of hyperelastic-perfectly-plastic materials. 
The model uses multiplicative decomposition of deformation gradient and has been used to show that 
finite yield strains may also be used in the viscoplastic model with additive decomposition after all without 
significant problem.

availability of a large number of plasticity material 
models in commercial FE codes.

The aim of this paper is to examine plasticity 
models currently available in commercial codes 
such as Abaqus, and establish their merits and pos-
sible limitations for modeling the inelastic behavior 
of filled rubber.

2 BACKGROUND

In previous publications, (Ahmadi, Kingston & 
Muhr, 2008 and Ahmadi & Muhr, 2007), a sim-
ple “viscoplastic” model was proposed, capable of 
implementation in existing commercial FEA pack-
ages, with the scope to capture those aspects of 
the stress-strain behaviour of filled rubber that are 
most significant in engineering application, in par-
ticular the Payne or Fletcher-Gent effect. Attention 
was given to assembling the model from separately 
identified physical contributions, so that not only 
are the number of parameters small but also they 
may be at least semi-quantitatively related to the 
formulation of the elastomer. It was confirmed that 
the proposed “viscoplastic” approach captured the 
essence of the behaviour when examined in several 
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modes of deformation and for two materials, one 
filled NR and the other filled SBR.

However, the hardening rules for the plastic-
ity models available in commercial packages, 
required for predicting the elastoplastic contribu-
tion to the stress response, appear to be unsuit-
able for producing the unloading stress-strain 
paths observed with filled rubber. This was over-
come by decomposing the elastoplastic compo-
nent into a number of  elastic-perfectly-plastic 
components in parallel, each represented as a 
separate FE mesh in an overlay (Austrell, 2001). 
Although this approach has been successful, it 
led to an increase in the computation time com-
pared to using a single plasticity model with an 
appropriate hardening rule.

3 CHARACTERISTICS OF THE 
BASIC MODEL

The basic model, consisting of hyperelastic, viscoe-
lastic and elastoplastic contributions in parallel, is 
described in Ahmadi, Kingston & Muhr (2005, 
2008), where it was also shown that the model is 
cast in a suitably general form for 3-D implemen-
tation in finite element analysis. According to the 
model the shear stress τ is given by:

τ τ τ τ= + +he ep ve  (1)

where the subscripts he, ep and ve stand for hyper-
elastic, viscoelastic and elastoplastic respectively.

For filled rubber the elastoplastic stress contri-
bution is considered to be governed by two curves 
(Ahmadi & Muhr, 2007)- see Figure 1.

From the knowledge of the loading curve, the 
retraction curves can be constructed using dilation 
transformation with a magnification factor of two 
about the origin. This is known as Masing approxi-
mation (Masing, 1926).

4 PLASTICITY MODELS

4.1 Elastic-perfectly-plastic models

A number of simulations were carried out to pre-
dict the response of a unit length cube modeled 
using one C3D8 element subjected to sinusoidal 
tensile-compressive deformation at 1 Hz. The 
material model was elastic-perfectly-plastic with 
Young’s modulus 3.655 MPa and Poisson’s ratio 
0.49999. The tensile yield strain was varied for each 
run over a range of 0.0029 to 0.29. Table 1 shows 
the comparison between the set yield strain and 
true stress values in tension and those obtained by 
simulation.

The simulated hysteresis loops are also shown 
in Figure 2 for four dynamic strain amplitudes. 
The first loading and retraction curves depart from 
linearity as the yield strain is increased. Austrell 
(1997) reported theory for such behaviour. This 
departure from linearity is also shown in Table 1.

Further simulations were carried out to pre-
dict the response of  a unit length 2D plane strain 
element to sinusoidal simple shear deformation 
at 1 Hz.

Figure 1. Schematic diagram showing hysteresis loop 
for a “Viscoplastic” material having a loading curve of 
τepL (γ). The relationship between the retraction curves 
τepL (γ) and loading curve is also shown.

Figure 2. Hysteresis loops for tension-compression 
response of elastic-perfectly-plastic material model. Yield 
strains set at 8.7, 14.5, 20.3 and 29%, elastic modulus set 
at 3.665 MPa and Poisson’s ratio of 0.49999.

Table 1. Comparison between the set yield true stress 
and engineering strain in tension and those found from a 
simulation using a single element cube.

Set Simulated Set Simulated

σy σy εy εy

0.0106 0.0106 0.0029 0.0030
0.0212 0.0212 0.0058 0.0060
0.1060 0.1060 0.0290 0.0296
0.2120 0.2120 0.0580 0.0598
0.3180 0.3180 0.0870 0.0909
0.5300 0.5300 0.1450 0.1575
0.7420 0.7420 0.2030 0.2256
0.8480 0.8480 0.2320 0.2639
1.0600 1.0600 0.2900 0.3365
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The material model was similar to that used 
for the tensile simulations. Table 2 shows the cor-
responding yield stress and strain response of the 
material in simple shear at a defined tensile yield 
stress and strain value. The theoretical values in 
the table are the relationship between the tensile 
and shear yield stress and strains using infinitesi-
mal elasticity theory (Ahmadi & Muhr, 2008). The 
basic assumption here is that yield occurs when the 
distortional strain energy density reaches a criti-
cal value. For an incompressible material with an 
infinitesimal tensile yield strain εy this results in a 
yield strain in simple shear of: τy = σy /√3. It appears 
that the agreement between infinitesimal theory 
predictions and the simulated results is reasonable 
up to tensile strains of 14.5%, corresponding to 
yield strains in shear of 25%. The last column of 
table 2 gives the post yield slope of shear stress-
strain curve. It is interesting that the slope begins to 
become negative above 12% yield strain in shear.

Figure 3 shows the hysteresis loops for the cyclic 
simple shear deformations for values of tensile yield 

strains of 2.9, 5.8, 14.5 and 29%, corresponding to 
yield strains in shear at 5, 10, 25 and 50%. The larg-
est loop for the 50% yield strain case clearly shows 
the negative slope beyond yield and exhibits non-
closed loop not expected from such a model.

4.2 Overlay of elastic-perfectly-plastic models

Three simulations were carried out on a single ele-
ment plane strain model. In the first simulation 
the material model was an elastic-perfectly-plastic 
material with Young Modulus of 1.232 MPa and 
tensile yield stress of 0.0724 giving a yield strain of 
0.0589. These values are appropriate to the elastic-
perfectly-plastic part of a viscoplastic model for a 
filled natural rubber vulcanizate. The model was 
subjected to cyclic deformation in shear of strain 
amplitude of 0.12. The second simulation was 
identical to the first but the material model had a 
Young’s Modulus of 2.6493 MPa and tensile yield 
stress of 0.02527 giving a yield strain of 0.0095. 
The third simulation involved overlaying these 
two models as described in Austrell (2001) and 
Ahmadi, Kingston & Muhr (2008). The simulated 
shear response of the overlaid model, described in 
section 4.2, when subjected to 1¼ cycles of dynamic 
strain amplitude 0.1, is shown in Figure 4.

Table 3 shows the dynamic properties of the three 
models described in Figure 4 analy-zed using the 
Secant method (Ahmadi & Muhr 1997). The data 
in Figure 5 shows that overlaying elastic-perfectly-

Figure 3. Hysteresis loops for simple shear response of 
elastic-perfectly-plastic material model. Yield strains in 
shear set at 5, 10, 25 and 50% corresponding to similar 
values to those shown in Figure 2 for the tensile compres-
sion simulations.

Table 3. Dynamic properties of elastoplastic models. 

Material Shear modulus Energy in the loop

E = 1.232 0.348 0.003
E = 2.6394 0.122 0.006
Overlay 0.470 0.009

Table 2. The simulated and infinitesimal theory predic-
tions for the yield strain and stress in simple shear.

σy εy

Sim. Theory Sim. Theory Sim.

τy τy = σy/√3 γy γy = (√3)εy Slope

0.011 0.003 0.006 0.006 0.005 0.005 0.000
0.021 0.006 0.012 0.010 0.010 0.012 0.000
0.053 0.015 0.031 0.031 0.025 0.025 −0.001
0.106 0.029 0.061 0.061 0.050 0.050 −0.001
0.212 0.058 0.122 0.122 0.102 0.100 −0.003
0.318 0.087 0.183 0.184 0.152 0.151 −0.006
0.530 0.145 0.304 0.306 0.253 0.251 −0.019
0.742 0.203 0.422 0.428 0.353 0.352 −0.038
0.848 0.232 0.480 0.490 0.406 0.402 −0.049
1.060 0.290 0.592 0.612 0.509 0.502 −0.077

Figure 4. Hysteresis loops in shear for two elastic-
perfectly-plastic materials each subjected to cyclic shear 
deformation with amplitude of 0.12. The largest loop 
shows the response when the two models are overlaid.
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plastic models exhibits Masing’s “retraction” rule 
desired for modeling filled rubber.

4.3 Overlay models for filled rubber

In a previous publication a viscoplastic material 
model for filled rubbers based on an overlay of 
hyperelastic, viscoelastic and elastic-perfectly plas-
tic materials was fitted to a filled natural rubber 
vulcanizate (Ahmadi, Kingston & Muhr 2008). 
A methodology for fitting the model to the quasi-
static response of the material was also described. 
The aim in this section is to present the simu-
lated response to cyclic simple shear deformation 
for such a model, using a 2D plane strain single 
element mesh and a full 3D multi-element mesh. 
These results were then analyzed, using the secant 
method, to obtain equivalent linear dynamic shear 
properties for the viscoplastic material. The param-
eters of the model are those given in Ahmadi, 
Dalrymple, Kingston and Muhr (2008).

Figure 6 shows the hysteresis loops for the 
material model when subjected to amplitudes 
from 5 to 50% shear strain at 1 Hz. The FE model 
was an overlay of one hyper-viscoelastic and 6 
elastic-perfectly-plastic materials each represented 
by one 2D plane strain element. Figure 7 shows the 
hysteresis loop for 20% strain together with the loop 
corresponding to the elastoplastic contribution on 
its own. As with Figure 5, the desired “retraction 
rule” is obeyed, shown by the light shaded line in 
the figure. Figure 8 shows a 3D FE model for a disc 
of rubber using 2040 (340 by 6 layers) brick ele-
ments. (C3D8). The same material model as that 
for figures 6 and 7 was used for the analysis.

Figures 9a & b show the dynamic properties for 
the single 2D element model and the 3D overlaid 
multi brick element models. Also shown are the 

Figure 5. One and quarter cycle hysteresis loop for two 
overlaid elastic-perfectly-plastic materials, with proper-
ties described in section 4.2, dark line: simulated results 
for overlaid model. Half  cycle light shaded line (top right 
of the plot to bottom left): Masing transformation of 
the first quarter cycle. Thick dark shaded line: simulated 
results using MKHP model.

Figure 6. Simulated loops for an overlay of 1 hyper-
viscoelastic and 6 elastic-perfectly-plastic materials.

Figure 7. One and quarter loop for the 20% dynamic 
strain amplitude shown in figure 6. Also shown is the 
loop only for the contribution of the 6 elastic-perfectly-
plastic materials where the stress is constant beyond 
10.6% shear strain corresponding to the point at which 
all 6 elements have undergone yield.

Figure 8. 3D model for rubber disc.

Figure 9a. Variation of Sin (δ) with shear strain amplitude.
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results for the 3D disc overlaid model where a 
new finite strain plasticity model is used to cal-
culate the response of  the elastic-perfectly-plastic 
material.

This new material model allows the use of 
hyperelasticity for nonlinear elasticity to be 
combined with plasticity model. It is based on 
a multiplicative decomposition of  the deforma-
tion gradient into elastic and plastic parts, rather 
than the traditional additive decomposition 
of  the total strain (Weber & Anand, 1990 and 
Simo, 1992).

This is discussed in detail in section 4.5. In addi-
tion, Figures 9a & b show the simulated results 
for the 2D model using a Multilinear Kinematic 
Hardening Plasticity model, discussed in the next 
section. These procedures have recently been 
implemented in Abaqus.

4.4 Multilinear Kinematic Hardening Plasticity 
(MKHP) model for filled rubber

This material model was implemented in Abaqus 
version 6.8 and is provided in the form of a built-in 
UMAT user subroutine, using the USER MATE-
RIAL and DEPVAR option. It uses an overlay 
of elastic-perfectly-plastic materials; in principle, 
very similar to the model described by Austrell, 
Olsson & Jonsson, (2001) and Ahmadi, Kingston & 
Muhr, (2008) but with the exception that only one 
set of FE mesh is required, hence the size of the 
FE model and the computation time is reduced.

This new model is not described fully in cur-
rent Abaqus documentation and is therefore 
briefly described here and a previous publication, 
Ahmadi, Dalrymple, Kingston & Muhr (2008).

The material is assumed to have up to N subvol-
umes, each with elastic-perfectly-plastic behaviour, 

which have different yield strengths, σyi in tension 
but the same elastic modulus, E and are subjected 
to the same total strain. When multiple subvol-
umes are combined together, complex material 
behaviour, such as multilinear hardening can be 
modeled; Crisfield (1997) and Chen & Han (1936). 
The Multilinear Kinematic Hardening Plastic-
ity (MKHP) model takes piece-wise linear stress-
plastic strain (σi, ει

pl ) curves as input (see Figure 2 
of Ahmadi, Dalrymple, Kingston & Muhr, 2008). 
The number of subvolumes used in the model 
is equal to the number of stress-plastic strain 
(σi, ει

pl ) pairs given on the curve. The yield strength 
σyi of  the ith subvolume can be shown to be:

σ σ εyi i i
pl= + E  (2)

The “weight” to each subvolume is equal to:

ω ωi
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k
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where Hi is the slope of the hardening curve, 
known as hardening modulus, i.e. the slope of each 
(σi, ει

pl ) chord in the stress-plastic strain plot 
(see Figure 2 of Ahmadi, Dalrymple, Kingston & 
Muhr, (2008)). It is assumed that the hardening 
modulus beyond the last data point is zero; equa-
tion (3) therefore ensures that the sum of all sub-
volume weights is one.

In a given solution (time) increment, all subvol-
ume, the increment in plastic strain and the total 
stress at the end of the increment are computed 
using a von Mises yield criterion with the associ-
ated flow rule. The total stress and total plastic 
strain for the entire volume is then calculated as:

{ } { }σ ω σ= ∑ i

N

i
1

 (4)

and

{ } { } { }ε ε ω εp p
i i

p

i

N
= +

=
∑0

1
Δ  (5)

where { }ε p
0 is the plastic strain at the beginning of 

the increment.
The procedure for fitting the parameters for 

the MKHP material used as the elastoplastic part 
of the “viscoplastic” model is given in Ahmadi, 
Dalrymple, Kingston & Muhr (2008). However, 
equation 2 was mistyped in their paper. The predic-
tions of the two viscoplastic models using in one 
case a MKHP material and in another an overlay of 

Figure 9b. Variation of G* with shear strain amplitude, 
triangles- 2D single element overlaid model, solid line-
3D disc overlaid model, circles- similar to solid line, but 
multiplicative decomposition was used to calculate the 
response of the elastic-perfectly-plastic materials, crosses- 
2D single elements using MKHP model.



elastic-perfectly-plastic materials for the case of 
cyclic simple shear deformation of filled rubber 
using one 2D plane strain model for a disc of rub-
ber has also been presented in Ahmadi, Dalrymple, 
Kingston & Muhr (2008). For comparison these 2D 
element results are also presented in figures 9a & b.

4.5 Multiplicative versus additive decomposition

The classical plasticity models assume that the 
total strain in the material is an additive combina-
tion of elastic and plastic strains i.e. ε = εe + εp, 
the elastic strain εe is much smaller than the sub-
sequent plastic strain εp; this is also known as 
E-P model. This assumption seems inappropriate 
for rubber as the yield strain may be required to 
be large. The multiplicative decomposition theory, 
(Lee, 1969, Weber & Anand, 1990 and Simo, 1992) 
is based on the assumption that the deformation 
gradient F in the material is expressed as the multi-
plication of an elastic deformation gradient F e and 
the plastic deformation gradient F p i.e. F = F e F p. 
the convention is that the rigid body rotation part 
of the deformation is contained in F p, whereas F e 
contains only the stretch component of the defor-
mation. It can be shown that the velocity gradient 
L = F

.
F−1 for such a deformation has also elas-

tic and plastic components Le and Lp. These
are given by:

L V V D W
L F F D W

e e e e e

p p p p p
= = +
= = +

�
�

−−

−−

1

1
 (6)

where Ve is the elastic stretch tensor and D and W 
are the symmetric and asymmetric components of 
the elastic and plastic velocity gradient. It can be 
shown that for such deformation D D De p≠ +  and 
similarly W W We p≠ +  unless Ve is small i.e. the 
elastic strains are small.

Abaqus offers finite strain elastic-plastic defor-
mation for elastic-perfectly plastic and isotropic 
hardening models, but the model cannot be com-
bined with kinematic hardening model. The elas-
tic part of the model may be defined using strain 
energy density functions offered under the hyper-
elastic materials. In this paper a comparison has 
been made between the results of the analysis 
using the overlay approach in which for one case 
additive and for another multiplicative decomposi-
tion were used. The hyperelastic part of the model 
was an incompressible neo-Hookean material with 
the coefficient C1 set equal to E/6. Comparison of 
the two analyses is important in order to establish 
whether the magnitude of the tensile yield strain 
set in overlay model using additive decomposition 
approach would violate the small strain assump-
tion of this theory. The results of the two models 

for the 3D multi- element model are also included 
in figures 9a & b. The hysteresis loops for these two 
models, not shown here due to lack of space, are 
very similar, which is why the equivalent viscoelas-
tic dynamic properties data shown in figures 9a & b 
are coincident. This may suggest that in the addi-
tive decomposition analysis the yield strain for the 
 elastic-perfectly-plastic components do not violate 
the assumptions in the model.

5 BRIEF DISCUSSION AND 
CONCLUSIONS

• Overlaying elastic-perfectly-plastic materials 
gives the Masing’s rule, as desired for modelling 
filled rubber. This is not possible with the classi-
cal kinematic hardening plasticity.

• Overlay gave additive results for a single ele-
ment, suggesting appropriate implementation 
of the plasticity model in Abaqus.

• Results for single element and 3D disc agree 
well. The 3D disc model predicts slightly lower 
values for the shear modulus due to the effect 
of the free edge. However, all sets of data show 
an unexpected double peak in the sin (δ) results. 
This is due to the particular and coarse discre-
tisation into elastic-perfectly-plastic materials. 
The chosen shear strains at yield for these mate-
rials were 0.50, 0.91, 1.7, 3.0, 5.5 and 10.2% with 
the corresponding shear moduli of 1.21, 0.25, 
0.19, 0.14, 0.11 and 0.34 MPa. The last element 
has the second highest shear modulus and yields 
at the highest strain of 10.2%. Hence, it dissi-
pates the largest energy when it yields, resulting 
in the sin (δ) value rapidly increasing beyond this 
point. Finer discretisation of the elasto-plastic 
part would eliminate this numerical artefact.

• The MKHP model is indistinguishable from the 
Overlay model. This provides much lower com-
putational time.

• Multiplicative decomposition analysis of the 
2D and 3D disc models agree with the additive 
decomposition results, suggesting that using 
additive decomposition, despite the small strain 
assumption in yield strain of the plastic model, 
gives reasonable results.

• Abaqus offers finite strain elasticity for the elastic 
part of the elastic-perfectly plastic model. Hence 
different strain energy density functions may be 
used to model this part of the model. This is not 
as yet provided for MKHP material models.
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1 INTRODUCTION

The load sequence of running is characterised by 
an impact peak in which the heel area of the shoe 
is, within few milliseconds, loaded with twice the 
runner’s bodyweight. Thereby, the shoe midsole, 
usually made of flexible foam, reduces this impact 
to a physiological harmless level by absorbing 
energy while being deformed up to 45% of the ini-
tial thickness. It is assumed that a portion of this 
energy as a result of compression by the pressure 
of the foot is dissipated as heat. This heat would 
influence the properties of the midsole material due 
to the temperature dependency of flexible foams. 
According to Heidenfelder (2004) energy absorp-
tion and functional stiffness of running footwear 
decrease while temperature increases.

2 METHOD

Midsole materials were tested with an adapted 
hydraulic impact test HIT under different 
 temperatures conditions. Thereafter, results were 
compared with dynamic mechanical properties 
of the dynamic mechanical analysis (DMA) as a 
standard test method for identifying temperature 
dependent dynamic properties of polymers.

2.1 Hydraulic impact test

2.1.1 Testing device
Determination of cushioning abilities of foam 
materials was tested according to the  mechanical 

Temperature dependence of midsole materials

K. Brückner & S. Odenwald
Institute of Mechanical and Polymer Engineering, Sports Equipment and Technology,
Chemnitz University of Technology, Germany

J. Heidenfelder
Department of Human Locomotion, Chemnitz University of Technology, Germany

ABSTRACT: The purpose of this study was to investigate the temperature influence on the mechanical 
properties of midsole materials. The board materials were tested by an adapted hydraulic impact test 
of running shoes and the dynamic mechanical analysis (DMA) as a standard test method for polymers 
within a certain temperature range. The results show that the absorbed energy and the stiffness II of board 
materials decrease with an increase of temperature as investigated for running shoes. Furthermore, the 
hydraulic impact test is adequate for characterising midsole materials due to the frequency and stroke 
dependency of foam materials under different temperatures.

cushioning test applied to complete running 
shoes. The test normally is performed by using a 
servo-hydraulic testing device (Figure 1) equipped 
with a heel-like shaped stamp which is oriented 
 perpendicular to the base of the sample.

2.1.2 Load spectrum
The design of the mechanical test method is 
derived from biomechanical test results of bio-
mechanical analyses of ground reaction forces 
(GRF) (continuous line in Figure 2). Analysis of 
the resulting curve shows that the tested heel area 
is loaded with twice the runner’s bodyweight while 
running at a speed of 3.5 ms (Heidenfelder et al., 
2005). GRF in vertical direction shows two peaks: 
the initial impact peak and the subsequent active 
peak where leg muscles push the body from the 
ground (Swigart et al., 1993). The load rises within 
35 ms to the first impact peak, and decreases to 
zero after another 35 ms in the heel area. This load 
cycle is repeated every 700 ms corresponding to 
a frequency of 1.4 Hz. The testing machine imi-
tates this load-time-characteristic (dashed line in 
 Figure 2) while punching the heel area of the shoe 
with a ball-shaped stamp.

2.1.3 Test results and analysis
100 load cycles were collected in short-time tests 
and data was collected from the 100th cycle. The 
first cycles are used to create a steady material 
state and to bring up the required force by the 
machine. The analysed parameters of the test are 
 (Heidenfelder et al., 2005):
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– energy loss: energy which was absorbed by the 
material and dissipates to thermal energy,

– stiffness II/functional stiffness  (compression stiff-
ness at high deformation between 1000–1500 N): 
represents the load of the footwear during the ini-
tial ground contact of the heel.

2.1.4 Adapted test method with 45% deformation
The test setup with a load of 1500 N—being 
used for the test of complete shoes—would cause 
 disproportional high deformation of the foam 
materials. With respect to this fact, the test of foam 
material has to be adapted for receiving results com-
parable to real shoe conditions. An internal database 
from a mechanical hydraulic impact tests of 42 run-
ning shoes sums up a mean deformation of 45% by 
the hydraulic impact test. For this reason the pure 
foam material was tested deformation-controlled 
with a stroke of 45% of the materials thickness. 
 According to the  coplanar board  material the test 
was performed with a flat stamp. Stiffness II was 
analysed at high deformation between 67–100% 
of the maximal force. A heat gun was used for 
 tempering the sample while controlling the tempera-
ture by a  temperature sensor—centrically integrated 
in the sample (Figure 3). The load-deformation 
data and the  temperature were collected from every 
100th cycle.

2.2 Temperature range

The temperature range was determined between 
25 and 55°C according to the results of long 
term hydraulic impact test of running shoes 
 (Heidenfelder, 2004). The results show that midsole 
temperature increases up to approximately 55°C 
within the first 15 min. After 15 min.  temperature 
stays on a constant level.

2.3 Dynamic mechanical analysis DMA

For measuring the dynamic mechanical properties 
of the foam material a DMA Q800—Module by 
TA Instruments Ltd. equipped with a  compression 
clamp was used. In order to obtain the proper-
ties as a function of temperature, the test was 
performed with an amplitude of 100 μm at 1 Hz 

Figure 1. Hydraulic impact test of running footwear.
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Figure 2. Ground reaction force; load-time characteris-
tic of the testing device.

Figure 3. Adapted hydraulic impact test with heat gun 
and temperature sensor.
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frequency between 20 and 65°C, with a heating 
rate of 3°C/min. The samples with a mean height 
of 9.52 ± 0.02 mm were prepared in a cylindrical 
shape with a diameter of 10 mm corresponding to 
the plate diameter of the compression clamp. The 
properties of the foam material were measured in 
the same direction as loaded in running shoes. The 
analysed DMA parameters are the loss factor tan δ 
which characterises the mechanical damping and 
the stiffness (Ehrenstein, 1999).

2.4 Materials

The tested materials (Table 1) were boards of 
 flexible foam material of  Ethylen/Vinylacetat with 
hardnesses and densities in the usual range of 
midsole properties (Boyer et al., 2004 &  Verdejo 
et al., 2004).

3 RESULTS AND DISCUSSION

3.1 Energy loss and loss factor tan δ

The data points of the hydraulic impact test are 
bonded by a potential trend line.

The results (Figure 4) show that the energy loss 
of the hydraulic impact test decreases for all of 
the tested EVA- board materials with increasing 
temperature. This confirms the ascertainment of 
shoes of Kenoshita et al. (1996) and Heidenfelder 
(2004) who reveal a decreasing energy loss by an 
 increasing temperature for the tested shoes.

The results of the loss factor (Figure 5) point 
out only a slight increase of tan δ with increasing 
temperature for three of the tested materials. This 
suggests a low temperature dependency of the loss 
factor except for EVA-A. The amount of changing 
for the loss factor is lower than for the energy loss 
which decreases within approximately 20°C to half  
the initial value.

The EVA-R corresponding to the highest 
rebound elasticity presents the lowest tan δ as well 
as the lowest energy loss. According to the lowest 
rebound elasticity the EVA-A sums up the high-
est energy loss and loss factor but admittedly at 

lower temperature (up to approximately 40°C), 
 indicating that a material with a high rebound elas-
ticity presents a lower energy loss and loss factor 
respectively.

3.2 Stiffness

In Figures 6–7 stiffnesses in both tests present an 
increase of the data by decreasing temperature. 
This confirms the temperature characteristics of 
shoes described by Kleindienst et al. (2001) and 
Heidenfelder (2004).

The amount of changing is higher for the 
 stiffness than for stiffness II.

Table 1. Properties of the tested midsole materials.

Hardness 
[Asker C]

Density 
[g/cm3]

Rebound 
elasticity [%]

EVA-H: 
Hardness

58 0,21 39

EVA-A: 
AbsorbShock

51 0,21 21

EVA-L: Light 51 0,16 38
EVA-R: Resilient 53 0,22 53

Figure 4. Dependence of energy loss on the temperature.
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Obviously, DMA and HIT test differ in the 
amplitude of stroke (HIT: 3.6 mm; DMA: 100 μm). 
With respect to this fact it is assumed that DMA 
only measures the surface and respectively the 
matrix properties of the material (Rodriguez- Perez 
et al. 2000). The important fact is that there is no 
correlation of HIT and DMA test. Therefore, the 
hydraulic impact test is adequate for characterising 
midsole materials due to the frequency and stroke 
dependency of foam materials.

4 CONCLUSION AND OUTLOOK

The results of the hydraulic impact test of the pure 
midsole material show a comparable temperature 
behaviour as the results of complete shoes (the 
lower the temperature, the higher the energy loss 
and the stiffness II). Furthermore, the HIT test is 
adequate for characterising midsole materials.

To keep the cooling of the sample by the bearing 
plate and the stamp during the hydraulic impact 
test sequence in mind, a heating cabinet would pro-
vide a constant ambient temperature.

The presented results were measured only on 
one sample per material. With respect to this fact 
further materials have to be tested to validate these 
results.
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Figure 6. Stiffness II of the HIT test at different 
temperatures.
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1 INTRODUCTION

Many materials of technological interest exhibit 
anisotropic elastic behavior due to the presence of 
preferred directions in their microstructure. Exam-
ples of such materials include common engineering 
materials such as fiber-reinforced composites, rein-
forced rubber, wood, etc. as well as soft biological 
tissues such as arterial walls, heart tissues, etc. When 
these materials are subjected to small strains (less 
than 2–5%), their mechanical behavior can gener-
ally be modeled using conventional anisotropic lin-
ear elasticity. Under large deformations, however, 
these materials exhibit highly anisotropic and non-
linear elastic behavior due to rearrangements in the 
microstructure, such as reorientation of the fiber 
directions with deformation. The accurate simula-
tion of these nonlinear large-strain effects requires 
the use of constitutive models formulated within 
the framework of anisotropic hyperelasticity.

The work presented in this paper is concerned 
with modeling of anisotropic hyperelastic materi-
als such as reinforced rubber and soft biological 
tissues, under arbitrarily large strains. The plan 
of the paper is as follows. The formulations of 
the anisotropic hyperelastic models in Abaqus are 
discussed in Section 2, followed by examples in 
Section 3 and conclusions in Section 4.

2 FORMULATION

Hyperelastic materials are described in terms of a 
strain energy potential, U, which defines the strain 

Anisotropic hyperelastic models in Abaqus
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strain energy function is expressed in terms of the components of the Green-strain tensor, assuming that 
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may be non-orthogonal) in the reference configuration. A strain energy function proposed by Holzapfel-
Gasser-Ogden for arterial walls has been implemented using the invariant-based formulation in Abaqus. 
The user may implement a general form of the strain energy function through a user-defined subroutine 
for both the formulations. Two examples that demonstrate the usefulness of the anisotropic hyperelastic-
ity capability in Abaqus are shown.

energy stored in the material per unit of volume 
in the reference configuration as a function of the 
deformation at that point in the material. Strain-
based and invariant-based formulations have been 
implemented in Abaqus for the representation of 
the strain energy potential of anisotropic hyper-
elastic materials. These formulations are described 
in some detail below.

2.1 Strain-based formulation

In the strain-based formulation, the strain energy 
function is expressed directly in terms of  the com-
ponents of  the Green strain tensor, U = U(εG).The 
Green strain is defined as εG = (C – I)/2, where 
C = FT. F is the right Cauchy-Green tensor; and 
I is the identity matrix. Without loss of  general-
ity, the strain energy function can be written in 
the form

U = U (ε−G,J ) (1)

where ε−G = (C− – I)/2 is the modified Green strain 
tensor; C− = J–2/3C is the modified right Cauchy-
Green tensor; and J = det(F) is the volume change.

An underlying assumption in the models based 
on the strain-based formulation is that the pre-
ferred material directions are initially aligned with 
an orthogonal coordinate system in the refer-
ence configuration. These directions may become 
non-orthogonal only after deformation. Exam-
ples of strain-based energy functions include 
the Fung model which has been implemented 
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directly in Abaqus. This model is commonly used 
for s imulation of soft biological tissues and is 
described below. Other forms are also supported 
via a dedicated user-subroutine where the strain 
energy function (Equation 1) and the derivatives 
with respect to the Green-strain must be defined 
by the user.

2.1.1 Generalized Fung model
The generalized Fung strain energy potential in 
Abaqus is based on the two-dimensional exponential 
form proposed by Fung (1979, 1993), suitably gen-
eralized to arbitrary three-dimensional stress states 
(Humphrey, 1995), and has the following form:

U c e
D

J JQ= − + − −⎡
⎣

⎤
⎦

1
2

1 1 11
2

2( ) ) ln(  (2)

where c and D are the material properties corre-
sponding to deviatoric and volumetric behavior, 
and Q is defined as

Q bG G
ij
G

ijkl kl
G= =εε εε: :b ε ε  (3)

where b is a dimensionless symmetric fourth-order 
tensor of anisotropic material constants. In Abaqus 
this tensor can be fully anisotropic (21 constants) 
or orthotropic (9 constants).

2.2 Invariant-based formulation

Using the continuum theory of fiber-reinforced 
composites (Spencer, 1984) the strain energy func-
tion can be expressed directly in terms of the 
invariants of the deformation tensor and the fiber 
directions. For example, consider a composite 
material that consists of an isotropic hyperelastic 
matrix reinforced with N families of fibers. The fiber 
directions in the reference configuration are char-
acterized by a set of unit vectors Aα α, , , . = 1… N   
Then the most general form of the strain energy 
function is U U N= =( , ), , , .C Aα α 1…  Using iso-
tropic representation functions, the strain energy 
can be expressed in terms of an irreducible set of 
invariants that form the integrity basis of the ten-
sor C and the vectors Aα:

U U I I J I I( , ) ( , , , , ; )( ) ( )C Aα αβ αβ αβζ= 1 2 4 5
                           α β α= =1 1, , ; , ,… …N  

(4)

where I1 = tr C  and I I2
1
2 1

2 2= −( )tr C  are the first 
and second invariants of C

_
, and I4( )αβ  and

I5( )αβ  are the pseudo-invariants of  C
_
, Aα and Aβ 

given as:

I I4 5
2

( ) ( );αβ α β αβ α β= ⋅ ⋅ = ⋅ ⋅A A A AC C  (5)

It should be pointed out that the pseudo-invariant 
notation used above differs slightly from the nota-
tion commonly used in the literature. The authors 
advocate this notation because it is independ-
ent of the number of family of fibers. The terms 
ζαβ α β= ⋅A A  are geometrical constants (inde-
pendent of deformation) equal to the cosine of the 
angle between the directions of any two families 
of fibers in the reference configuration. The fiber 
directions need not be orthogonal in the reference 
configuration.

An example of the invariant-based energy func-
tion which is directly supported in Abaqus is the 
form proposed by Holzapfel, Gasser, and Ogden 
(2000, 2006) for arterial walls, and is described 
below. Other forms of the strain energy function 
are supported via a dedicated user-subroutine 
where the function (Equation 4) and its deriva-
tives with respect to the invariants must be defined 
by the user. For example, the form proposed by 
Kaliske et al. (2005) can be easily implemented 
in this user subroutine as shown in Dassault Sys-
tèmes, 2008a.

2.2.1 Holzapfel-Gasser-Ogden (HGO) form
The Holzapfel-Gasser-Ogden energy potential for 
incompressible arterial layers with distributed col-
lagen fibers is written as:

U C I k
k

k E

E I I

N
= − + 〈 〉{ }
= − + −

=
∑10 1

1

2
2

2

1

1 4

3
2

3 1 3

( ) exp( )

( ) ( )( (

α
α

α ακ κ αα ) )−1
 

(6)

In the above, C10, k1 and k2 are material param-
eters. The model assumes that the directions of the 
collagen fibers within each family are dispersed 
(with rotational symmetry) about a mean preferred 
direction. The structure parameter κ ( )0 1

3≤ ≤κ
characterizes the level of dispersion of the collagen 
orientations. When κ = 0, the fibers are perfectly 
aligned (no dispersion). When,κ = 1

3  the fibers are 
randomly distributed and the material becomes 
isotropic.

3 EXAMPLES: ARTERIAL LAYERS 
AND REINFORCED RUBBER

We now present two examples that demonstrate 
the usage of anisotropic hyperelastic capabil-
ity in Abaqus. The first example uses the built-in 
HGO strain energy potential to model the pas-
sive response of the adventitial layer of human 
iliac arteries. The second example employs the 
user defined anisotropic hyperelastic strain energy 
function to model a class of reinforced rubbers.
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3.1 Passive response of arterial layers

This problem has been analyzed numerically by 
Gasser et al. (2006).

3.1.1 Problem description
We carried out numerical analyses of simple tensile 
tests of adventitial strips cut along the axial and cir-
cumferential directions of the artery, as illustrated 
in Figures 1–2. Following Gasser et al. (2006), the 
adventitial strips considered in this study have ref-
erential dimensions of 0.01 m length × 0.003 m 
width × 5 × 10−3 m thickness and are assumed to 
be stress free in the reference configuration.

The mechanical response of the adventitial layer 
is modeled using the HGO anisotropic hyperelas-
tic strain energy function described previously. It 
is assumed that two families of collagen fibers 
are embedded in the specimens, symmetrically 
arranged with respect to the axial and circumferen-
tial directions of the artery and with no component 
in the thickness direction (Fig. 1). The families of 
fibers have mean orientations A1 and A2 in the ref-
erence configuration. The angle between the mean 

orientation of the fibers and the circumferential 
direction is γ = 49.98°. A value of the dispersion 
parameter κ = 0.226 is used in the numerical simula-
tions. For comparison, numerical tests are also car-
ried out assuming ideal alignment of the collagen 
fibers (κ = 0). The following material parameters 
are used: C10 = 7.64 kPa, k1 = 999.6 kPa, and k2 = 
524.6. The specimens are loaded in the longitudi-
nal direction, and their end faces are not allowed 
to deform. The numerical analyses are conducted 
using the static analysis procedure in Abaqus/
Standard. Linear solid hybrid elements (C3D8H) 
are used to model the incompressible deforma-
tion of the arterial layers. Additional details of the 
model description can be found in Dassault Sys-
tèmes, 2008b.

3.1.2 Results
Figure 3a shows the computed stress in the tensile 
direction for the axial specimen with distributed 
fibers (κ = 0.226) for a tensile load of 2.0 N. The 
thickness of the specimen remains approximately 
constant during loading, with small transition zones 
at the ends of the strips. The corresponding results 
for the case of perfectly aligned fibers (κ  = 0) are 
shown in Figure 3b. In this case the embedded col-
lagen fibers need to rotate significantly toward the 
loading direction before they can carry substantial 
load. The combined effect of the large rotation 
of the fibers and the incompressibility constraint 
causes the thickness of the specimen to increase 
(and the width to decrease) in the middle region of 
the strip, away from the restrained boundaries. The 
transition zones at the end of the strip resemble the 
deformation patterns observed in woven fabrics. 

Figure 1. Adventitial layer with two embedded families 
of fibers with mean orientations A1 and A2.

Figure 2. Definition of circumferential and axial speci-
mens for the tensile tests.

Figure 3. Stress in the direction of applied load for 
iliac adventitial strips cut in the axial direction with (a) 
dispersed collagen fibers (κ  = 0.226) and (b) perfectly 
aligned fibers (κ  = 0). Results correspond to an applied 
load of 2.0 N.
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The results for the circumferential specimens are 
reported in Dassault Systèmes, 2008b.

Figure 4 shows the computed load versus dis-
placement curves for the circumferential and axial 
specimens. The dashed curves correspond to the 
simulations with ideally aligned fibers, and the 
continuous curves correspond to the simulations 
that include dispersion. The material response 
is very soft at low stretches; only a small force is 
needed to achieve significant extension. Once the 
collagen fibers are approximately aligned with the 
loading direction, the material stiffens rapidly. 
This is particularly evident in the case of the cir-
cumferential specimen with κ = 0; the alignment 
requires very large average stretches, and the speci-
men stiffens at a displacement of about 4 mm. In 
contrast, when dispersion is included in the simula-
tion, the collagen fibers need to rotate less before 
they carry load compared with the ideally aligned 
case. Therefore, the dispersion of the collagen fib-
ers leads to a stiffer macroscopic response of the 
specimens. Specifically, the dispersion parameter 
κ controls the elongation at which the specimen 
stiffens. These numerical results for axial and cir-
cumferential specimens are in agreement with the 
results reported in Gasser et al. 2006.

3.2 Anisotropic response of reinforced rubber

Abaqus provides a general framework to define 
Equation 4 through a user defined subroutine. In this 
example we employ this user subroutine to model 
the anisotropic response of reinforced rubber.

3.2.1 Reinforced rubbers
In some industrial applications of rubbers, it is desir-
able to have differing mechanical properties along 
different directions. This is typically achieved dur-
ing the manufacturing process of rubber through 
either a pattern of reinforcing particles, or a pat-
tern of ply-lay-up of reinforcing fibers. A schematic 
of one such material is show in Figure 5. In this 
case, the manufacturing process involves rolling a 

ply of the reinforcements along direction 1, and 
then stacking them up in direction 3, in a matrix 
of rubber.

The anisotropic response of the reinforced rub-
ber specimen is known from experiments. Then a 
certain form of the invariant-strain energy function 
is chosen, and an optimal set of the coefficients that 
minimizes the square of the error between the test 
data and theoretically predicted results is obtained. 
Once this is done, the user can then easily program 
this strain energy function into a user-defined 
subroutine. In the following, we present one such 
strain energy potential for the above material and 
show the corresponding results.

We conceived the form of the strain energy 
function based on the construction of the mate-
rial, and the experimental data, which of course is 
influenced by the manufacturing process. Since the 
underlying rubber material is isotropic, we chose a 
neo-Hookean term that depends on the first invari-
ant; then we added terms to capture the anisotropic 
response of the ply of reinforcements in direct and 
shear behavior. Assuming the material to be incom-
pressible, one form of the strain energy potential is:

U a I b I c I
d I e I

= − + − + −
+ +

1 1 1 4 11
2

1 4 22
2

1 4 12
2

1

3 1 1( ) ( ) ( )( ) ( )

( )      44 23
2

1 4 13
2

( ) ( )+ f I
 (7)

The coefficients in Equation 7 were obtained 
after curve fitting the theoretical stress responses 
of the above-mentioned energy potential to test 
data; these coefficients have units of stress.

a b c
d e f

1 1 1

1 1 1

1 44 7
45 10 17

= = =
= = =

, ,
, ,

    
    

 (8)

Figure 4. Load-displacement response of circumferen-
tial and axial specimens.

Figure 5. Schematic of reinforced rubber specimen.
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For confidentiality reasons, we do not present 
the experimental data and the corresponding 
coefficients. A representative set of coefficients 
is listed in Equation 8. The strain energy poten-
tial (Equation 7), and its first- and second-order 
derivatives with respect to all the invariants 
were then programmed into the user subroutine 
UANISOHYPER_INV.

3.2.2 Results
Figure 6 shows the response of  the above-
mentioned material under uniaxial tension in dif-
ferent directions, up to the strain levels provided in 
the test data. The stiffness in direction 1, which is 
the dominant fiber direction, is about 6 times that 
of the stiffness in direction 2, and is about 18 times 
that of the stiffness in direction 3.

In this material, based on the manufacturing 
process described earlier, we expect that the stiff-
ness in direction 1 to be higher than that of 2, and 
2 higher than that of 3. The supplied test data 
reflects that. Our choice of the strain energy poten-
tial (Equations 7–8), and consequently the simula-
tion results matched the test data very well.

Figure 7 shows the response of  the material 
in simple shear in different planes. Once again 
the simulation results agreed very well with the 
test data.

4 CONCLUDING REMARKS

We have implemented a general framework for 
simulation of  anisotropic hyperelastic materi-
als using two different approaches: strain-based 
and invariant-based strain energy potentials. The 
value of  this model has been demonstrated by 
studying the mechanical behavior of  a human 
iliac artery and using the general anisotropic 
hyperelastic framework to model a class of  rein-
forced-rubber materials. The authors envision 
extension of  this general framework to include 
nonlinear rate effects.
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1 INTRODUCTION

In order to characterize soft materials like rub-
bers or biological tissues, planar-biaxial tests have 
become popular to complement classic uniaxial 
materials tests. It is known that the latter only are 
not sufficient to fully characterize the materials 
response (Bass et al. 2004).

A first planar-biaxial test setup for soft biologi-
cal tissues was presented by Lanir & Fung (1974). 
Ever since the interest in biaxial materials testing 
was growing in the soft tissue community (Sacks 
2000). An especially appealing feature of planar-
biaxial testing is that a typical setup (i.e. independ-
ent control of the two principal test axes) allows 
for an elastic, isotropic and (nearly) incompress-
ible material to assess its complete specific strain 
energy potential, i.e. to test over the complete 
strain-space.

Starting in the field of metals testing, planar 
biaxial materials tests often use cruciform shaped 
specimen geometries for their ease of handle (e.g. 
clamping). Unlike in other scientific communities 
(Hardacker 1981; Demmerle and Boehler 1993; 
Abdul-Aziz and Krause 2006; Smits et al. 2006, 
and others), so far little research was done in the 
soft tissue community to improve the specimen 
geometry with respect to the model parameter 
determination (Waldman and Lee 2005).

Section 2 explains the importance of having 
a homogeneous loading at the center part of the 
specimen where the local strains and stresses are 
known.

Investigation on the optimal specimen design for planar-biaxial 
materials testing of soft materials

J. Helfenstein & M. Hollenstein
Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland

E. Mazza
Institute for Mechanical Systems, ETH Zurich, Zurich, Switzerland; 
EMPA, Swiss Federal Laboratories for Materials Testing and Research, 
Dübendorf, Switzerland

ABSTRACT: Planar biaxial tests have become popular to complement classic uniaxial tests on soft 
materials. For their ease of handle cruciform shaped specimen geometries are often used. So far little 
research was done in the soft tissue community to improve the specimen geometry with respect to materi-
als parameter determination. Following the idea of Mönch and Galster (1963) we present a numerical 
method to maximize the area of homogeneous equibiaxial loading. Our findings suggest that already a 
low number of slots in the cruciform sample limbs help to increase the area significantly.

To maximize the biaxially loaded area it helps to 
slot the limbs of the cruciform specimen (Mönch 
and Galster 1963). In this light, we optimize the 
specimen geometry along with the force transmis-
sion into the specimen towards uniformity of the 
induced strain-and stress-field in the test region by 
use of a numerical optimization scheme.

2 MOTIVATION

In classic materials testing the forces and displace-
ments at the clamp interfaces to the specimen are 
measured. Based on these global measurements 
the local stress and strain state in test region of 
the specimen must be assessed in order to calibrate 
constitutive models by means of regression analy-
ses. This in turn implies that the states of strain 
and stress in the test region must be compatible 
with the nominal stress and strain values obtained 
from the global measurements, i.e. the clamp force 
divided by the corresponding cross-sectional area 
and the displacement divided through the clamp 
to clamp initial free gauge length, respectively. 
Therefore, appropriate design of the test setup 
and specimen geometry is a fundamental prereq-
uisite to materials testing in order to establish the 
required well-defined state of strain and stress in 
the test region.

In contrast, one could argue that once the inter-
face forces, displacements and the probe geom-
etry are known, the setup can be modeled within 
a finite element framework and the material 
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parameters determined from solving the inverse 
problem. In what follows, we demonstrate that this 
generally is not a suitable approach. To this end 
we perform an in silico planar biaxial test on two 
non-slotted cruciform specimen geometries with 
different limb lengths, where we have prescribed 
the material behavior as an Ogden-type (ABAQUS 
2006). A nominal stretch of 1.3 is applied equally 
to both cruciform axes (equibiaxial tension) and 
the resulting reaction forces are computed at the 
virtual clamp interfaces. The prescribed clamp dis-
placements and the computed reaction forces are 
then used to calibrate a third order reduced poly-
nomial (ABAQUS 2006) to the test data by solv-
ing the inverse problem. The results are shown in 
Figure 1.

When plotting the equibiaxial characteristic of 
the in silico material against the reduced  polynomial 
fit for the short and long limbs, two observations 
become apparent: (i) the results obtained from the 
planar biaxial tests on an regular cruciform speci-
men do not predict the true equibiaxial material 
behavior, i.e. the obtained material parameters are 
not associated with an equibiaxial state of defor-
mation, and (ii) the results are specimen geometry 
dependent.

The observations can be explained, as the speci-
men test region is in a mixed deformation mode; 
there exits no relation between the nominal stress 
and strain values and the prevailing stress and 
strain fields. Thus a similar error is to be expected 
if  the constitutive parameters were estimated 
from the nominal measurements. Concluding, 

this  demonstrates the importance of the specimen 
geometry and the requirement for explicit assign-
ment of the model parameters to the mode of 
deformation in nonlinear materials testing. These 
observations motivate appropriate design of speci-
mens and the general test setup such that the state 
of strain and the associated state of stress in the 
test region become accessible by means of the 
available measuring data.

Typically, in planar biaxial test setups in-plane 
deformations are measured by means of opti-
cal methods; the full kinematics is well-defined if  
incompressible material behavior can be assumed. 
In order to obtain a significant relation between 
the global force measurements and the local 
stress state, the homogeneous biaxial test region 
in the mid-section of the cruciform needs to be 
maximized.

3 METHODS

The problem of biaxial stretch in a homogene-
ous isotropic probe can be simplified by several 
means: (i) the symmetries of the problem can be 
used such that only one quarter of the specimen 
has to be considered, (ii) far away from the clamp-
ing the loading case can be considered as a plane 
stress situation. In addition to these two general 
assumptions we restrict our study to the case of 
equi-biaxial loading.

3.1 Definition of the biaxial area

We assume a point to be under equibiaxial and 
homogeneous load if

– its principal stresses do not differ for more than 
τ1 from each other and

– the mean principal stress does not differ for 
more than τ2 from the mean principal stress at 
the center point.

The side length L of  the maximum square that 
is inscribed to this set of points, without including 
any other points, we call the size of  the biaxial area 
(Fig. 2).

3.2 Simulations

For the maximization of the biaxial areas size we 
use the optimization toolbox from Matlab (R2006a, 
The MathWorks, Inc., Natick, MA). Two algo-
rithms are used: an unconstrained nonlinear opti-
mization (  fminsearch) that uses a Nelder-Mead 
simplex method and a constrained genetic algo-
rithm (ga). The genetic algorithm allows to define 
an initial population consisting of parameter sets 
and the corresponding fitness values (errors). To do 

Material parameters
Ogden

= = −0.8.
RP, short limbs C10 =

C30
RP, long limbs C10 C20

C20

C30

=

Figure 1. Comparison between the equibiaxial charac-
teristics of the in silico reference material and the fitted 
reduced polynomials (RP).
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so we previously define parameter sets that cover a 
large portion of the design space and compute their 
respective errors 1/L. From the results we take the 
twenty best ones (corresponding to the size of the 
initial population). The length L is computed at 
the deformed state with a global stretch of 1.5. 
For all error calculations we set the two tolerances 
τ1 = 5% and τ2 = 1%.

Both algorithms call a function that starts the 
finite element software ABAQUS (SIMULIA, 
Providence, RI) and that, after termination of the 
simulation, computes the error defined as 1/L. 
After being called ABAQUS starts a Python script 
that generates the geometry, assigns the material 
properties, meshes the geometry and initiates the 
FE-computation. In order to transfer the trial 
parameter set to ABAQUS, our Matlab code writes 
them in a text file that is read by the Python script. 
Vice versa, the results from ABAQUS (coordinates 
and principal stresses of all nodes) are written to a 
text file that is read by the Matlab routine.

Figure 3 shows the parametrization of the geom-
etry with slots in the specimen limbs. The sym-
metries with respect to the principal axes of the 
specimen are exploited and only one quarter is 
simulated. The end of the limbs are clamped, 
displacements (Δ) are applied such that global 
stretches of 1.5 are obtained. The fixed dimensions 
a = 40 mm and b = 20 mm are half  of the total size 
of the cruciform specimen and half  of the limb 
width, respectively. The set {wi, li, ui, di}, i = 1,…, n, 
parameterizes one single slot. n is the total number 
of slots in a half  limb. wi designates the width, li the 
length, ui the distance from the slot to the limbs 

end and di the distance from the centerline of the 
i − 1 slot to the centerline of the ith slot. d1 is the 
distance from the limbs centerline to the centerline 
of the first slot.

Table 1 summarizes the constraints that are used 
for the parameters in the case of the genetic algo-
rithm. Condition C7 ensures that there is a liga-
ment of atleast 1.0 mm between two slots.

Simulations are done with quadrilateral two 
dimensional eight node biquadratic plane stress 
elements (CPS8). The typical element size is set to 
0.5 mm. Incompressibility is assumed for the mate-
rial, a typical assumption often made for soft bio-
logical tissues and rubbers. The elastic properties 
are modeled as Neo-Hookean with an initial shear 
modulus of 2 MPa.

4 RESULTS

First optimizations were done using the Nelder-
Mead simplex method but it turns out that the 
solutions of this optimization procedure stay in the 
very same region as defined by the initial parameter 
set. Therefore we changed to a genetic algorithm.

Figure 2. Quarter of  a deformed specimen. Points 
under equibiaxial and homogeneous load are hatched 
vertically. The maximum inscribed square, the biaxial 
area, is hatched horizontally.

Figure 3. Implemented geometry with its parametriza-
tion, boundary conditions and imposed displacments.

Table 1. Constraints that are used with the genetic 
algorithm.

wi > 0.2 C1 i
n wi∑ < 20 C2

li > 0.2 C3        li       > wi   C4
ui > 0.2 C5       d1   ≥  0     C6
di > 0.5 × (wi – 1 + wi) + 1.0 for i > 2        C7



374

Table 2 summarizes our best solutions with no, 
two, four and six slots per limb. When no slots 
are present the size of  the biaxial area is equal 
to 9.966 mm. Already two slots give a signifi-
cant increase of  242%, L = 34.058 mm. Includ-
ing more and more slots the size of  the biaxial 
area increases as well. In the solution with four 
cuts the innermost slots (d1 = 0 mm) do coincide 
such that in fact only three cuts are present. The 
best solution obtained with six slots raises L up 
to 38 mm. The second slot in this solution is very 
short compared to the others (l2 = 1.815 mm) 
but neglecting this slots degrades the length L to 
23.292 mm (−39%).

Figure 4 shows the displacement fields at the 
central part of two configurations with slots (only 
on quarter is shown). On the left the displace-
ment field where no slots are used: it can be seen, 
that only a rather small area with a side length of 
approximately the above mentioned 5 mm can be 
considered as equibiaxially loaded. In contrast to 
the case where four (three) slots per limb are simu-
lated, here the homogeneity of the deformation 
increases significantly.

Since the stiffness of the limbs is smaller than 
the stiffness of the central part, the global stretch 
of 1.5 is not fully regained at the center part where 
local stretches in the order of 1.3 are obtained.

Figure 5 shows the results of a study of the force 
flux in the specimen without and with four slots 
per limb (the forces are normalized with the maxi-
mum value of the respective applied total force). 
The imposed force at the clamping is  partially 

 transferred to the biaxial area. Without any slots 
14% of the total force are transferred, using four 
slots increases the ratio up to 62%. This ratios are 
not constant and change, in the case with four 
slots, for approximately 4% over the whole defor-
mation process (1% in the case without any slots). 
The standard deviation of the force acting on dif-
ferent sections in the biaxial area is in the range of 
0.7% of the mean force amplitude.

5 DISCUSSION

We consider a point under equibiaxial and homo-
geneous load if  its principal stresses do not differ 
for more than τ1 = 5% and the mean stress at that 
point do not differ for more than τ2 = 1% from the 
mean stress at the center point of the probe. The 
size of the biaxial area is measured by the side 
length L of  the largest square inscribed to that 
area that contains no other points. The homoge-
neous equibiaxial deformation of a square can 
be described analytically such that an analytical 
regression analysis can be envisaged.

In our study we use a cruciform specimen geom-
etry with a total width of 80 mm and a limb length 
of 20 mm each, such that the central region of 
40 × 40 mm results. The arms ends are clamped 
and displacements of 20 mm are applied to each 
(such that global stretches up to 1.5 result).

Table 2. Results of the optimizations. The first column (#) indicates the number of slots per limb.

# L [ mm] wi [ mm] li [ mm] ui [ mm] di [ mm]

0   9.966
2 34.058 2.938 15.569 5.306 5.722
4 36.066 1.133, 3.000 15.750, 18.000 4.000, 2.000 0.000, 7.000
6 38.000 1.214, 1.402, 1.862 18.427, 1.815, 18.013 1.977, 18.250, 2.328 2.488, 3.326, 4.088

Figure 4. Simulated displacements at the center of the 
cruciform specimen: left) specimen without any slots, 
right) specimen with 4 slots per limb. Figure 5. Time evolution (increments) of the imposed 

force, the mean force that goes through the biaxial area 
and the ratio thereof. (o: specimen without slots, × : speci-
men with 4 slots per limb).
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For a non-slotted specimen the biaxial area has 
a size of L = 9.966 mm at that stretch. A conse-
quence of this small biaxial area is that only lit-
tle of the specimen is under biaxial and the global 
response is dominated by other load cases. Only 
14% of the global force goes through the sections 
of the biaxial area.

In order to increase the size of the biaxially 
loaded area Mönch & Galster (1963) proposed 
to cut slots in the specimen limbs. Adapting their 
idea to numerical optimization methods allows to 
search for non intuitive optimal solutions for the 
positioning and size of the slots. The best solution 
found with two slots per limb increases the size of 
the biaxial area by 242%. This means that a larger 
portion of the specimen is effectively under biaxial 
load. Including up to four more slots increases the 
size of the biaxial area by another 11%. The solu-
tion with six slots shows that rather small changes 
influence the solution significantly. Omission of 
the two smallest slots with a length of only 10% of 
the next longer slots degrades the solution by 39%.

Figure 4 shows the computed displacement fields 
for the two configurations with no and with four 
slots per limb. As expected from the computed sizes 
L the deformation field for the latter configuration 
is much more homogeneous for a larger area.

In case of the geometry with four slots the ratio 
between the global force and the force acting on 
the sections of the biaxial area is significantly 
increased compared with the situation without 
any slots (62% vs. 14%). This finding suggests that 
most of the global force is held by the biaxial area 
and that the influence of modes other than equibi-
axial is reduced.

6 CONCLUSIONS

Material parameters determination from planar 
biaxial materials testing needs knowledge of the 
local strains and stresses at the biaxially loaded 
part in the specimen. As we show in Section 2 fit-
ting only global displacements and forces acting 
on cruciform specimens can lead to significant 
errors. Local strains can be measured by optical 
methods and are therefore directly accessible. This 
is different for the local stresses, their value has to 
be estimated from the global forces measured at 
the clampings.

The ratio between global forces and local stresses 
depends on the geometry of  the specimens and, 
for the case of  nonlinear material behavior as well, 
on the material parameters. Linear elastic materi-
als are a special case, where the latter dependency 
does not hold. For such materials Demmerle & 
Boehler (1993) presented a specimen shape for 
which the local stress equals the nominal stress.

For soft biological materials that have generally 
a nonlinear mechanical behavior this dependency 
of  the ratio between global and local forces can be 
minimized by enlarging the biaxial area. A large 
area under biaxial load ensures that most of  the 
force flux passes it and therefore the depend-
ency of  the ratio gets smaller. If, in addition, the 
stress field in the biaxial area is homogeneous the 
stresses can be determined from the globally act-
ing forces.

Following the idea of Mönch and Galster 
(1963) we present a numerical method to maximize 
the area of homogeneous (equi-) biaxial loading 
in cruciform shaped specimens undergoing biaxial 
materials testing. Our findings suggest that already 
a low number of slots helps to increase the biaxial 
area significantly.

Using three slots in an optimal arrangement the 
ratio between global and local forces varies for only 
4% with ongoing deformations. This variation can 
be neglected considering other imprecisions that 
occur during soft tissue testing. Using this geome-
try around 60% of the total force goes through the 
biaxial area instead of only 14% in the case with 
no slots. Thus the dependency of the ratio on the 
material parameters is reduced.

Our results need to be validated experimentally 
but we can conclude that the uncertainties in mate-
rial parameters determinations can be minimized 
using an optimized specimen geometry.

The possibility of creating slotted specimens 
from soft biological materials may sometimes be 
restricted. Therefore we will focus in a next step on 
cruciform specimens with cuts in the limbs.
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1 INTRODUCTION

1.1 Framework

In the automotive industry rubber suspension bush-
ings are essential for technical and safety reasons. 
A suspension bushing generally has requirements 
to the stiffness in 3 translational and 3 rotational 
directions. The stiffness in this context is the slope 
of the quasi static force-deflection curve which is 
describing the applied force or torque as a func-
tion of  the associated deformation. These so 
called characteristic curves are typically starting 
softly almost linear and are strongly progressive at 
higher deformations.

2 DESIGN CONSIDERATIONS

The design of the suspension bushing has to con-
sider the demands of stiffness and others like 
durability for the assembly-ready component. This 
article will focus on the quasi static elastic behavior 
of the suspension bushing.

2.1 Layout demands

The main layout properties for a suspension bush-
ing are the geometry, i.e. the thickness and shape of 
the elastic springs and the gap sizes and shape of 
the bump stops. While the thickness and shape 
of the elastic springs define the initial character-
istic of the suspension bushing, the gaps to the 
bump stops are a feature which is controlling the 
upturn of  the characteristic curve, i.e. starting 
the progressive branch of the suspension bushing.

Furthermore the material hardness which 
 determines the elasticity can be adopted by the 

Layout process of pre-stressed rubber suspension bushings

J. Jagusch & A. Firla
ContiTech AG & ContiTech Vibration Control GmbH, Hannover, Germany

ABSTRACT: Rubber suspension bushings are well tuned components of a complex dynamic system. 
Thus a good achievement of the demanded specification is very important. Numerical methods like FEM 
are common tools to forecast the elastic characteristics. Besides the geometry of the final component 
some essential steps like shrinkage and swaging within the manufacturing procedure have to be consid-
ered. A simulation of the inverse processes is applied for the definition of the mold geometry of the rub-
ber component. These inverse steps allow a direct shape determination of the mold design which will meet 
the specifications of the finished part.

portion of carbon black. The range of hardness is 
usually limited by acoustic and comfort demands.

2.2 Process demands

Manufacturing of rubber components comprises 
several steps like vulcanization and in case of sus-
pension bushings, swaging is a common forming 
process for pre-stressing, thus more stiffness and 
enhanced durability is provided. These steps pose 
a challenge for the designer who has to develop 
the mold geometry such a way that the suspension 
bushing in the final state meets the requirements.

For small gap sizes additional restrictions have 
to be considered since gaps are limited by the mold 

Figure 1. Typical suspension bushing with elastic springs 
and bump stops, outer sleeve and inner part.
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geometry which needs a minimum wall thickness 
for a stable molding.

In case of  radial swaging and non cyclic sym-
metric layout the shrinkage and swaging procedure 
will change eccentricity of the inner part, gap sizes 
and all other geometric properties.

3 INVERSE PROCESS SIMULATION

The analysis of suspension bushings by means of 
the Finite Element Method is common practice. In 
the usual design process the design engineer sets 
up an initial draft which will be analyzed in order 
to determine the characteristic quasi static force-
deflection curves.

This task is extended in this presentation by 
requesting the initial geometry of the mold design 
which shall meet the specifications of the fin-
ished part. Therefore the Finite Element analysis is 
extended by the inverse process of shrinkage and 
swaging. The approach is illustrated by means of a 
typical example of a suspension bushing.

3.1 Initial model geometry

A draft design based on experience and analytical 
tools for the layout of the finished suspension part 
is created. It considers the elastic requirements 
of the rubber springs and the gaps of the bump 
stops. Pre-stressing due to swaging and s hrinkage 
is not considered in this stage. Figure 2 shows one 

quarter of the created CAD model with initial top 
gap gt = 0.0 mm and bottom gap gb = 3.0 mm. 
The position of the inner part is referenced to be 
1.20 mm, which is the initial distance of the inner 
part’s axis to the centerline of the outer cylindrical 
surface.

A Finite Element model is set up out of this 
geometric draft design. The inner metal and the 
outer sleeve are modeled by rigid conditions on the 
respective interfaces.

The material properties are selected as incom-
pressible hyper-elastic description. For simplicity a 
Neo-Hooke formulation with C10 = 0.747 N/mm2 
was applied. The value of C10 was determined by 
measurement of the stiffness at an early stage pro-
totype and comparison to a FEM-Simulation. For 
the contour determination the material param-
eters and the hyper-elastic approach are of minor 
influence.

3.2 Mold geometry

The shrinkage and the swaging are applied in an 
inverse sense. This way the expected mold  geometry 
will be approximated. The provisional swaging is 
applied as a radial deformation at the outer surface 
of the rubber component. Figure 3 illustrates the 
swaging in radial direction which is outward in this 
inverse step and symbolized by outward arrows. 
An extension of the outer radius of c = 1.85 mm 

Figure 2. Initial guess geometry of finished part (quar-
ter model due to symmetry).

Figure 3. Boundary conditions for inverse swaging and 
symmetry.
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was applied. Additional boundary definitions are 
the symmetry conditions. The inner part can move 
up- and downwards. A total  movement of the 
inner part of 1.87 mm downwards with respect to 
the cylindrical centerline was computed. Therefore 
the positioning of the inner part will be 

1.20 mm – 1.87 mm = −0.67 mm

below the centerline of the outer cylinder in the 
mold geometry.

The inverse shrinkage by an amount of 1.5% is 
modeled by a temperature dependent expansion ratio 
of αt = 0.01 K−1 and a related fictive  temperature 
field of Δθ  = 1.5 K applied to the rubber. This way a 
rubber growth or swelling of 1.5% is modeled.

As a result the movement of the inner rigid 
part and the gap sizes in the mold geometry are 
determined. The final deformed shape of the 
FEM-model is interpreted as the mold geometry. 
The deformed shape can be transferred to the 
CAD-System and is the bases for the mold design. 
Furthermore the resulting FEM-state can be used 
for the simulation of the swaging and shrinkage 
process, but has to be released from stresses for the 
initial configuration of the following step.

Figure 4 shows the computed mold geometry 
after application of inverse processes. The growth 
of the top gap compared to figure 1 is obvious, 
while the bottom gap is almost unchanged. Also 
the position of the inner part can be observed and 
a relative displacement of 1.87 mm downwards is 

stated. All gap sizes and the displacements of the 
inner part are summarized in Table 1.

3.3 Process steps

In a second step a new FEM-model is set up start-
ing from the before computed mold design as an 
initial, unstrained state. The swaging and shrink-
age is applied in the order according to the real 
process. First shrinkage of 1.5% is applied to the 
r ubber material by a fictive temperature analo-
gously to the first FEM-analysis.

In the following step the swaging of 1.85 mm 
radial deformation is applied to the outer surface 
of the rubber suspension bushing. The resulting 
shape with gaps and the deflection of the inner 
part are again computed and the deformed shape 
is depicted in Figure 5.

The initial gap at the top side is closed after 
swaging. In case of an abandonment of the swag-
ing procedure a mold with a closed gap was not 
producible since the mold needs a minimum of 
substance thickness.

4 MEASUREMENTS

4.1 Geometric properties

The main geometric properties, i.e. the gap to the 
vertical blocking positions and the movement of the 
inner part are tracked in the states of production 
and compared to the results of the FEM analysis.

Table 1 summarizes the measurements and com-
pares it to the FEM results.

Figure 4. Mold geometry after inverse swaging and 
swelling.

Figure 5. Geometry of the finished part after swaging 
and shrinkage.
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The dimension “Center” is the position of the 
initial axis of the inner part. The differences of the 
positions yield the deflection of the inner part for 
each production step.

4.2 Elasto-static properties

For the final evaluation of the suspension bush-
ing the characteristic vertical load-deflection curve 
is compared to the specified curve. A vertical 
preload of 430 N has to be considered when evalu-
ating the initial stiffness, which is calculated to 
be cf  = 375 N/mm whereas the measured value is 
cf  = 368 N/mm.

The graph in Figure 6 shows the characteristic 
deflection curve of the prototype and the computed 
curve after shrinkage and swaging compared to the 
specification. The operating point is the position 
of the inner part with pre-load applied. The initial 
stiffness is calculated at this position.

The following Figures 7 and 8 show overlays 
of photographs of the prototype and front views 
of the FEM-model in a translucent plot. These 
illustrations allow a comparison of the geometric 
properties of the prototypes and the results of the 
FEM-model. The translucent part of the deformed 
FEM-model comprises only the front section. This 
view allows a better comparison of the elastic 
springs’ width.

Figure 7 is an overlay plot of the non-swaged 
state. The prototype on the picture includes the 
outer sleeve which has to be considered. The outer 
circle of the FEM-section is scaled and positioned 
over of the photograph in such a way that the 

Figure 6. Characteristic curves compared to specification.

Figure 7. Suspension bushing before swaging. Front 
section of the FEM-model over the prototype.

Table 1. Deformation of rubber component during the 
design and manufacturing process.

State model
Top 
gap mm

Bottom 
gap mm

Center*
mm

Initial design finished part (only virtually designed)
FEM 0.0 3.0  1.20

Mold geometry
Prototype mold 3.28 2.83 −0.67
FEM 3.28 2.83 −0.67

Non-swaged part
Prototype 5.65 2.60 −1.70
FEM 4.40 2.40 −1.32

Finished part after swaging
Prototype 0.30 3.00  0.90
FEM 0.00 3.22  1.40

* Center means vertical position of a reference point at the 
inner part with respect to the centerline of outer cylinder 
of the outer rubber surface. The initial value is according 
to the specification. Upwards is positive for this value.

outer rubber surface of the prototype fits the outer 
diameter of the FEM-section as well as possible.

The prototype has smaller sizes of the elastic 
springs while the slope angle agrees well. Also 
the upper bump stop is smaller in the prototype 
than in the FEM-model. The minimum gap sizes 
at the bump stops of the prototype cannot be 
seen from this picture because the perspective in 
the  photograph does not allow a view to the clos-
est gap location. The front section view of the 
FEM-model does not show this size either due to 
the mold incline. This is even more obvious at the 
lower bump stop, which is not included in the front 
section of the FEM-model, because it is positioned 
more to the middle of the suspension bushing.
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Figure 8 shows the same comparison of the 
prototype and the computed FEM-model shape 
for the swaged state. The adjustment of the scaling 
and position is performed analogously to figure 7.

Also in this state the elastic springs keep a bit 
smaller in width at the prototype than in the FEM-
model and the slope angle of the springs agrees 
well. Concerning the gap views the deficiencies of 
figure 7 apply also for figure 8. The photographs 
of the prototypes do not allow a direct view to the 
top and bottom gap of the bump stops. The mini-
mum gap sizes are listed in table 1.

5 DISCUSSION

The overall situation looks well fitted by the 
 prototype and the FEM-model respectively.

Concerning the geometric properties the slope 
angle of the elastic springs is acceptable, but the 
width of the elastic springs is smaller in the pro-
totype than in the FEM-model. Deviations in 
the assumed shrinkage may be one reason for 
this difference. The comparison of the contour is 
somewhat difficult, since the mold incline and the 
perspective in the photograph distort the shape of 
the prototype. The perspective influence can be 
well seen from the bore hole in figure 8 at the inner 
part, which looks to be squeezed, but is straight 
in reality.

The stiffness demands agree well with the 
 requirements in the initial range. For higher 
load levels the FEM-model was not able to con-
verge. The measured curve is too progressive for 
high deformation levels. Some corrections in the 

design-shape of the bump stops will be necessary 
for a  bet ter fit in the high deformation range. At 
least the fitting of the characteristic curve for high 
deformations was not the focus of the presented 
procedure. The most important goal is to meet the 
initial stiffness, which was very good achieved.

The computed geometric measures of the gaps 
and the deformation of the inner part are close to 
the specified values. The final position of the inner 
part is forecasted by the FEM model to be 1.4 mm 
above the centerline of the suspension bush-
ing. The intended positioning of 1.2 mm was not 
achieved in the FEM model. The prototype shows 
a position of 0.9 mm of the inner part which devi-
ates 0.3 mm from the intended value of 1.2 mm. 
This can easily be adjusted by the positioning of 
the bore hole at the inner part.

The specific situation of  the presented 
 suspension bushing is the nonlinear effect due to 
contact condition during the swaging procedure. 
Without contact the inverse process should be 
identical to the reversed original process. In that 
case all measures were identical but changed in 
sign. With contact appearance the process is not 
just the negative mapping of the reversed shrink-
age and swaging steps.

Furthermore the position of the centerline is 
uncertain since the part is out of roundness at 
the outer diameter. Especially the swaging process 
yields a non circular outer shape when the swaging 
die is removed. This leads to deviations between 
simulated model which is ideally circular and the 
prototype. The model can be extended to consider 
this effect, but was not investigated so far. Never-
theless at least the characteristic of the bushing 
in the assembled state is of interest. In the vehi-
cle the bushing is enclosed by the lug of the strut 
where it will be operating. The lug will enforce the 
 roundness of the suspension bushing.

6 CONCLUSIONS

The presented procedure is an effective process to 
determine the shape necessary for a mold which 
meets the specifications for the finished part. An 
iterative development process is shortened and less 
prototyping loops will be needed. The designer 
yields a robust and reproducible process to easily 
accomplish his tasks.

Figure 8. Suspension bushing after swaging. Front 
 section of the FEM-model over the prototype.
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1 INTRODUCTION

Flexography is mainly used for packaging appli-
cations, but also is a potential technology for the 
micro manufacture of electronic devices and bio-
sensors. The behaviour of a flexographic plate as it 
passes through the printing nip is a key parameter 
in controlling quality of the printed feature. A mod-
ern flexographic plate is made of a photopolymer 
material, which is subjected to back exposure to 
UV light to achieve a desired relief  depth, followed 
by front exposure to UV light through a mask to 
harden the image regions. Soft non-image areas are 
subsequently washed away leaving the raised image 
area on the plate. Geometry of the raised feature 
on the plate will affect their deformation as they 
are subjected to the engagement and therefore the 
final printed feature size and its quality.

To assess the feasibility of  using flexography 
for the printing of  fine features for electronics 
and biosensors a comparison of  two, commer-
cially available, plate making technologies have 
been compared to identify their limits. Both 
plates were made under standard processing con-
ditions. There were subtle differences to the way 
the plates were imaged. The two plates were pro-
duced with the same image. The image included 
microscopic line features as well as various track 
and gaps.

Effect of plate technology and orientation on flexographic 
line deformation

T.V. Korochkina, J.A. Cherry, T.C. Claypole & D.T. Gethin
Welsh Centre for Printing and Coating, School of Engineering, University of Wales Swansea, Swansea, UK

ABSTRACT: This paper describes both experiments and constitutive models to predict the response of 
a photopolymer plate during ink transfer cycle. Two, commercially available, plate making technologies 
have been compared to identify their limits. The two plates were produced with the same image which 
included fine line features. The lines were measured using white light interferometry to obtain line profile. 
Varying results have been observed between the two plates, and overall it would appear that plate A pro-
duces the widest lines at all nominal values and the greatest line height at the majority of nominal values. 
A nonlinear numerical model of the individual line has been developed and used to examine the deforma-
tion of the plates under a range of printing conditions and image characteristics. Three hyperelastic con-
stitutive models were fitted with the experimental data (Mooney, Ogden and Yeoh). Numerical results and 
comparisons show that both Mooney and Ogden constitutive models are applicable to multiaxial states of 
stress and strain. The numerical results agree well with the experimental data in both simple tension and 
pure shear. Numerical models have been used to determine the change in line profile, as the deformations 
occur on a microscopic level. The simulations yield information on contact parameters. The results are 
reported and discussed.

Prior to modelling the two plates were measured 
using white-light interferometry to identify the true 
line size and profile produced for the nominal value.

2 EXPERIMENTAL

2.1 Material characterization

It is broadly accepted that at least two different 
modes of deformation are required to derive the 
material constants that define the stress strain rela-
tionship accurately for input into a FEA model. 
Two photopolymer sheets were cast at 1.7 mm 
thickness for mechanical tests. Test samples 25 mm 
wide for tensile test and 40 mm wide for pure shear 
tests were prepared. The tests were carried out using 
an Instron 4301 universal test machine at TARRC, 
UK at 23°C in laboratory air.

To determine the material parameters, two dif-
ferent sets of physical test data, namely, uniaxial 
tension and pure shear were used. Experimental 
data points were from the 25% strain loading path 
of the third cycle, where a stable equilibrium stress-
strain curve was obtained.

2.2 Printing plates

2.2.1 Plate image
The two plates used will be referred to as A 
and B. Each plate was produced with the same 
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2.2.2 Line profile
The lines were measured using white light inter-
ferometry which allows accurate measurement of 
three-dimensional profile of the line, Figure 2. An 
example of two-dimensional profile of the same 
line is shown in Figure 3. In this paper 300 μm 
individual line results in the vertical, horizontal 
and diagonal directions are presented.

The measured line width has been compared 
against the nominal value of 300 μm for two plates 
for all line directions. A large variation was observed 
in the horizontal line widths for the two plates. 
Plate A produces wider lines than plate B. Line 
gain for plate A was approximately 1%. Unlike the 
plate A, plate B produces the line loss of approxi-
mately 11%. As with the results displayed for the 
horizontal line width, plate A produces the widest 
vertical lines. Line gain/loss is still observed for the 
plates. Once again plate A produces wider diago-
nal lines than plate B (see Figure 4). The line gain 
for diagonal lines for plate A is considerably larger 
than for the horizontal and vertical lines, whereas 
for plate B it is similar to the loss seen for the hori-
zontal and vertical lines.

The measured line height has been compared for 
two plates for all line directions. Plate A displays 
the greater line height than plate B, approximately 
670 μm for diagonal lines, Figure 4. The results for 
vertical line height show similar trends to those for 
the diagonal lines. The results for horizontal line 

Figure 1. Plate image. Figure 3. Two-dimensional line profile.

Figure 2. Three-dimensional line profile.

image, Figure 1. The image included line features 
varying from 10 μm to 300 μm at 0° (referred to as 
‘horizontal’), 45° (referred to as ‘diagonal’) and 90° 
(referred to as ‘vertical’) to print direction as well 
as various track and gaps.
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height show similar trends to those for the diagonal 
and vertical lines. However both plates display a 
slight increase in the line height. Plate B shows the 
line height closer to the nominal value of 635 μm.

3 MODEL DEVELOPMENT

3.1 Software

ABAQUS with extended capabilities necessary to 
analyse the mechanical behaviour of elastomer 
materials was used as the simulation system. Non-
linear FEA was employed since the line geometry 
changes as the load is applied and contact evolves. 
An incremental implicit scheme was applied to 
simulate the progressive engagement and to facili-
tate capture of the consequent deformation of the 
line and contact evolution through iteration.

3.2 Model verification

The experimental data of the uniaxial tension and 
pure shear tests were used to curve fit the Mooney 
(Mooney 1940), Ogden (Ogden 1972) and Yeoh 
(Yeoh 1990) laws. A comparison of the experimen-
tal and fitted data is plotted in Figure 5 from low 
to high strain levels. Results show that the Yeoh 
model can only describe the photopolymer behav-
iour accurately at low strains because it does not 
allow representation of the finite extensibility of 
real networks. The predicted and experimental 
results for both tests match within ±5%. It is impor-
tant to underline that this is a global error; the spe-
cific accuracy at a given point of the model could 
differ. Both the Mooney and Ogden models have 
better results over the whole characteristic. Nev-
ertheless, the Mooney model exhibits an error of 
about ±3% which is slightly higher than that of the 
Ogden model. This is possibly due to Ogden model 
dependence on the second invariant. The Ogden 

computational and experimental results for both 
tests match very well within ±2.5% error for both 
plates and will now be used in numerical simula-
tions of line deformation.

The material parameters for Mooney and 
Ogden models for plate A and B are summarised in 
Tables 1 and 2 respectively. The material parame-
ters were determined through an appropriate least-
squares-fit procedure, which minimizes the relative 
error in stress.

3.3 Finite element modelling

Six numerical models of the line were constructed 
depending on plate technology and line orienta-
tion. When building each model, the geometry was 
constructed to mach the plate, measured with the 
white-light interferometer (section 2.2.2). The line 
shapes used for the two model types that repre-
sent the concave (plate A) and flat (plate B) sur-
face areas of the lines, are shown in Figure 4. Only 
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Table 1. Values of the Mooney material parameters.

Plate C10 (MPa) C01 (MPa)

A 1.174 −0.662
B 0.431   0.059

Table 2. Values of the third order Ogden material 
parameters.

Plate
μ1
(MPa)

μ2 
(MPa)

μ3 
(MPa) α1 α2 α3

A 36.698 −17.503 20.069 6.819  8.320   5.264
B  0.559     8.313E−6  0.421 2.433 20.299 −1.058
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half  of the line was used for numerical modelling 
(Figure 6) due to symmetry. The mesh of the whole 
model is shown, illustrating the increased mesh 
resolution of the line.

Engagement was simulated by displacing a plain 
flat rigid surface on to the lines on the flexographic 
plate. The plate was assumed to be flat, as the 
radius of the impression cylinder is large in com-
parison with the size of the line. The engagement 
was then applied normal to the line surface instead 
of a rolling engagement. The engagement between 
the plate and substrate was varied for each plate at 
1, 2, 3, 4 and 5thou.

For the purpose of the numerical study, the 
models assumed negligible friction in the contact 
to simulate the lubricating effect of the ink when 
printing on to a non-absorbent substrate. A low 
friction coefficient is likely to lead to more image 
distortion due to a tendency for a sliding behaviour 
and this represents the worst case condition. The 
entire plate thickness was included as well as the 
mounting tape used during printing.

4 RESULTS AND DISCUSSION

Figure 7 shows a typical contact pressure distri-
bution during contact evolution. The legend on 
the right hand side of the graphs represents the 
amount of vertical displacement of the impres-
sion cylinder in mm. As expected, by increasing 
the vertical displacement, the contact pressure is 
increased. The graphs also show an impact on the 

contact area, in that the increase in engagement 
increases the contact area. There is a significant 
increase in contact pressure towards the edge of 
the line. Figure 8 shows the corresponding results 
for the effective stress. The high stress near the line 
edge of the printing plate means that this is the 
point where the plate will experience significant 
initial wear. This will degrade the plate and will be 
critical for print registration and reproducibility.

The combined effect of engagement and plate 
technology on contact pressure distribution for 
vertical lines is shown in Figure 9, plotted against 
actual contact area on the plate. A large variation 
was observed in the contact pressure distribution 
for the two plates. Plate A displays significantly 
lower contact pressure for first half  of the con-
tact area than plate B. The opposite is observed 
for the second half  of the contact area. This 

Figure 6. Mesh of full model.
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contact area for horizontal line of the plate B for differ-
ent vertical displacements.

Figure 8. Effective stress field in horizontal line for the 
plate B.
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was attributed to one point initial contact due 
to the concave shape of the line top for plate A, 
Figure 4. As engagement increased, contact pres-
sure increased, with similar differences between 
consecutive engagements for both plates. For plate 
A, the contact area for all engagements remains 
almost constant. For plate B, the contact area 
increased slightly by ca. 0.02 mm.

The results for horizontal line contact pressure 
distribution show similar trends to those for the 
vertical lines for both plates.

Figure 10 shows contact pressure distribution 
for diagonal lines. Once more, a large variation was 
observed in the contact pressure distribution for 
the two plates. Unlike the results for vertical and 
horizontal lines, plate A produces a greater con-
tact area than plate B. This resulted in reduction 
of maximum contact pressure by approximately 
0.5 MPa for all engagements.

Figure 11 displays the plate lateral displacement 
for vertical lines as a function of position from the 
centre line of the line (x distance). This has been 
computed by noting the displacement of nodes on 
the line surface. With the increase in engagement, 
the X-displacement increases along the half  con-
tact area, remains constant at low engagement or 
decreases at higher engagement at the beginning 
of the second half  and reaches its maximum at the 
end. As shown plate deformation occurs when it is 
brought into contact with either the anilox roller 
or impression cylinder. Plate A produces greater 
X-displacement than plate B at all engagements. 
The results for horizontal line X- displacements 
show similar trends to those for the vertical lines 
for both plates. The results for diagonal line 
X-displacements show similar trends to those for 
the vertical and horizontal lines for both plates, 
Figure 12. The crossover between the curves 
reflects an increase in contact area for plate A. 
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Image distortion occurs due to differences that 
are present in this contact, for example as a conse-
quence of different frictional behaviour. This will 
be addressed in a later study.
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5 CONCLUSIONS

A combined experimental and numerical investiga-
tion into the detailed behaviour of the flexographic 
plate line during ink transfer has been described. 
A numerical two-dimensional model has been 
developed and tested against experimental data. 
The numerical model yielded detailed informa-
tion about the line deformation during ink trans-
fer including the contact pressure distribution, the 
size of the contact area and X,Y-displacements as 
well as stress and strain fields in the flexographic 
plate. The effect of the engagement (vertical dis-
placement), plate technology and line orientation 
was studied.

It was found that increasing engagement 
increases the pressure in contact between the plate 
and impression cylinder for both plates. The plate 
B showed a marked reduction in contact pressure 
for a given vertical displacement. This resulted in 
significant reduction of the effective stresses at the 
contact surface of the plate and under it.

The effect of line direction was investigated 
for two commercially available plates. The results 
obtained show that the vertical and horizontal lines 
show similar trends in terms of contact pressure 
distribution and contact area. It was discovered 
that, the diagonal lines on the other hand show an 
increase in contact area for plate A and a reduction 
in contact area for plate B in comparison to both 
vertical and horizontal lines.

X-displacements on the line have been calcu-
lated. Plate B showed a significant reduction in 
X-displacements for a given vertical displacement. 
These may be compared with the printed line 
width. This will be explored in future studies.
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Thermo-mechanical finite element analysis of a viscoelastic model
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ABSTRACT: In this paper, 3-dimentional finite strain analysis of thermo-mechanical viscoelastic 
 material was discussed to predict the permanent deformation of natural rubber (NR). Relaxation times 
for viscous characteristics of this model were calculated by the Arrhenius equation and temperature of 
rubber. Furthermore, uniaxial loading tests by loading test machine and the stress-relaxation tests in the 
thermal chamber were conducted to evaluate the mechanical and thermal characteristics and effect of 
temperature on the stress relaxation to confirm the applicability of the simulation code. From the simu-
lated results, the developed code shows enough accuracy to predict the stress reduction of natural rubber 
parts under the long-term compression.

warming coefficient of about 24,000 times that of 
carbon dioxide, though electric insulation func-
tions have improved in efficiency. Naturally, many 
O-rings are used between the GIS main body and 
the aluminum flange to seal in the SF6 gas.

The degradation rate of rubber is known to 
follow the Arrhenius equation (Arrhenius 1889). 
Therefore accelerated aging tests that apply com-
pression on O-rings at a higher temperature than 
normal environmental conditions can be used to 
estimate permanent strain in a short amount of 
time. Once the activation energy for thermal deg-
radation is obtained, estimation of exchange time 
is possible using the Arrhenius equation.

However, for the replacement period obtained 
from the Arrhenius equation, the temperature is 
assumed to be constant. Moreover, it is difficult 
to apply to O-rings under temperatures that vary 
greatly.

In this paper, we show the finite element analy-
sis of a thermo-mechanical viscoelastic model 
that allows the prediction of permanent strain 
of  rubber-like materials. Experimental results of 
stress reduction tests of natural rubber (NR) under 
various temperatures are also shown. From these 
test results, thermal and mechanical coefficients 
for numerical simulation were approximated.

2 SIMULATION METHOD

2.1 Viscoelastic model

In this section, we introduce the volumetric and 
deviatoric multiplicative split first suggested by 

1 INTRODUCTION

1.1 Lifetime of rubber parts

The prediction of the lifetime of rubber parts 
such as elastomer O-rings and sealing elements is 
an important issue for all mechanical devices used 
for electricity. Radiated and chemical gases and/or 
fluids, and mechanical oil leakages, even in small 
amounts, are not desirable for the transmission or 
generation of electricity. Therefore replacement 
and maintenance schedules for O-rings and sealing 
elements should be appropriately set.

The Japanese Industry Standards (JIS K 6262) 
and other standards describe aging tests for O-rings. 
In the JIS, permanent strain that defines the ratio 
of elastic and plastic deformation of O-rings is used 
to determine replacement time. Permanent strain is 
given by the following expression:

ε p
d d
d d

=
−
−

×0 1

0 2
100 (%)  (1)

where, d0 and d1 are section diameter before and 
after deterioration, respectively. The depth of the 
O-ring ditch is d2. Generally, O-rings are exchanged 
when permanent strain εp is larger than 80%.

1.2 Gas-insulated switchgear (GIS)

The gas-insulated switchgear (GIS: see Fig. 1) is a 
piece of electric insulation equipment used to seal 
aggressive gas (sulfur hexafluoride: SF6) from the 
environment. The SF6 gases used produce a global 
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Flory (1961). The deviatoric part of the deforma-
tion gradient tensor is given as

F J F=
− 1

3 ,  (2)

where J is the determinant of the deformation gra-
dient tensor F. The second Piola-Kirchhoff stress 
tensor S of  the viscoelastic material is given by 
(Simo 1987, Simo & Hughes 1997):

S
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Jpi
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= − +
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−∑2 ∂
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Q C
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1
 (3)

where C and C
–

 are the right Cauchy-Green ten-
sor and volume-preserving of  the right Cauchy-
Green tensor, respectively. W and p are the strain 
energy function of  elastic deformation and hydro-
static pressure, respectively. Qi and N are the 
 viscous stress tensor and the number of  dashpots 
in  Figure 2, respectively. The viscoelastic stress Qi 
 satisfies the following evolution equations includ-
ing material temperature θ (K) as follows:
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where τi(θ) is the relaxation time of a dashpot and 
the notation DEV is given by

DEV [ ] ( ) ( ) : .• = • − •[ ] −1
3

1C C  (5)

From the results of the stress relaxation tests 
on NR block specimens, we applied the following 
relationships to the temperature-dependent stress 

relaxation behavior of rubber materials using the 
Arrhenius equation.

τ θ τ θ
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τ θ
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0

0

exp
 (6)

where α is the rate constant of the chemical reac-
tion depending on the temperature of the rubber, 
R is the gas constant (= 8.31447 J/K/mol), θ0 is the 
referenced temperature, E is the activation energy, 
and A is the prefactor. Equation (6) means that the 
relaxation time τi(θ) of all dashpots shortens uni-
formly with an increasing temperature.

3 EXPERIMENTS AND MODELING

3.1 Static loading test of NR

The NR specimens used for the static loading test 
and relaxation test were cube-shaped, with height, 
width, and depth all equal to 51 mm (Fig. 3).

The shear modulus of the NR was 0.6 MPa, 
and Seki et al., obtained the strain energy function 
W of  the NR using a biaxial test of the NR sheet 
specimen as follows (Fukahori et al., 1993): 

∂
∂

W I
I

C C I C I

C C I

A

A
A A A A A

A A A

( )
= + −( ) + −( )

+ −( ){ }
1 2 3

2

4 5

3 3

3
,

exp

 (7)

where I1  and I2  are the first and second invari-
ants of the volume-preserved right Cauchy-Green 
tensor. Coefficients of equation (7) are shown in 
Table 1.

Figure 1. Gas-insulated switchgear (GIS). Figure 2. Maxwell viscoelastic model.
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A uni-axial loading test machine was used for 
the static compression test. The compressional 
deformations corresponding to 10% and 20% of 
height were applied to the NR specimens at room 
temperature. The relationships between vertical 
load and displacement resulting from the loading 
test and 3-dimensional Finite Elemental Method 
analysis are shown in Figure 4.

For numerical simulation, 1,000 (10 × 10 × 10) 
displacement/pressure mixed elements (Hughes 
2000) were used for FEM modeling. The mean 
stress distribution resulting from the numerical 
simulation of the loading test is shown in Figure 5.

Although the stiffness calculated using the num-
erical simulation was slightly larger than that of the 
loading test, their tendencies correspond well.

3.2 Stress relaxation test for NR

The stress relaxation tests for NR were conducted in 
a thermal chamber under three constant temperature 
conditions. The test conditions are shown in Table 2. 
The test specimens were kept at 333 K, 353 K, and 
373 K constantly after applying a compressional 
deformation of 10 mm (20% of height) using SUS 
jigs. The surface temperature of a specimen was 
measured with a thermocouple, and the vertical load 
was measured using the heat-resistant load cell.

Figure 6 shows 30-day results at the 353 K con-
dition, and 10-day results at the 333 K and 373 K 
conditions. Test results are normalized by dividing 
the maximum load.

3.3 Modeling of stress relaxation

The viscoelastic stress reduction under a con-
stant temperature and deformation is given as the 

Figure 3. NR specimen.

Table 1. Coefficients of strain energy function.

A CA1 CA2 CA3 CA4 CA5

1 2.05E-01  1.32E-02 2.35E-04  0.171 −2.12
2 1.35E-02 −1.61E-03 6.32E-05 −6.87E-02 −6.44

Figure 4. Relationships between vertical load and dis-
placement of NR block.
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Table 2. Test conditions of relaxation tests.

Temperature (K) Days Vertical deformation

333 K 10 10 mm
353 K 10, 16, 30 10 mm
373 K 10 10 mm
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 following relationship when the deformation is 
applied at t = 0:

σ
σ

γ τ θ( )
( )

/ ( )t
ti i

i

N

0 1
= −( )

=
∑ exp  (8)

We introduced 7 spring and dashpot connec-
tions in parallel to approximate the relaxation 
times τi(θ0) and material parameters γ i from the 
30-day test results under the referenced tempera-
ture θ0 (353 K). Here the relaxation times τi(θ0) 
were assumed as follows:

τ θi
i

N
i s( ) [ ]( )

0
1

210
=

+∑ =  (9)

It was then possible to calculate the acceleration 
rate α as 0.092 at the 333 K condition, and 4.53 at 
the 373 K condition.

In Figure 7, the logarithm of α and the recipro-
cal of absolute temperature (1/θ) were plotted on 
the vertical and horizontal axes, respectively. The 
relationship between the logarithm of α and the 
reciprocal of absolute temperature shows good lin-
earity. This indicates that the stress relaxation of 
NR follows the Arrhenius equation.

From the linear approximation of the test, we 
obtain A = exp (34.16) and E/R = 12,135.

The viscous characteristics calculated with a 
referenced relaxation curve (θ0 = 353 K) and the 
Arrhenius equation were shown in Figure 8.

3.4 FEM simulation of permanent strain

Material parameters were introduced to the FEM 
simulation code and numerical simulations of 
stress relaxation tests were conducted.

In the numerical analysis of stress relaxation, 
the heat transfer was calculated at the same times 
and temperatures as each integration point were 
fed to the viscosity.
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Figure 6. Relationships between relaxation of compres-
sional load and time.
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Table 3. Relaxation time τi(θ0) and material parameter 
γi for numerical simulation.

i τi(θ0) γi

1 1.00E + 03 0.009511
2 1.00E + 04 0.10817
3 1.00E + 05 0.077811
4 1.00E + 06 0.14764
5 1.00E + 07 0.561931
6 1.00E + 08 0
7 1.00E + 09 0.094937
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Figure 8. Stress relaxation curves (θ = 333 K, 373 K) 
calculated by the Arrhenius equation and referenced 
relaxation curve (θ0 = 353 K).
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For the boundary condition in the numerical 
simulation, the initial compressional deformation 
was applied to the top surface and the specimen’s 
viscosity and thermal conductivity were calculated 
while maintaining the deformation.

The shape of the NR specimen after the relaxa-
tion test is shown in Figure 9. Permanent deforma-
tion remained.

In Figure 10, permanent strain resulting from 
the relaxation test and the numerical simulation 

were plotted. The permanent strain was calculated 
by using the following equation:

ε p
H h

H H
=

−
− 0

, (10)

where H is the height of the initial test, and h is the 
height of the central body after the relaxation test. 
H0 represents the height of the specimen during 
the relaxation test.

4 CONCLUSION

To estimate the permanent strain of a rubber mate-
rial dependant on the environmental temperature, 
a nonlinear viscoelastic model for rubber-like 
material was proposed.

In this model, the relaxation time of a dashpot 
was calculated using the Arrhenius equation with 
temperatures of each FEM element.

The viscous parameters for the model were 
obtained using a relaxation test on NR.

The relaxation tests were simulated numerically, 
and the permanent strain resulting from the relax-
ation tests and numerical simulation show good 
agreement.
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Figure 9. NR specimen after relaxation test (30 days 
at 353 K).
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Simulation of phantom elastomeric polymer networks
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ABSTRACT: Mechanical properties of elastomeric polymer networks depend on variables such their 
crosslink functionality and density, functionality distribution, presence of diluents and others. Simulation 
of elastomers is one very useful way to study the effect of those variables on properties such as the shear 
modulus of the network. In our contribution we study the structure of phantom polymer networks that are 
produced after successive random chain and crosslink removal. We decode the network structure by inspect-
ing their connectivity, separating the soluble fraction from the gel fraction and calculating the cycle rank 
of the gel. We report the cycle rank which is related to the shear modulus of the network. Additionally we 
report structural details of those networks, such as dangling ends and crosslink functionality distribution.

(Flory 1982, Flory 1985) The cycle rank is defined 
as the number of independent circuits contained 
in a network. These circuits may be assumed to be 
long, each having many chains in them. The elastic 
response of a network is uniquely determined by 
the cycle rank. According to Flory the cycle rank 
may be calculated by subtracting the total number 
of crosslinks μ of  the network from the total 
number of network chains ν plus one, i.e.:

ξ = v − μ + 1 (1)

Qualitatively the cycle rank is the number of 
“cuts” required to reduce the network to a tree. In 
the simulation we implement formula (1) exactly. To 
accomplish that, we rely on a Breadth-First Search 
(BFS) traversal to inspect the network structure. 
BFS returns the breadth-first search (BFS) tree. 
A BFS of a network explores all crosslinks adja-
cent to the current crosslink before moving on. We 
rely on a queue data structure to keep track of the 
order in which crosslinks are to be explored. The 
next crosslink to be explored sits at the front of 
the queue while newly discovered crosslinks get 
inserted in the back. The search ends when the 
queue is empty. Since we rely on Flory’s definition 
of the cycle rank we need to further modify the 
BFS search and delete all chains from the network 
that are not tree chains.

Given the adjacency list A(v) for each crosslink 
v of  the network the following algorithm con-
ducts a BFS. On completion of  the search each 
vertex has acquired a breadth first index (BFI) 
indicating the order in which the vertex was vis-
ited. Vertex u is visited first and BFI(u) = 0. In a 
queue items are removed in the same order that 
they are added.

1 INTRODUCTION

Molecular theories of rubberlike elasticity are a 
valuable tool that aids in the understanding and 
development of rubber compounds for a multitude 
of useful applications. The connection of course is 
through the development and application of con-
stitutive equations.

Simulation tools are also very useful in comple-
menting and guiding the development of molecu-
lar theories by providing information that is either 
difficult or impossible to obtain by experimenta-
tion. Simulations are also very effective in study-
ing network structures that are too complicated for 
analytical theories. In that respect simulation and 
theory can work together in resolving outstand-
ing issues in this fascinating area of technology. 
(Galiatsatos 1995, Galiatsatos 2005).

Simulation tools range from the quantum mech-
anical level through all the way up to finite element 
analysis and continuum mechanics. Due to the 
various limitations of each individual method it is 
advisable to employ methods that address various 
length and time scales.

In this contribution we employ  connectivity 
algorithms and develop simulation tools to study 
the structure of model elastomeric systems as they 
degrade. We focus on phantom networks, where 
interchain interactions are set to zero. The systems 
under consideration have tetrafunctional crosslinks 
and they are perfect, i.e., no dangling ends or dou-
ble strands or any inelastic loops are present.

2 METHOD DEVELOPMENT

One of the most fundamental properties of a poly-
mer network is its cycle rank, ξ, as defined by Flory. 
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1. for all v ∈ do BFI(v) ← 0
2. i ← 1; BFI(u) ← 0
3. add u to the queue
4. while the queue is not empty do

a. begin
b. remove a vertex from the queue, call it w
c. For all v ∈ A(w) do

 i. if  BFI(v) = 0 then
 1. begin
 2. BFI(v) ←i + 1
 3. i ← i + 1
 4. add v to the queue
 5. end

d. end

The last step in our calculation for the cycle rank 
is to subtract the number of edges that is the output 
of the BFS (network to tree) routine from the total 
number of elastically active chains in the network.

Having developed a method to calculate the cycle 
rank we proceed to construct a perfect tetrafunc-
tional network, which will serve as the starting 
point of our simulations. In order to avoid edge 
effects we embed the network on the surface of a 
torus. This allows all crosslinks to have the same 
functionality initially. We should also mention that 
at this point we deal with two dimensional net-
works. However the method described here applies 
to three-dimensional networks as well.

We confirm that all crosslinks of the created 
network have the same prescribed functionality by 
inspecting the Degrees of the Graph representing 
the network.

The degradation process is simulated by randomly 
deleting network chains. The process simply inspects 
a List containing network chain information and 
removes chains form that List in a random fashion.

The next step in the simulation is to separate 
the largest component from the rest of the system, 
which was created by the degradation process. The 
system besides containing this largest component 
(i.e., the gel) now also contains a variety of small 
structures ranging from isolated crosslinks to struc-
tures containing micro-gels (i.e., few crosslinks and 
few chains connected together). To accomplish the 
separation we first partition the Graph G that rep-
resents the degraded network system into connected 
components. We then construct a List containing all 
subgraphs of G induced by the appropriate number 
of vertices for each subgraph. The largest compo-
nent is chosen simply by sorting the List. The Cycle 
Rank of the gel is calculated by invoking the proce-
dure described at the beginning of this Section.

Typical results besides the Cycle Rank, which 
is normalized per network chain, included the 
number of total components in the system, 
the number of chains and crosslinks in the gel 
and the distribution of functionalities in the gel. 

Similar analyses may be applied to the rest of the 
system components which we classify as the solu-
ble fraction (i.e., sol fraction).

While the initial network has a single crosslink 
functionality, all subsequently formed network 
systems and gels have a distribution of functionali-
ties. This makes the gel a heterogeneous network. 
Therefore besides reporting the structural features 
of the gel we also report quantities that are useful 
in describing te heterogeneity of the gel in a quan-
titative way. For that we rely on the Euler number 
of the gel, which is given by: 

NV = −⎛
⎝⎜

⎞
⎠⎟

λ μ1
2

 (2)

where the mean crosslink functionality μ (not to 
be confused with the number of crosslinks, which 
is also represented by the same symbol in eqn 1) is 
given by:

μ =
=

∞

∑kpk
k 1

 (3)

Equation (3) is a function of the probability pk 
that an arbitrarily chosen crosslink has a function-
ality k. So for a model φ-functional network where 
only a single functionality is available and where 
the probability for that functionality to occur is 
always unity, the mean crosslink functionality is 
equal to φ.

Equation (2) contains the quantity λ (lambda), 
the mean number of crosslinks per unit volume. In 
the language of stochastic geometry this quantity is 
called the “vertex intensity”. We identify the vertex 
intensity with the crosslink density of our network.

For us to study the heterogeneous structure of 
the gel we need to study the unbiased estimators 
for that gel. As a reminder, an estimator is a func-
tion of the observable sample data that is used to 
estimate an unknown population parameter (which 
is usually called the estimand).

Let W be an observation window in d-
 dimensional space, where both cases d = 2 and 
d = 3 are of practical interest. Let V denote the 
area (if  d = 2) or volume (if  d = 3) of W. In our 
particular case it is sufficient to set V = 1. Let nk 
be the number of observed vertices of order k 
(i.e., crosslink functionality) in W. Let n be the 
total number of observed vertices (i.e., is the total 
number of crosslinks)

n nk
k

=
=

∞

∑
0

 (4)
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As a reminder, θ1 is an unbiased estimator of θ if  
and only if  B(θ1) = 0, for all values of θ in the parame-
ter space or, equivalently, if  and only if  E(θ1) remains 
equal to θ regardless of the value of θ. The bias of θ is 
defined as B(θ1) = E(θ1)−θ. It is the distance between 
the average of the collection of estimates, and the sin-
gle parameter being estimated.

Unbiased estimators are given by the estima-
tor for the vertex intensity (i.e., crosslink density):
(Tscheschel & Stoyan 2003)

λ^ =
n

V
 (5)

As we have seen the above is essentially the crosslink 
functionality, i.e., total number of crosslinks per unit 
area (volume) in our observance window W. If  the 
network under consideration possesses spatial het-
erogeneity then depending on the window’s size and 
Euclidean dimension (“W” see above) it allows inspec-
tion of the crosslink density of that window and thus 
assessment of the heterogeneity of the system.

The estimator for the mean coordination number 
is given by:

μ^ =
=

∞

∑1

1n
knk

k
 (6)

For a perfect model φ-functional network the 
estimator for the mean functionality is equal to the 
functionality of  the typical crosslink, in this case φ.

The estimator for the Euler number is given by:

NV
^ ^ ^

= −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ μ1
2  (7)

The accuracy of the estimator can be character-
ized by the estimation variance. Finally we calculate 
the estimation variance of NV

^  (this is called “Poisson 
approximation”):

Var N
V

V
^ = + −⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

λ σ μ1
4

1
2

2
2

 (8)

where σ2 is the variance of the order of the typical 
vertex:

σ μ μ2 2 2 2

10
= −( ) = −

=

∞

=

∞

∑∑ k k pk
kk

 (9)

After replacing the unknown quantities in (7) by 
their estimators, a simple estimator is given:

EstofVar N
V

sV

^
^ ^

= + −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

λ μ1
4

1
2

2

2

 (10)

with:

 
s

n
n kk

k

2
2

1

1
1

=
−

−⎛
⎝⎜

⎞
⎠⎟=

∞

∑ μ̂  (11)

3 RESULTS AND DISCUSSION

The initial tetrafunctional network as con-
structed has 16,200 chains and 8,100 crosslinks. 
The normalized cycle rank per chain is 0.5. We 
calculate the mean functionality to be equal to 
four (4), as expected. The estimation variance 
(EV) is equivalent to zero (0), also as expected.

The initial network sets the baseline for the 
rest of the networks which are a result of random 
chain scission of that original network. We created 
9 degraded networks wit an increasing number 
of scissions. For example the final network sys-
tem (i.e. gel and sol combined) in the series has 
the following crosslink functionality distribution: 
{0,776}, {1,2375}, {2,2992}, {3,1633}, {4,324}, 
where the first number of each element in the list 
represents the functionality of the crosslink and 
the second number is the number of crosslinks 
with that functionality. Below we give summary 
results for all gels obtained in this simulation.

Figure 1 shows how the normalized cycle rank 
drops as the number of chains that are removed 
from the network increases. We notice that the 
trend is monotonic for most of the data. How-
ever the curve seems to be reaching an asymptote 
as the number of chains increases to 9,000; over 
50% of the chains of the original network have 
been removed by now. At this point the cycle 
rank is around 0.1; the gel is a very weak struc-
ture. This asymptote is not expected to be the 
limiting behavior for the cycle rank, since even-
tually one would expect that if  degradation con-
tinues the cycle rank will be zero. However this is 
not observed for the results reported here.

The results shown in figure 2 document the 
dependence of the EV on the normalized cycle 
rank. If  one follows the degradation of the net-
work by going from higher cycle rank values to 
lower ones one sees three distinct areas. First 
as the network degrades the EV increases. This 
signifies that a distribution of functionalities is 
being generated as a result of the network deg-
radation. Second one sees that at around a value 
of the 0.3 of the cycle rank and up to around 
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0.1 the EV is more or less constant at around 0.85. 
The third region is blow a value of 0.1 for the cycle 
rank and at that point the EV starts decreasing 
again. This implies that the functionality distribu-
tion becomes narrower. This is a direct result of 
the fact that the network is so degraded that the 
availability of functionalities is limited.

Another way to look at the relationship of the 
EV to the network structure is of that shown in 
Figure 3. Here we plot the EV vs the number of 
chains removed. We see that the EV values increase 
rapidly at the beginning. This means that at the 
beginning of the degradation process the distribu-
tion of functionalities becomes broader, as would 
expect. Then as the number of the chains removed 
reaches 4,000 or so (approx 25% of the total) the 
standard deviation levels off  until 7,000 chains or 
so have been removed. This signifies that the broad-
ness of the functionalities does not change. Notice 
however that the actual distributions do change.

4 CONCLUSIONS

We have presented simulation results for the deg-
radation of polymer networks. The method is 
based on connectivity algorithms. We find out 
that degraded networks are heterogeneous in 

their functionality distribution. We present a way 
to quantify that heterogeneity, by relying on the 
Euler number and the estimation variance of the 
Euler number to accomplish that goal. We show 
here selected results from the simulation of deg-
radation of a perfect tetrafunctional network and 
demonstrate the applicability of our method. We 
discover that during degradation the functionality 
distribution increases, while at the same time the 
cycle rank of the network decreases. As the deg-
radation proceeds further the heterogeneity as it is 
measured the EV value seems to level off  while at 
the same time the cycle rank keeps dropping. In 
the final stages of the simulation the heterogeneity 
decreases while the cycle rank falls even further.
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1 INTRODUCTION

Elastomers owe their large extensibility to long 
chain molecules forming the polymer network and 
act quite dissimilar to crystalline solids possessing 
regular lattice structure. The energy storage in crys-
talline solids and amorphous glasses is primarily 
due to interatomic distortion where the configura-
tional changes in the lattice are small and, hence, 
entropic contributions to the overall behaviour are 
neglected. On the other hand, rubbery polymers 
well above the glass transition temperature Tg pos-
sess no intermolecular attractions and the amount 
of energetic distortions of the intra-molecular 
bonds is commonly omitted. This notion is known 
as ideal or strictly entropic elasticity and was based 
on the stress-temperature experiments of Meyer & 
Ferri (1935) by which they concluded that internal 
energy is solely a function of absolute temperature. 
Although the idealization of rubber elasticity and 
models based on Gaussian and non-Gaussian sta-
tistical mechanics proved successful results, it was 
later shown by Chadwick & Creasy (1984) that this 
idealization is too restrictive and ideally entropic 
elasticity excludes thermal expansion about the 
reference state. Alternatively, they have proposed 
the so-called modified entropic elasticity concept by 
which the internal energy is split into e = e1(θ) + e2(J) 
thermal and distortional parts where J denotes the 
volume change.

A micro-continuum-mechanical material model for failure 
of rubber-like materials

Hüsnü Dal & Michael Kaliske
Institut für Statik und Dynamik der Tragwerke, Technische Universität Dresden, Germany

Lutz Nasdala
Institut für Statik und Dynamik, Leibniz Universität Hannover, Germany

ABSTRACT: Conventional phenomenological hyperelastic constitutive models do not account for 
material softening. Consequently, the stored energy and stresses tend to infinity as stretch increases. The 
contribution presents a micro-mechanically motivated constitutive model for material failure. The pro-
posed micro-continuum model is based on a serial construction of a Langevin-type spring representing 
the energy storage owing to conformational changes induced by deformation, to a bond potential repre-
senting the energy stored in the polymer chain due to the interatomic displacement. For the representation 
of the micro-macro transition, the non-affine kinematics of the micro-sphere model is used. The Morse 
potential is utilized for the interatomic bond, which describes the energetic contribution to rubber-like 
materials and governs the failure of the polymer chain in terms of bond rupture. Failure envelope predic-
tions of the model are demonstrated in comparison to experimental data.

Considering the limitations of the ideal entro-
pic elasticity models, a micromolecular model for 
material failure is introduced subsequently as an 
extension to the micro-sphere model of Miehe 
et al. (2004). The model is based on a serial con-
nection of a Langevin-type spring representing the 
energy storage owing to conformational changes 
induced by deformation, to a bond potential rep-
resenting the energy stored in the polymer chain 
due to the interatomic displacement. For the rep-
resentation of the micro-macro transition in terms 
of non-affine kinematics, the micro-sphere model 
is used. The Morse potential is utilized for the 
interatomic bond, which describes the energetic 
contribution to rubber-like materials and governs 
the failure of the polymer chain in terms of bond 
rupture. Moreover, the model enables uniaxial ten-
sion, equi-biaxial tension, pure shear or pure dila-
tational failure modes, since it is not constructed 
in terms of a classical volumetric- isochoric split 
of the free energy function. The coupled repre-
sentation in terms of the volumetric and isochoric 
stretches enables the definition a unified failure 
criterion for all deformation modes. This struc-
ture, however, does not prevent the model from 
showing nearly incompressible behaviour at small 
to moderate stretches. Unlike the compressible 
models introduced in the previous subsection, the 
proposed model attaches the volumetric part to a 
bond potential where the failure is attained as the 
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energy barrier and the peak stretch is attained. 
Therefore, the volumetric deformations are con-
sidered to be purely energetic. Further information 
and algoritmic treatment of the proposed model is 
documented in Dal & Kaliske (2009).

2 FINITE ELASTICITY OF A POLYMER 
NETWORK

This section presents a formulation of  hyper-
elasticity within an Eulerian setting in terms of 
covariant Cartesian metric tensor in current con-
figuration. After a brief summary of the basic geo-
metric description and the constitutive equations, 
we describe the micro-sphere model non-affine 
stretch part. The topological constraints are omit-
ted due to the minor contribution to the rubber 
behaviour at large stretches. The inverse Langevin 
statistics for a freely jointed, perfectly flexible chain 
is introduced. The non-affine micro-macro transi-
tion scheme of the micro-sphere model is discussed 
along with the previously presented network mod-
els. The interatomic bond potential of Morse (1929) 
will be introduced. A new energetic-entropic model 
which accounts for the increasing energetic contri-
bution upon stretching will be discussed. The model 
consists of a serial connection of Langevin type 
free energy introduced in the previous section with 
Morse potential. A coupled volumetric-isochoric 
representation will be used in contrast to the tradi-
tional representations in rubber elasticity.

2.1 Basic geometry in spatial configuration

Let ϕ : X �  x be the deformation map at time 
t ∈ R+ of  a body. ϕ maps points X ∈ B of  the 
reference configuration B ⊂ R3 onto points 
x = ϕ(X;t)  ∈ S of  the current configuration S 
⊂ R3. Let F :  = ∇ϕ(X;t) with the Jacobian J := 
det F > 0 denote the deformation gradient. l := 
∇υ = F

·
F−1 is the gradient of the spatial velocity 

υ : = (∂ϕ / ∂t) ° ϕ
−1. The boundary-value problem 

for a general inelastic body is governed by the bal-
ance of momentum

ρυ� = +div[ / ]τ J γ  (1)

along with prescribed displacement  boundary con-
ditions ϕ = ϕ– (X:t) on ∂Bt and the traction bound-
ary conditions [τ ⁄ J ]η = t| with outward  normal n. 
ρ is the density and  is prescribed body force with 
respect to unit volume of the current configura-
tion. Let furthermore g = δab denote the covariant 
Cartesian metric tensor or the so-called Kronecker 
symbol in the current configuration. Due to nearly 
incompressible behaviour of elastomers, the model 

considers the split of the elastic response into volu-
metric and dilatational parts

F F: ./= −J 1 3  (2)

The macroscopic free energy is a function of 
the spatial metric g and the deformation gradient 
F, i.e.

Ψ := Ψ(g;F), (3)

and satisfies the normalization conditions Ψ (g;1) = 0 
and ∂FΨ g; 1) = 0. For an elastic solid with no dissipa-
tion, the Eulerian Kirchhoff stresses and the associ-
ated spatial elasticity moduli reads

τ : ( ; ) : ( ; ).= ∂ = ∂2 4 2
gΨ Ψg F g Fggand �  (4)

The Langevin model which considers the finite 
extensibility of a single chain is introduced by 
Kuhn & Griin (1942). The free energy function of 
a single chain based on the Langevin model reads

ψ λ λ λ λ
λL B r r

r

r
Nk T L L

L
( ) ( ) ln ( )

sinh ( )
,= +

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

−
−

−
1

1

1  (5)

where λ = L/L0 is the stretch of the single chain 
and λ λ/ Νr  =  is the relative stretch. L0 is the 
end-to-end distance in the unstrained state. Here, 
L(x) = cothx – 1

x
 is the Langevin function.

2.2 Micro–macro transition

Let r denote the Lagrangian orientation vector of a 
point on a unit sphere such that | ,r r r |  : =  .  0G = 1
where rb : = Gr (rA = δABr A) is the co-vector of r 
obtained by mapping with the metric G = δAB  in 
the reference configuration. The Eulerian counter-
part of the orientation vector r is given by

t Fr: .=  (6)

Then, the macro-stretch in the given orientation 
direction r reads

λ ×
_

= := with := .t t t t gtg b b  (7)

The Cauchy-Born rule states that for crystals 
undergoing small deformations, each orienta-
tion stretch in the micro-scale is equivalent to the 
macroscopic stretch λ

_
. This hypothesis, however 

is too restrictive for rubber-like polymers, espe-
cially in the non-Gaussian region at large strains. 
For the transition from a molecular level towards 
a continuum model, there exist many approaches. 
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The affine full network model has been originally 
developed by Treloar (1946) for uniaxial deforma-
tions and elaborated by Treloar & Riding (1979) 
for biaxial deformations with a numerical imple-
mentation. Wu & van der Giessen (1993) advanced 
the theory into a generalized three-dimensional 
deformation state. Full network model cannot 
show the characteristic material behaviour of 
rubber which exhibits different locking stretches 
for different deformation modes. Miehe et al. 
(2004) related the non-affine micro-stretch λ and 
the affine macro-stretch λ

_
 via p-root average such 

that

λ = =
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫λ λp

pdS: .
/

1
1

S S

p

 (8)

Hence, p is a non-affinity parameter which 
relates the micro-stretch entering the Langevin 
free energy to the macro-stretch field on the unit-
sphere. The model recovers the 8-chain model of 
Arruda & Boyce (1993) for p = 2. The macroscopic 
free energy takes the following representation

Ψ Ψ Ψ( ; ) ( ) ( ; ),g F g F= +vol isoJ  (9)

and the dilatational part is defined as

Ψiso L pn( ; ) ,g F = ( )ψ λ  (10)

where n is the chain density.

2.3 Morse potential

Gao & Klein (1998) have proposed a continuum-
atomistic approach for amorphous solids by using 
atomic pair potentials U(l) distributed over a 
unit-sphere. They introduced a bond distribution 
density function D over the unit sphere. The inte-
gration of the pair potentials over the unit-sphere 
then leads to the strain energy density function.

The pair potential proposed by Morse (1929) 
has the following form

  φ(r) = ê [exp(–2  α(r – r0)) – 2exp(–  α(r – r0))] (11)

and is depicted in Figure 1a. Partial derivative 
with respect to r leads to the force displacement 
relation

f = 2êα[exp (α  (r0 – r)) – exp (2α((r0 – r))]. (12)

ê is the dissociation energy for a given pair of 
atoms. For interatomic distance r = r0 , the atomic 
pair possess an energy minimum –e with corre-
sponding zero force level f = 0. The bond is stable 
until the force peak at (rm , fm) = (r0 + ln2/α, êα/2) 
(Figure 1b). However, the energy required to reach 
the peak level is only ê/4.

2.4 A new failure model for rubber-like materials

We propose a new free energy function within the 
kinematical context of the micro-sphere model

Ψ(g;F)= nψη (λη) + n ψe (γ) (13)

where

γ : = α1(λe – 1) + α2(J – 1)2 (14)

and

λ λ λ λ λη ⋅ = =e p; .  (15)

λη and λe denote the entropic and the energetic 
part of the average network stretch λ. ψη is given 
by Eq. (5) and characterizes the change in the free 
energy solely due to entropic effects. It is taken to 
be purely iso-choric. The energetic part of the free 
energy is given by a modified version of the Morse 
potential (see Eq. (11))

nψe(γ) = nê [exp(–2γ  ) – 2exp(–  γ) +1] (16)

and satisfies the normalization conditions ψe 

(0)   = 0 and ∂γψe(0) = 0. The rheology of the model 

Figure 1. (a) The Morse potential and (b) the corre-
sponding force displacement curve.
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Figure 2. Rheological representation of the  proposed 
model.
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is depicted in Figure 2. The micro-forces of the 
entropic and energetic contributions are

f k T
N
NBη

η

η

η

η

ψ
λ

λ
λ

: =
∂
∂

=
−
−

3 2

2
 (17)

and

f ee
e

e
: ( exp( ) exp( )),= ∂

∂
= − − + −ψ

λ
α2 21 0 γ γ  (18)

respectively. For a given deformation state λ, 
the micro-forces are subject to the equilibrium 
constraint

fηλη = feλe. (19)

The proposition (19) is in line with the rheology 
depicted in Figure 2 under finite deformations.

3 ALGORITHMIC TREATMENT OF THE 
CONSTITUTIVE MODEL

In the sequel, we develop an appropriate numeri-
cal scheme for the computation of the quilibrium 
stresses. The algorithmic setting of the proposed 
model begins with equilibrium computations in order 
to find entropic λη and energetic λe stretches for a 
given micro-stretch λ. Then, the stresses expressions 
in the Eule-rian setting will be derived. For further 
information on the moduli expressions for the finite 
element method, we refer to Dal & Kaliske (2009).

3.1 Equilibrium iterations at micro level

The equilibrium condition of the serial construc-
tion depicted in Figure 2 is defined as follows: 
Problem: Given λ, find λη and λe such that

f      η λη _ fe   λe = 0 and λη   . λe  = λ.

For the solution of the above problem, we define 
the residual expression

r :  = f      η λη _ fe   λe = 0. (20)

This expression can be solved micro level. The 
numerical procedure involves solely scalar expres-
sions which costs acceptable computation time. For 
the sake of simplicity, we demonstrate a Newton 
type iteration scheme outlined in Table 1.

3.2 Kirchhoff stresses

With micro-equilibrium at hand, the Kirchhoff 
stresses can be derived from Eq. (13) and Eq. (4.1). 
Before defining the stress expression, we take the 

following definitions for the intermediate deriva-
tives from Miehe et al. (2004)

2 1 2∂ = = ⊗− −
g h h t tλ λ λp pwith : .  (21)

It is however to be noted that although the ener-
getic part of the free energy function has a coupled 
representation in terms of γ, the entropic part of 
the free energy is purely incompressible. The split 
of the stresses in line with this assumption then 
takes the form

τ τ τ: : .= +P vol  (22)

The volumetric part of the Kirchhoff stresses 
can be defined as

τ vol
J J p:= ∂ ∂ = −2 1Ψ g g  (23)

where

p J n e e e: ( ) ( ) : ( ).= ′ ′ = ∂α ψ ψ ψγ2 γ γ γand  (24)

Table 1. Steps of local equilibrium iterations at micro-level.
1. Set

   
λ λη

0 = and 
λ λ λe = / η

2. DO
a. Residual equation

r :  = fηλη– f   eλe = 0
b. Linearization

Lin r r
r

= +
∂

∂
Δ =+|λ λ λ

λ
η

η
η

ηk

k

k 1 0

c. Compute

κ :=
∂

∂
r

λ λη
η
k

κ = +� �η
η

λ
λ 2 e

where 
� � � �η η η η= + = +f fe e e eλ λ;

� �η
η

η

: ; :=
∂

∂
=

∂
∂

f f
e

e

eλ λ

d. Solve

Δ = −λη
k k r−1

e. Update
λ λ λη η η

k k k+ ← + Δ1

WHILE r TOL≤
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The incompressible part of the Kirchhoff 
stresses are given by

τ : [ ]
[ ] .

= ∂ ∂ + ∂ ∂ ∂
= ∂ + ∂ −

n
n f f

n e e e

e e
p

λη λ η λ λ

η λ η λ

ψ λ ψ λ λ
λ λ λ

2
1

g

h
 (25)

For the computation of partial derivatives 
∂λλη and ∂λλe, we refer to the residual expression 
(20). By using the implicit function theorem, we 
obtain

dr
d

r r
λ λ λ

λ
λη

η= ∂
∂

+ ∂
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Let f := ∂λψ denote the micro-force where   ψ is 
defined in Eq. (13). With this definition at hand 
and by inserting Eq. (27) into Eq. (25), we get

f
f fe e

e e
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+
+

⋅η η

η ηλ λ
� �

� �
 (28)

If  Eq. (28) is examined carefully, it is seen that 
after some manipulations, it holds for

f λ = fηλη = feλe, (29)

which is nothing but the constraint proposed in 
Eq. (19). This justifies the choice of constraint for 
the serial construction for the rheology of materials 
subjected to large deformations. Then, the repre-
sentation of the incompressible part of Kirchhoff 
stresses simplifies to

τ = −nf pλ1 h.  (30)

This expression is identical to the one proposed 
by Miehe et al. (2004) if nf : ψ ′ is derived from a 
single elastic potential. Although the isochoric and 
volumetric part of the stresses have a decoupled 
representation, both expressions are  dependent 
on stretches λ and volume change J. This leads to 
extra terms in the moduli expressions which are not 
encountered in the rubber elasticity models based 
on the isochoric-volumetric split of the deformation 
gradient. Finally, the proposed model is compared 
with the micro-sphere model non-affine stretch 
part (Figure 3). The parameters are μ = 0.325 MPa, 
N = 22.263, p = 1.39 and are identical to the ones used 

in Miehe et al. (2004), Figure 11. The extra param-
eters appearing in the proposed model are α1 = 7, 
α2 = 100 nê = 22 MPa. The parameter α2 is taken to 
be high enough (α2 ≈ 5α1) in order to enforce incom-
pressibility up to moderate stretches. Despite the 
introduced free energy function in the serial form, 
the proposed model demonstrates nearly identical 
behaviour compared to the micro-sphere model. 
This can simply be explained by serially attached soft 
and hard springs. As a macroscopic deformation is 
applied, the initial stiffness of the Langevin spring is 
much less than that of the energetic part. As a con-
sequence, the energetic part is solely responsible for 
enforcing the incompressibility. As the deformation 
increases and the λ ≈  λlock is approached, the slope 
of the Langevin spring becomes comparable to that 
of the energetic spring and strong coupling occurs 
in this range. It is to be noted that at high stretches 
near λlock, the material model is not incompress-
ible anymore. Soon, the peak level is attained and 
the material is not stable anymore. Up to this level 
λ = ληλe can be traced continuously. After the peak 
is achieved, the stress drops continuously and then 
discontinuously to zero. At this instant of disconti-
nuity, a jump in λη and λe occurs at micro level and 
λη drops (the Langevin spring contracts upon fail-
ure) whereas λe increases drastically (bond rupture). 
From this moment, material failure is occurred and 
stress computations can be omitted. Failure infor-
mation can be stored with an integer switch in the 
material routine. The model requires no additional 
history variable for deformation.

3.3 Failure prediction under various loading states

This section is devoted to the failure envelope 
prediction of the proposed model. Hamdi et al. 
(2006) investigated fracture stresses and elonga-
tion at break values for NR and SBR rubber under 
different loading conditions and proposed a phe-
nomenological failure criterion for rubber. They 
performed uniaxial tension, equibiaxial  tension 

Figure 3. Comparison of  the first Piola Kirchhoff 
stress vs. stretch for micro-sphere model non-affine stretch 
part, proposed approach and the experimental data from 
 Treloar under (a) uniaxial tension and (b) pure shear.
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and biaxial tension experiments with various 
biaxiality ratios until fracture. The material param-
eters of the proposed model are fitted to the given 
stress strain curves (Hamdi et al. (2006), Fig. 8) 
for natural rubber (NR) and styrene-butadiene 
rubber (SBR), respectively. The fitted parameters 
for NR are:   μ = 0.60 MPa, N = 9.02, p = 1.6, 
α1 = 2.12, α2 = 20 and nê = 144 MPa. For SBR:
  μ = 1.3 MPa, N = 6.68, p = 1.3, α1 =1.54, α2 = 20 
and nê = 171 MPa. During the fitting procedure 
initial tangent of the stress strain curve and elon-
gation at break values are enforced with a higher 
priority whereas stresses obtained from simula-
tions at moderate stretch levels underestimate 
the experimental values. This is due to the fact 
that the data includes Mullins type damage since 
it gives the first loading to failure. Moreover, the 
constraint part of the micro-sphere model is not 
considered in this paper. The results of the nor-
malized ultimate elongations and comparison with 
the data from Hamdi et al. (2006) are depicted in 
Figure 4. The failure elongations corresponding to 
uniaxial tension (UT), pure shear (PS) and equibi-
axial tension (ET) are depicted explicitly. Simula-
tions show good agreement for both NR and SBR 
with slight overestimation for SBR. It should be 
mentioned that for smaller p values, better fit to 
the failure envelope is possible. The failure enve-
lope has an ellipsoid shape. For p = 2, the model 
yields a circular failure envelope. For higher values 
the failure envelope approaches the Kawabata’s 
failure criterion which states that failure occurs if  
stretch in any principal direction approaches ulti-
mate elongation in uniaxial tension λUT . Figure 5 
compares the ultimate Cauchy stresses normal-
ized with respect to the ultimate uniaxial tension 
values for NR and SBR. The model predictions 
give a linear envelope for failure Cauchy stresses. 
The results presented by the model overestimate 
the experimental values, especially for NR. As one 
observes in Figure 4a and Figure 5a, the stress 
results from the model predictions clearly under-
estimate the failure stresses for NR. One possible 
reason can be crystallisation. The ultimate failure 
properties of crystallising rubbers are known to be 
quite dissimilar to to non-crystallising rubber. As 
one observes in Figure 4b and Figure 5b, the over-
estimation of stresses by the proposed model is in 
accordance with the overestimation of the stretch 
value for SBR. Different test geometries used in 
the biaxial experiments can lead to different failure 
stresses. The larger the specimen, the higher is the 
probability of an existing defect in the microstruc-
ture. This argument holds, however, only for SBR. 
It is obvious that more experimental study is neces-
sary, especially for NR and future research will be 
initiated on the verification of the model.

In summary, the proposed model is better suited 
for predicting the failure characteristics of non-
crystallising rubber under biaxial deformations.

4 CONCLUSION

We proposed a new energetic-entropic model for 
rubber-like materials as an extension to the micro-
sphere model. The theoretical aspects of the model 
are discussed and a novel algorithmic treatment 
for the serially constructed non-linear springs 
in the micro level is presented. This algorithm is 
further combined with micro-macro approach of 
micro-sphere model. Unlike typical rubber elas-
ticity models, the proposed approach has a cou-
pled representation for the free energy in terms of 
volumetric and isochoric parts of the deformation 
gradient. This scheme proves useful at large defor-
mations near the failure limit. The proposed model 
can be considered as a softening hyper-elasticity 
model based on micromolecular considerations. 
Core of the model is to include fracture energy 
and the fracture stress as material parameters at 
micro-level. Material failure is interpreted as the 
bond rupture of a chain molecule beyond a thresh-
old value. This enables direct implementation of 
the fracture relevant parameters into the constitu-
tive model. The predictions based on the model 

Figure 4. Ultimate stretches normalized with respect to 
uniaxial ultimate stretch λUT for (a) NR, (b) SBR.
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Figure 5. Ultimate Cauchy stresses normalized with 
respect to ultimate uniaxial Cauchy streses σUT for 
(a) NR, (b) SBR.
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for different fracture models are compared to the 
experimental data. Reduced ultimate stretches and 
stresses under equi-biaxial tension can be success-
fully captured by the proposed model. An ellip-
soidal failure envelope is obtained for normalized 
failure stretches, from uniaxial tension to equibi-
axial tension.
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1 INTRODUCTION

For tyre tread compounds the viscoelastic prop-
erties can be empirically correlated with tyre per-
formance characteristics. It has been shown, for 
example, that the wet traction and the rolling 
resistance are best correlated with the dynamic 
mechanical loss properties at the temperature of 
around 0°C and 60°C, respectively. For tyre com-
pound design the dynamic properties, particularly 
tan δ, in this range are often of major concern in 
reducing tyre rolling resistance with keeping the 
wet traction unchanged.

For tyre applications the finite element method 
is one of important tool to model the behaviour 
of tyre components stressed in a complex manner. 
Recently this method was applied to the nano-
scopic analysis of the filled rubber and it can pro-
vide the meso-scopic stress-strain behaviour of 
rubber phase and filler phase separately1. To carry 
this out successfully it was also needed to develop a 
constitutive equation to represent the stress-strain 
behaviour of a rubber phase, preferably at least up 
to the glass transition temperature of rubber phase 
encountered in many tyre tread applications. The 
stress-strain behaviours of rubber at low tempera-
ture are largely contributed by the internal energy 
change of rubber2,3. The purpose of this study is 
aiming at the meso-scopic stress-strain behav-
ious of the filled rubber at different temperatures 
using a constitutive equation based on the change 
in material energy and entropy, which represents 
the continuous change in elasticity from transition 
state to rubbery state.

Meso-scopic 3D-finite element analysis of filled elastomer

Keizo Akutagawa, Satoshi Hamatani & Hisashi Heguri
Bridgestone Corporation, Ogawahigashi-cho, Kodaira-shi, Tokyo, Japan

ABSTRACT: In most industrial applications the elastomers are used as reinforced materials with 
filler such as carbon-black and silica, but the mechanical behaviours in meso-scopic scale have not been 
fully understood due to the limitation of the mechanical analysis in meso-scopic scale. Combination of 
3D-TEMT (Transmission Electron Micro Tomography) and 3D-FEA (Finite Element Analysis) enables 
us to investigate the deformation of the filled elastomer in meso-scopic scale. The polymer phase between 
carbon black aggregates showed a large strain concentration over 200%, even if  the overall strain was 
only 15%1. Hence, a constitutive equation, which can cover the stress-strain behaviours up to higher 
strain region as a function of temperature, has been investigated. Since the stress-strain behaviour shows 
a transition to the glass-hard state at lower temperature, where the contribution of the internal energy 
is increased, a constitutive equation was derived from the statistical thermodynamics with Hamiltonian 
equations considering the change in internal energy.

2 EXPERIMENTAL

Stress-strain curves were measured using a TOYO-
SEIKI tensile testing machine with temperature-
controlled chamber. Rubber strip samples with 
ring shape were used for this study. The tests were 
carried out at a crosshead speed of 0.5 mm/s.

The rubber used for this study was an unfilled 
cross-linking styrene-butadiene rubber (SBR), 
which is a non-strain crystallizing, and a filled 
cross-linking SBR with 30 phr of carbon black.

3 RESULTS AND DISCUSSION

From the statistical thermodynamics it can be 
assumed that the energy function of Aα can be 
described by a function of the Hamiltonians, H.

Aα = f(Hinteraction, Htrans, Hrot ) (1)

where the Hamiltonian for the system can be 
assumed as a function of temperature and con-
strains due to stretching the chain molecules with 
transversal motion, Htrans, rotational motion, Hrot 
and molecular interaction, Hinteraction. For the model 
of the temperature dependence of the rubber elas-
ticity it can be thought of as two distinguishable 
molecules, each of which can be in either of two 
different strain states at different temperatures as 
shown in Table 1.

There has to consider the attractive energy or 
interaction energy term, κ, which lowers the energy 
of the system by κ of  the two molecules. At low 
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temperature both molecules are to be found in the 
lower strain energy state, which is the constrain 
state of the rubber elasticity. As the temperature 
increases, the molecules will spend more time in 
the higher strain energy state. As the temperature 
continues to increase, it will reach a point where the 
molecules become ‘un-bound’. This may be asso-
ciated with the transition region of the tempera-
ture dependence of the rubber elasticity. At this 
region more energy can be absorbed by the system, 
because the molecules can move easily. Once the 
temperature becomes very high, the energy of the 
system will be constant. According to this model2,3 
the partition function, Z, can be represented by

Z k T N
m
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where k is Boltzmann constant, T is absolute tem-
erature, N is the number of molecules, Λ is volume, 
m is mass of a molecule, β is 1/kT, I is the strain 
invariant and F is force applied to molecules. The 
Helmhortz free energy of the rubber elasticity, Aα, 
can be represented by2,3
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where p = q = 1, n is the crosslink density, n is the 
number of statistical links between crosslinks. The 
first term of the equation (3) represents the inter-
nal energy change of the elasticity and the second 
term represents the entropy change of the rubber 
elasticity described by the inverse Langevin func-
tion4. The volume change due to stretching was 
ignored.

The stress-strain curves shown in Figure 1 were 
plotted as a function of temperature together with 
the fitted curves using the constitutive equation. 
The procedure of curve fitting was followed by 
Morris method5. The theoretical curves were f itted 
with a parameter of the attractive energy, κ, using 
the equation (3). The theoretical curves show a 
good agreement with the experimental plots over 
a wide range of temperature.

The equation (3) was applied to the element 
model of 3D-FEA (Finite Element Analysis), 
which can be reconstructed from the 3D-image 
taken by 3D-TEMT (Transmission Electron Micro 
Tomography)6. The size of one element is 3 nm × 
3 nm × 3 nm, which is equivalent to the size of 
molecular chain between cross-links. The calcu-
lations of 3D-FEA were carried out at strain of 
15% and temperature at 25°C and −50°C. Figure 2 
shows a strain distribution in meso-scopic scale 
of 30 phr carbon filled rubber. Each size of the 
model is 150 nm × 150 nm × 150 nm. The black 
part is represented by the filler and the rest of 
it is by rubber. Highly strain region is deformed 
with more than 10 times larger than macro-scopic 
strain of 15%.

Table 1. Molecular system on thermodynamic model.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9

λ

σ
/M

P
a

-60°C

-50°C

-30°C

+25°C
Energy 

-50C

Entropy 

-50C

Figure 1. The stress-strain curves plotted as a function 
of temperature together with the fitted curves using the 
constitutive equation (3). A line is represented by the 
energy term and the entropy term of equation (3) at tem-
perature of −50°C.
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4 CONCLUSIONS

The constitutive equation, which was derived from 
the statistical thermodynamics with Hamiltonian 
equations considering the change in internal energy, 
was applied to 3D-FEA in meso-scopic scale. In 
Figure 2 the deformed area of the rubber part at 
−50oC is much larger than that at 25oC, even if  the 
model was stretched in the same strain of 15%. 

This will provide the useful information about the 
role of the rubber parts in filled rubbers, especially 
at transition and glassy region of temperature.
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(a) 15% strain at 25oC (b) 15% strain at -50oC

Figure 2. The strain distribution in meso-scopic scale 
calculated by 3D-FEA at strain of 15% and temperature 
of 25oC (a) and −50οC.
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1 INTRODUCTION

The layers of 2 to 10 nm (and more) that occur near 
the surface of filler particles play a large part in the 
formation of the mechanical properties of polymer 
nanocomposites. Despite the longstanding efforts 
of scientists to elucidate the cause of formation of 
these layers and to understand the mechanism of 
their influence on the mechanical properties of the 
material, the problem still remains to be solved. 
There is no answer to the question as to why the 
thickness of the layers formed near the surface of 
filler particles is so large that it achieves several 
nanometers. In the current study, an attempt has 
been made to construct a mathematical model 
capable of providing the answer to this question.

2 CONTINUUM, PROBABILISTIC 
AND DISCRETE MODELLING

For constructing the model, it is essential to deter-
mine mathematical parameters best suited to our 
study. The establishment of these parameters 
requires information regarding the preferential 
orientation of polymer links. To gain it, we use the 
notion of the orientation tensor. However, before 
proceeding to the description of the oriented state 
of the medium, it is necessary to introduce the 
characteristic of the oriented state of a single link 

Changes in the orientation state of polymer molecules 
in the space between filler particles

L.A. Komar & A.L. Svistkov, 
Leibniz-Institut fur Polymerforschung Dresden e. V., Dresden, Germany
Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia

G. Heinrich & B. Lauke
Leibniz-Institut fur Polymerforschung Dresden e. V., Dresden, Germany

ABSTRACT: For the analysis of formation of polymeric layers with particular properties that arise 
near filler particles in a filled elastomeric material, a mathematical model has been developed. The model 
is based on the hypothesis that the oriented regions of the polymer are able to influence the orientation 
state of neighboring regions. The periodicity cell of the elastomeric material filled with rigid spherical par-
ticles is examined. Forma tion of layers in the space between particles and away from it is modelled. The 
results of numerical simulation show that in the material near filler particles there occur regions where 
polymeric molecules are in uniaxial and biaxial states.

of one of the polymeric chains. Let all links of all 
polymer chains have a through enumeration: the 
first link of the first chain is designated as 1, and 
the last link of the last chain as N. The index j, run-
ning the values from 1 to N, takes the numbers of 
all links of all polymer chains.

As the orientation characteristic of the poly-
mer chains link with number j, we use the tensor 
τj ⊗ τj, in which τj denotes a unit vector defining 
the space orientation direction of the j-th link. 
Clearly, a change in the direction of the vector τj 
to the opposite produces no effect on the values of 
the tensor τj ⊗ τj. The proposed tensor is suitable 
for our purpose because its averaged value can be 
found for all possible links of polymer chains and 
the result of such averaging will not be equal to 
a zero tensor. It gives an estimate of the oriented 
state of the polymer. Its eigenvectors and eigenval-
ues have a clear physical meaning. The eigenvec-
tors of the averaged tensor τj ⊗ τj define the space 
directions along which the chain links are mainly 
oriented and the directions along which the links 
are rarely oriented. The eigenvalues of this tensor 
give a quantitative estimate of the degree of orien-
tation of polymer chains in corresponding direc-
tions. We assume that the energy of interaction 
between the i-th and j-th links of polymer chains 
is represented as a potential

uij = u0w1(rij) w2(τi ⋅ τj),
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where u0 is the depth of the energy well, and w1(rij) 
is the Lenard-Jones potential energy function. 
The dependence of the energy of interaction uij on 
the angle between the orientation directions of the 
links of polymeric chains can be written as

w i j i j i i j j2
2 1
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The energy of interaction of the i-th link with 
other links is defined as

u u w r w

u
C

ij
j j i

N

ij
j j i

N

i j

N
i i j

= ⋅

= − ⊗ ⋅ 〈 ⊗

= ≠ = ≠
∑ ∑0
1

1 2
1

0 1
3

, ,
( ) ( )τ τ

τ τ τ ττ j V〉
⎛
⎝⎜

⎞
⎠⎟

,

where the value of the constant CN is determined 
by the discrete normalization condition
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where ρ (rij) = −w1(rij) is the weight factor.
We use the space averaging 〈 ⊗ 〉τ τj j V which in 

the discrete formulation can be obtained as
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and in the continuum formulation as

〈 ⊗ 〉 = ∫τ τ ρj j V V
V

C r dV( ) .O

Here, the value of the constant CV is determined 
by the continuum normalization condition

C r dVV
V

ρ ( ) .=∫ 1

We assume that there is a continuous twice differ-
entiated tensor function O(t, x), which provides cal-
culation of the energy of interaction of the i-th link 
with the remaining material, as it is usually fulfilled 
in the context of probability and discrete models.

It is easy to demonstrate that the requirement 
of equivalence of continuum averaging and dis-
crete averaging for the arbitrary bounded doubly 
differentiable tensor function is fulfilled under the 
following condition

C r x x C r x dVN ij k
j

k
i

j j i

N

V k
V

ρ ρ( )( ) ( ) .
,

− = Δ
= ≠
∑ ∫
1

2 2

3 MAIN CAUSES OF TIME VARIATIONS 
IN THE ORIENTATION TENSOR

The rate of change of the orientation tensor at 
the material point under consideration is defined 
by two factors: (a) the effect of the orientation 
of the neighboring points of the medium on the 
 orientation of the examined point, and (b) the 
effect of the thermal motion of polymer chains, 
which tends to bring the material to the non-
 oriented state. Hence, the evolution equation of 
the orientation tensor O takes the form

1
3b

D
Dt

a fj j V
O

O O= 〈 ⊗ 〉 −( ) + −⎛
⎝⎜

⎞
⎠⎟

+τ τ I
* ,

where DO/Dt is the objective derivative with respect 
to time, I is the unit tensor, and b is the param-
eter defining the rate of orientation. The use of an 
additional term f* allows us to take into account 
the peculiarities of the laying down of molecules 
at the interface between the oriented layer and the 
chaotic matrix. Inside the polymeric layer and the 
polymeric matrix, the term f* is equal to zero. The 
function a(O ⋅ O) is calculated using the following 
scheme of reasoning.

Under equilibrium conditions, the following 
equality is fulfilled:

〈 ⊗ 〉 ⋅ 〈 ⊗ 〉 = 〈 ⊗ 〉 ⋅τ τ τ τ τ τj j V i i j j VΓ O.

With the Gibbs distribution, it is possible to cal-
culate the average value of probability distribution 
for the tensor τi ⊗ τi

〈 ⊗ 〉 = ⊗ −
⎧
⎨
⎩

× − ⊗ ⋅ 〈 ⊗ 〉⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

∫τ τ τ τ
θ

τ τ τ τ

i i i i
B V

i i j j V

C
u

c CΓ
Γ

exp 0

1
3

ddΓ,

where cB is the Boltzmann constant, and θ is the 
temperature.

Under equilibrium conditions, the evolution 
equation of the orientation tensor O is trans-
formed into the following equation when f* = 0

〈 ⊗ 〉 = + −⎛
⎝⎜

⎞
⎠⎟

τ τj j V a
O O

1
3
I .

In this case value of function a(O ⋅ O) should be 
defined from a condition

O O O O O+ −⎛
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⎞
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which is valid for the material both inside the poly-
meric layer and inside the polymeric matrix. The 
solution of this equation is shown in Fig. 1. The 
parameter I is equal to O ⋅ O.

Series expansion of the function O in the vicin-
ity of the considered point yields

〈 ⊗ 〉 = +
∂
∂=

∑τ τj j V
ii

C
x

O
O

Δ

2

2
1

3
,

where

C C r x dVV i
V

Δ Δ= ∫
1
2

2ρ( ) .

Finally, the evolution equation of the orienta-
tion tensor O takes the form

1
3

2

2
1

3

b
D
Dt

a C
x

f
ii

O O
O=

∂
∂

+ −⎛
⎝⎜

⎞
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+
=
∑Δ

I
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4 EXAMPLES OF LAYER FORMATION

Let the term f* have the following form

f f fu b* ,= +( ) −⎛
⎝⎜

⎞
⎠⎟

O
I

3

where the functions fu and fb depend on the para-
meter I. These functions describe the formation of 
layers in the polymeric material, where the poly-
meric chains are uniaxially and biaxially oriented. 
In the remaining material, these functions are 
equal to zero.

The functions fu and fb are  written as

f g I I I I I I I

f g I I I I

u u u
max

u
min

u
min

u
max

b b b
max

b
mi

= −( ) −( ) < <

= −( ) −

, ,
nn

b
min

b
maxI I I( ) < <, .

Here, gu and gb are constants. The values Iu
max

and Ib
max are equal to the values of the parameter I, 

at which the function a(I) has the minimal values 
for uniaxially and biaxially oriented states (Fig. 1). 
On the other hand, the values Iu

min and Ib
min are 

equal to the values of the parameter I, at which the 
function a(I) has the maximal values for uniaxially 
and biaxially oriented states.

Let us assume that, in the biaxially oriented area 
(near the orientation source), the parameter of the 
rate of orientation b changes under the law

b = b1 exp (−b2t),

Figure 1. Dependence of the function a on the argu-
ment I for uniaxially (I > 0.8) and biaxially (0.4 < I < 0.5) 
oriented states, and chaos (I = 1/3).
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Figure 2. Layer formation near the filler surface (one-
dimensional formulation of the evolution equation).

Figure 3. Filled polymer fragment (one fourth of the 
spherical filler particle.
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distinct boundary between the strictly oriented area 
and the area of chaotic orientation is observed.

Let us consider one more example. The 
 evolution equation is used to model the change of 
the  orienta-tional state of polymer molecules in 
the presence of two orientation sources of fu and 
fb. The first source orients the molecules in the 
uniaxial direction, while the second in the biaxial 
direction. The fragment of the filled polymer con-
taining one fourth of the spherical filler particle is 
presented in Fig. 3. The radius of the particle R is 
equal to 10 nanometers. The thickness of the gap 
between the filler particles is equal to 0.5 R. Let the 
source fu operate along the line BC, and the source 
fb along the line AD.

The results illustrating this process are shown in 
Fig. 4 for two moments of time: 400 s (a); 1000 s (b).

5 CONCLUSIONS

Numerical experimentation reveals a distinct 
boundary between the areas of oriented and non-
oriented polymer. The oriented layers formed 
near the active filler particles occupy large part 
of the volume of polymeric nanocomposite. This 
fact is supposed to be the main cause of signifi-
cant changes in the mechanical properties of filled 
materials at the macroscopic level.
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Figure 4. Layer formation in the gap between the filler 
particles for two moments of time: 400 s (a); 1000 s (b).

where b1 and b2 are constants.
The time history of layer formation in the  material 

in the one-dimensional formulation is presented in 
Fig. 2. It is seen that the process of formation of 
layers has a frontal character. The lines illustrating 
the movement of the front are given with equal time 
steps, Δt = 10 s. The extreme left line corresponds to 
t = 10 s, and the extreme right line to t = 300 s. In the 
presence of the orientation source, the maximal layer 
thickness is equal to about 8 nanometers. Thus, the 
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1 INTRODUCTION

The extensive applications of elastomers in indus-
try and civil fi elds nowadays motivate many inves-
tigations dealing with continuum mechanics and 
material science on rubbers. Usually the used rub-
bers are fi lled with active fi llers like carbon black 
or silica. The fi ller-aggregates confi gurations are 
arranged in order to enhance essential properties 
like stiff ness, strength, abrasion resistance, fatigue 
lifetime… Many constitutive studies focused on 
both Payne and Mullins’ eff ects the main charac-
teristic of which is the stress-softening related to 
nonlinearities induced by strain.

The present work is devoted to the characteri-
sation of  viscoelasticity of  filled rubbers, with 
the help of  experimental data on stress relaxation 
with time. In Figure 1, (Omnes, 2007) reported 
that increasing the content of  rigid particles such 
as fillers results in higher value of  the stress relax-
ation rate. This phenomenon was also encoun-
tered on crystallization during relaxation (Gent, 
1998). This peculiar result seems to indicate that 
higher rigid particle contents promote the macro-
scopic viscoelastic strain whereas classical visco-
hyperelastic models cannot capture this effect.

The approach proposed in this work deals with 
an attempt to model the relaxation rate, fi rst, 
with the help of computations on unit cell (cylin-
der with spherical particle). By changing only the 
amount of the particle contents, the deviation from 
the experimental data will be shown. Alternatively, 
changing the stiff ness of the particle (for a given 
content) seems to give better results.

The extension of the unit cell into 3D micros-
tructure is the proposed. To this end, periodic 
tetrakaidecaedron cells are investigated. C omparison 

Modelling the eff ects of various contents of fi llers 
on the relaxation rate of fi lled rubbers

L. Laiarinandrasana, A. Jean, D. Jeulin & S. Forest
MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, Evry Cedex, France

ABSTRACT: The present work is devoted to numerical investigations on viscoelasticity of fi lled rub-
bers, with the help of experimental data on stress relaxation with time. The evidence is that increasing the 
content of rigid particles such as fi llers or even crystallization index, results in higher value of the stress 
relaxation rate. This peculiar result seems to indicate that higher rigid particle contents promote the mac-
roscopic viscoelastic strain. To better understand this eff ect, fi nite element analyses are carried out on 2D 
axi-symmetrical unit cell as well as 3D tetracaidecaedron periodic cell.

of results between unit and periodic cell(s) is 
discussed.

2 NUMERICAL APPROACH 
ON UNIT CELL

2.1 Axi-symmetrical unit cell

The unit cell meshes are illustrated in Figure 2. 
Let f be the particle volume fraction, r, R and 2h 
respectively the radius of the particle, the radius 
and the height of the outer cylinder. f is expressed 
as follows:

f
r

R h
r

R h
= =

4
3

2
2

3

3

2

3

2

π

π
 (1)
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0%

σ(t)/σmax

Figure 1. Evolution of the stress relaxations corre-
sponding to four particles contents (0% w, 2% w; 5% w; 
15% w; 30% w; 45 w) according to Omnes (2007).
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Since the meshing was carried out with unit 
length of R and h, the particle volume fraction is 
function of the particle radius:

r =
3
2

3 f  (2)

Hence the indicated particle volume fractions 
are obtained via Equation 2.

2.2 Visco-hyperelastic constitutive equations, 
material coeffi  cients

The classical generalized Rivlin deformation 
energy Wm = c10(I1−3) + c01(I2−3) + c20(I1−3)2 + 
c30(I1−3)3 was used (c10 = c01 = 0.46 MPa; c20 = 0.15 
MPa) for the matrix. The viscoelasticity is ensured 
by two terms Prony series (g1, τ1) = (0.3, 0.01) and 
(g2, τ2) = (0.1, 0.2).

For the particle, Wp = c30(I1−3)3 but c30 = 1 MPa. 
This value will vary, in order to study the effect of 
the stiffness of the particle.

FE computations of uniaxial stress relaxation 
were done at a prescribed strain of 2. The maxi-
mum stresses corresponding to this strain increases 
with respect to the filler contents.

2.3 Fillers volume fraction eff ects

Figure 3 shows, for the axi-symmetrical unit cell, the 
fi rst Piola Kirschoff  stress relaxation ratios (σ(t)/σmax) 
plotted against the relaxation time: σ(t) is the current 
stress, σmax is the uni-axial stress obtained at the end 
of the loading step and the relaxation time begins at 
the end the loading step. Figure 3 clearly shows that 
increasing the particle content results in stiff ening 
the compound, that is decreasing the “asymptotic” 
stress relaxation rate. In fact this intuitive eff ect can 

be easily explained by the fact that when  f = 100% 
the stress relaxation rate should vanish.

Local analyses of the strain indicate that there 
is a heterogeneous state of deformation. The 
maximum strain is located at a small distance 
from the pole of the particle. Figure 4 shows the 
strain amplification in terms of the mean strain 
in the matrix, in the tensile direction, normalized 
by the applied strain (εappl = 2). It can be observed 
that all ratios are higher than unity, meaning that 
there is indeed strain amplification. Additionally, 
the higher the filler content, the higher the strain 
amplification. This effect is supposed to be due to 
gage length effect, regarding the maximum strain.

By plotting the Cauchy stress relaxation rate 
within the rubber matrix only <σ>m(t)/<σ>m

max, 
results are given in Figure 5. There is clearly a 
contrast between the trends of the fi rst Piola 
 Kirschoff  stress relaxation rate (Figure 3) and the 

5%
10%

15%
20%

Figure 2. Axi-symmetrical unit cell meshes correspond-
ing to four particles contents (5; 10; 15; 20%).

0.95

0.952

0.954

0.956

0.958

0.96

1      2     3      4      5     6      7      8     9     10

Relaxation time (s)

5%
10%

15%
20%

σ(t)/σmax

Figure 3. Relaxation rate for the axi-symmetrical 
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matrix Cauchy stress relaxation rate (Figure 5). 
The latter seems to be in accordance with the 
experimental data (Figure 1).

2.4 Particle stiff ness eff ects

Following the Rivlin deformation energy in sec-
tion 2.2 for the particle, c30 was prescribed to respec-
tively take the values 0.0012 MPa, 0.018 MPa, 0.118 
MPa and 1 MPa.  f  is fi xed at 20%. c30 values were 
selected such that the same maximum stresses for var-
ious fi ller contents as in section 2.3 were obtained.

Figure 6 shows the impact of the stiffness of 
the particle on the first Piola Kirschoff relaxation 
rate. The system tends to relax more by increasing 
the rigidity of the fillers. This is understandable 
in the case of crystallizing rubber during relaxa-
tion: the stiffness of the crystallite phase gradually 
increases during the crystallization process. For a 
specific filler, the trend in Figure 1 seems to deal 

with stiffness increasing with the filler content. 
Thus, corresponding to a filler content concen-
trated in the spherical particle within the unit cell, 
one would find an apparent stiffness that compen-
sates the variation of stress relaxation rate.

In the same way as in section 2.3, let us plot the 
strain amplification in the matrix (Figure 7). The 
ratios are of the same order of magnitude than 
when increasing the filler contents.

Figure 8 illustrates the evolution of  the Cauchy 
stress relaxation rate according to the stiffness of 
particle. Increasing the stiffness of  particles results 
in the same trend in the relaxation rate in both 
Piola Kirschoff  and matrix Cauchy stresses.

In Figures 5 and 8, it should be mentioned that 
the Cauchy mean stress within the matrix is uni-
axial. The increasing strain amplification due to 
filler contents induces higher stress levels. Under 
visco-hyperelasticity, this presumably increases the 
stress relaxation rate.
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Figure 5. Matrix Cauchy stress relaxation rate for the 
axi-symmetrical unit cell.
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Figure 7. Strain amplifi cation.
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Figure 8. Matrix Cauchy stress relaxation rate for the 
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3 NUMERICAL APPROACH 
ON PERIODIC CELLS

In fact, axi-symmetrical geometry is a too sim-
plistic model far from the real microstructure, 
such that 3D eff ects cannot be accounted for. In 
her PhD work, Jean (2009) attempted to mesh 
real carbon black fi lled rubbers with various fi ller 
contents.

3.1 Meshing of real microstructure

By using TEM images of the microstructure, more 
realistic models of microstructures which take 
the cluster eff ect of fi llers into account, can be 
attempted.

The approach consists in using morphological 
models like Boolean models combination (Savary 
et al. 1999), (Delarue, 2001), (Moreaud and Jeulin, 
2005), (Jean et al. 2007). Figure 9 shows an example 
of simulation of microstructure. But computation 
on such a mesh is very huge. Therefore, in order 
to extend the 2D axisymmetrical case of study, a 
simple periodic 3D cell, called tetrakaidecaedron 
cell (Weaire, 2008), is proposed.

3.2 Tetrakaidecaedron cell

The tetrakaidecaedron cell (Figure 10) consists of 
eight hexagons and six squares. The geometry con-
fers to the cell a symmetry of fi fth order. The ideal 
microstructure is obtained by placing a spherical 
particle at the center of cell. The periodic symme-
try leads to a centered cubic symmetry of fi llers in 
the rubber matrix (Figure 11).

The volume fraction is expressed as follows:

f = +⎛
⎝⎜

⎞
⎠⎟

−

3 2
3d

R
 (3)

where R is the radius of a particle and d the inter-
distance between particles.

1600 nm

Figure 9. Example of simulation of microstructure 
containing 60000 spherical particles.

Figure 10. Tetrakaidecaedron cell.

Figure 11. Periodic pattern of fi llers in matrix.

Figure 12. Mesh of tetrakaidecaedron cell containing a 
spherical particle inside (34268 nodes, 190380 elements).
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By increasing the volume fraction of particles, 
the inter-distance d is decreasing. This «idealized» 
microstructure does not take into account the clus-
ter effect in the sense of union of more than one 
particle. Figure 12 illustrates a mesh of a tetrakaid-
ecaedron cell containing 40% of fillers. A particular 
meshing (GMSH, 2001) (Besson & Foerch, 1997) 
procedure had to be performed due to the needs of 
periodic mesh for the periodic computation.

3.3 Simplifi ed constitutive relations—material 
coeffi  cients

Due to the size of the 3D mesh, a simplifi ed small 
deformation linear viscoelastic behavior was used. 
The particle is supposed to be linear elastic with a 
Young’s modulus E = 80 GPa and a Poisson ratio 
ν = 0.3.

For the matrix the bulk modulus is K = 3 GPa 
whereas the shear modulus is G = 1 MPa. The 
viscoelasticity, acting only on the shear terms, is 
ensured by three components of a Prony series 
(g1, τ1) = (0.45, 13); (g2, τ2) = (0.33, 455) and (g2, τ2) = 
(0.24,1800).

Similarly to 2D axi-symmetrical computations, 
uniaxial mean stress state is ensured by the bound-
ary conditions during the relaxation.

3.4 Fillers volume fraction eff ects

Figure 13 illustrates the case of 3D microstructure 
using tetrakaidecaedron cell where the volume 
fraction of particles is varying from 0% to 40%.

It turns out that neither the axi-symmetrical 
unit cell nor the 3D tetrakaidecaedron cell allow to 
retrieve the relaxation experimental data (see Fig-
ure 1). Indeed, in contrast with numerical results, 
the material tends to relax more with increasing 
volume fraction of fillers.

By plotting the histogram dealing with frac-
tion of matrix against the axial strain normalized 
by the mean strain at the end of the calculation 
(Figure 14), it is observed that there is a strain 
heterogeneity, that is well distributed within the 
whole matrix. It can be seen in Figure 14 that about 
14% of the matrix elements have an axial strain 
value similar to the applied one. The maximum 
value of the strain amplification is about 3.5.

Presumably, this strain amplification would not 
induce stress relaxation due to the used small strain 
viscoelastic constitutive relationships.

About the stress distribution at the end of the 
stress relaxation computation, Figure 15 plots 
the fraction of matrix elements with respect to 
 respectively σ11, σ22 and σ33 normalized by the 
<σ11>tot corresponding to the applied stress.

Although the applied stress is uni-axial, it 
turns out that within the matrix the stress state is 
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tri-  axial, which makes the difference regarding that 
of the axisymmetrical unit cell. Additionally, it 
should be mentioned that the curves are centered 
(peak values) to 1 for σ11 and to 0 for σ22 = σ33. Fur-
ther detailed investigations have to be carried out 
about this effect.

3.5 Particle stiff ness eff ects

By using the same 3D tetracaidecaedron periodic 
cell, the Young’s modulus of the particle (with fi ller 
content of 20%) was assigned to take three values: 
80000 MPa (as in previous calculation), 8000 MPa 
and 800 MPa. Figure 16 shows the normalized 
stress relaxation rate.

In contrast with what was observed in 2D axi-
symmetrical unit cell, Figure 16 indicates that by 
increasing the stiffness of  the particles, the stress 
relaxation rate decreases. Moreover, it is observed 
that a change of  the Young’s modulus from 80000 
MPa to 8000 MPa leads to only a very slight effect 
on the stress relaxation rate. Again, it has to be 
analyzed further in order to better understand the 
effect of  the 3D dispersed fillers.

4 CONCLUSION

The present work starts with the experimental evi-
dence that higher rigid particle contents promote 
the macroscopic viscoelastic strain. Classical visco-
hyperelastic models cannot capture this eff ect.
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Figure 16. Normalized stress relaxation rate for the 
periodic tetrakaidecaedron periodic cell fi lled with 20% 
of particle and for three values of the particle Young’s 
modulus.

Numerical FE analyses were carried out on 2D 
axi-symmetrical unit cell, as well as 3D tetracaid-
ecaedron periodic cell. Under 2D investigations, 
the experimental trend cannot be reproduced by 
increasing the volume fraction of the particle con-
tent but by the increase in the stiffness of the parti-
cle. Locally, the strain amplification leads to higher 
Cauchy stress relaxation due to non linearity in the 
elasticity (hyperelasticity).

3D periodic cell simulations showed that neither 
the increase in the particle content, nor the stiffen-
ing of the filler particle allow to capture the stress 
relaxation rate. FE simulations showed that strain 
amplification occurred within the rubber matrix. 
Additionally, whereas the applied stress is uniaxial, 
it was observed that within the matrix the stress 
state is tri-axial.
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1 INTRODUCTION

Nanoscopic filler materials like carbon black or 
silica play an important role in reinforcement of 
elastomers. Besides making the elastomer stiffer 
and tougher, the incorporation of a filler brings 
about a non-linear dynamic-mechanical response 
reflected by the amplitude dependence of the 
dynamic moduli. This effect was investigated 
by several authors like Payne (Kraus 1965) and 
Medalia (1973). A related effect is the stress soften-
ing under quasi-static cyclic deformation, which 
was studied by Mullins intensively (Kraus 1965). 
A drop in stress usually occurs after the loading 
history has gone beyond the previous maximum. 
Most of the stress drop at a certain strain occurs 
in the first cycle, and in the following cycles the 
 specimen approaches a steady state stress-strain 
curve. A second characteristic effect caused by fill-
ers is the pronounced hysteresis, which leads to the 
dissipation of mechanical energy.

All these effects are temperature- and time-
dependent and are interrelated due to their common 
origin, but neither the elastomer nor the powderous 
filler alone shows such behaviour. Where the filler 
itself  can be treated as composed of relatively stiff  
particles, also the entropy elastic behaviour of the 
elastomer or rubber matrix is quite well understood 
(Heinrich et al. 1988,  Klüppel & Schramm 2000).

A microstructure-based model of the stress-strain behaviour 
of filled elastomers

H. Lorenz & M. Klüppel
Deutsches Institut für Kautschuktechnologie e.V., Hannover, Germany

ABSTRACT: To calculate the mechanical behavior of a loaded component the engineer needs a model 
which describes the stress-strain-behaviour. In order to relate the properties of rubber and filler to those 
of a filled elastomer we use a microstructure-based approach where material parameters are physical 
quantities, instead of mere fit parameters. Core of the model is the hydrodynamic reinforcement of rubber 
elasticity (tube model) by stiff  filler clusters. The deformation is concentrated at a smaller part of the total 
volume, resulting in an amplification of stress. Under stress, clusters can break and become soft, leading 
to deformation of larger parts of the volume and related stress softening. The effect is expressed as an 
integral over the “surviving” section of the cluster size distribution. On the other hand, cyclic breakdown 
an re-agglomeration of soft clusters causes hysteresis. Filled elastomers also show an inelastic set behav-
ior. The corresponding stress contribution is modeled by a semi-empirical dependency with respect to 
maximum deformation. Using dumbbell specimens, we have done uniaxial stress-strain measurements in 
tension an compression. Parameterfits show that the model satisfactorily describes compression and ten-
sion -tests. Generally, the parameters lie in a physically reasonable range. For the first time hydrodynamic 
reinforcement (formulated by a reinforcement exponent) and stress softening have been implemented into 
FE-code. A rolling rubber wheel under load is simulated.

To understand the stress-strain behaviour of 
filled elastomers the nanostructure of the filler 
particles and their interaction with the polymer are 
of basic significance. During the deformation his-
tory a dynamic creation and damage of filler-filler 
bonds, i.e. glassy polymer bridges of some nanom-
eters in thickness (Klüppel & Schramm 2000, 
Klüppel & Meier 2001, Klüppel 2003,  Klüppel 
et al. 2003, Klüppel et al. 2005), takes place. This 
damage of bonds is structurally reversible. A 
steady state stress-strain cycle results, when the 
same amount of bonds is damaged and recovered 
during a cycle (Kraus 1984).

If the filler volume fraction in a compound goes 
beyond a critical value, a percolated filler network 
is formed during the vulcanization process. But, 
already under low deformations this network starts 
to break down, and the storage modulus drops from 
relatively high to low values. The remaining frag-
ments are clusters of filler particles which are still 
capable of reinforcing the rubber matrix (Klüppel 
et al. 1997, Meakin 1988, Havlin & Bunde 1991, 
Huber & Vilgis 1998). The principal mechanism is 
called hydrodynamic reinforcement. The branched 
clusters which are relatively stiff immobilize a cer-
tain amount of rubber. So, the deformation is 
 concentrated in the remaining part of the matrix, the 
local strain is higher than the global external strain, 
and the measured stress is accordingly increased.
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With increased loading, clusters are successively 
broken, and more rubber takes part in the defor-
mation, which in turn leads to the observed stress 
softening. On the other hand, cyclic breakage and 
re-agglomeration of damaged clusters causes the 
observed hysteresis.

In the present report we will formulate the basic 
assumptions of our reinforcement theory. Then we 
will adapt the model equations to measured stress-
strain cycles of filled elastomers, whereby compres-
sion and tension tests will be considered. The main 
part of the model which describes hydrodynamic rein-
forcement and stress softening has also been imple-
mented into the Finite-Element-Method (FEM). 
As one example, a rolling rubber wheel under load 
will be simulated. The results will be discussed in 
the frame of the physically well understood material 
parameters obtained from the fitting procedures.

2 EXPERIMENTAL

2.1 Sample preparation

Το identify parameter for the micromechanical 
model and to verify the model in further simula-
tions, measurements were carried out with unfilled 
and filled rubber compounds. Carbon Black 
(CB) was mixed into styrene butadiene rubber 
(SBR, VSL 5025-0). Also, a CB-filled blend with 
 butadiene rubber (BR, Buna CB 10) was examined 
which is a typical tire tread compound from indus-
trial practice. The corresponding mass  fractions 
in phr (per hundred rubber) are listed in table 1 
which also includes the vulcanization agents, i.e. 
ZnO, stearic acid and a semi-efficient cross-linking 
system ( sulfur + accelerator CBS), and anti-ageing 
IPPD. The compounding was prepared using an 
internal mixer, Werner & Pfleiderer GK 1,5E.

The whole compound was rolled for a homoge-
neous distribution and then allowed to rest for 2 h, 
before the vulcanization time t90 at 160°C was deter-
mined with a Monsanto vulcameter. For uniaxial 
testing, axial-symmetrical dumbbells were used.

2.2 Multihysteresis measurements

Uniaxial multi-hysteresis tests at ε. ≈ 0.01/s and 
T = 22°C were carried out on dumbbells, 15 mm 

in thickness, using a Zwick 1445 universal testing 
machine. For strain measurement, two reflection 
marks were placed in a 15 mm distance. Multi-
 hysteresis means: at constant velocity up and 
down -cycles between certain minimum and maxi-
mum strains, εmin and εmax, are carried out. This is 
done 5 times each step, and after every of such 
steps the boundaries of deformation are succes-
sively raised (εmax) or lowered (εmin), respectively. 
Only every 5th up and down -cycle are evaluated, 
which can be regarded as being steady state in a 
good approximation.

3 THEORY

The Helmholtz free energy density of a filled 
 elastomer constitutes the elastic material function 
and can be described as the sum of matrix and filler 
contributions (Klüppel 2003, Klüppel et al. 2005): 

W W Weff R eff A= −( ) +1 Φ Φ  (1)

where WR is calculated for the entropy-elastic rub-
ber phase, and WA is the energy-elastic contribu-
tion of the fragile agglomerates (damaged clusters) 
of filler particles. The respective stress compo-
nents are obtained as the derivatives with respect 
to ε. Φeff stands for the mechanical effective filler 
volume fraction (which is larger than the real vol-
ume fraction, because of rubber occluded in the 
aggregates).

To describe the hyperelastic behavior of the 
rubber matrix, we use the non-affine tube model 
with non-Gaussian extension (Heinrich et al. 1988, 
 Klüppel & Schramm 2000).

We can assume the presence of filler clusters 
dispersed in the rubber matrix. A filler cluster is 
thought to be composed of spherical particles 
(with diameter d ) and to have a diameter ξ μ in 
each space direction μ. The relative size x  μ is the 
ratio ξ μ/d. Also, a Smoluchowski type of cluster 
size  distribution, φμ(x), is adopted, according to 
the kinetics of cluster-cluster aggregation (CCA), 
Klüppel (2003): 

φμ
μ

μ( ) ,x
x

x
e

x
x=

−4
2

2
 (2)

where <xμ  > stands for the average cluster size. 
Previously, an isotropic cluster size distribu-
tion <x1> = <x2> = <x3> ≡ x0 has been used. To 
account for a preconditioning of clusters under 
compression, we use an anisotropic cluster size 
distribution here as derived by Witten et al. (1993) 
which states that clusters deform like the specimen 

Table 1. Components of the investigated compounds 
in phr.

Com-
pound 

SBR 
5025

BR 
CB 
10

Filler

ZnO
Stearic 
acid

X-linking

N115 N339 S CBS IPPD

S60N1 100 60 4 1 1.7 2.5 1.5
S60N3 100 60 4 1 1.7 2.5 1.5
SB6R2  85 15 60 3 1 1.7 2.5 1.5
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as a whole. This means: <xμ> = λμ,min x0, x0 being 
the initial isotropic average cluster size and λμ,min the 
minimal deformation ratio that has occurred dur-
ing the deformation history in space direction μ.

A crucial point in our approach which we call 
“dynamic flocculation model” are the bonds 
between filler particles. Under the load transferred 
from the matrix to the clusters the filler-filler bonds 
can break. The strength of damaged filler-filler 
bonds is reduced, compared to the virgin bonds. 
The following paragraph describes the stress 
contribution of the hydrodynamically reinforced 
matrix. We are mainly interested in the response 
to uniaxial loading in 1-direction which fulfils the 
symmetry conditions λ ≡ λ1 and λ2 = λ3 = λ−1/2.

3.1 Hydrodynamic strain amplification

Due to the presence of the filler, only parts of the 
material volume are deformed under an exter-
nal strain ε or relative deformation λ = 1 + ε. 
We describe the local strain of the rubber matrix 
as multiplied by a factor X, and the local stretch 
κ = 1+ Xε.

Because of the fractal geometry of undamaged, 
stiff clusters, we can use a result of Huber & Vilgis 
1998 for overlapping CB aggregates. They calculated 
an amplification factor X that is proportional to 
powers of filler volume fraction and relative aggre-
gate diameter. All of the stiff clusters contribute to 
X. Damage of stiff clusters causes stress softening 
by decreasing X, which is expressed as an integral 
over the “surviving”, hard, section of the cluster 
size distribution and is a function of the maximum 
deformation the material has been subjected to in 
its entire deformation history (Klüppel et al. 2005): 

X X
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x x x
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d d
x

d f

w f

max min max,
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where the constant c is taken to be ≈ 2.5, the 
 Einstein coefficient for spherical inclusions. The 
exponent dw stands for the anomalous diffusion 
exponent which amounts to ≈ 3.1 (Klüppel et al. 
1997), and df is the fractal dimension of the filler 
clusters (≈ 1.8 for CCA, Meakin 1988).

To solve the integrals analytically, we make use of 
an approximation for the exponent dw−df = 1. The 
solution of this expression can be found by inserting 
the cluster size distribution eq. (2) into the integrals. 
For an explicit evaluation of this strain amplification 
factor, we also have to calculate the integration lim-
its. The tensile strength of damaged bonds sd (which 
governs the amount of hysteresis) can be expressed 

by their failure strain   εd,b and elastic modulus Qd/d3, 
the same is valid for virgin bonds where we use the 
index “v”. As depicted in Klüppel (2003), the clus-
ter strain under a certain load rises stronger with 
cluster size than the failure strain does. Accordingly, 
with rising load, large clusters break fist followed by 
smaller ones. The critical size of currently breaking 
clusters was accordingly derived:

, d
3

R,R,
( ) .

ˆˆ ( )( )
d d bQ s

x
dμ

μμ

ε
ε

σ εσ ε
= =  (4)

The strength of virgin bonds sv governs the 
strain amplification factor X, because it enters into 
the minimum size of damaged clusters xμ,min and 
consequently into the integration limit of eq. (3):

v v,b v
,min 3

R, maxR, max
.

ˆˆ ( )( )
Q s

x
dμ

μμ

ε
σ εσ ε

= =  (5)

The two parameters sd and sv, i.e. the tensile 
strength of damaged and virgin filler-filler bonds 
can be treated as fitting parameters.

3.2 Constance of volume

For unfilled as well as for filled elastomeres it has 
been found experimentally that the volume remains 
more or less constant during deformation. This 
makes it possible to derive a uniaxial stress from 
W(ε) as a total derivative to axial strain and to cal-
culate mutual derivatives of strains. On the other 
side, the condition of volume constance has to be 
taken into consideration for strain amplification, if  
large deformations occur.

Mathematically, inner volume constance means: 

κ1 κ2 κ3 = (1 + X1ε1)(1 + X2ε2)(1 + X3ε3) = 1,

and outer volume constance means:

λ1 λ2 λ3 = (1+ ε1)(1 + ε2)(1 + ε3) = 1.

If for instance X1 = 10, κ1 would take on  negative 
values for   ε1 < −10%, which is not  permissible, 
 physically. Therefore, the amplification factor 
for space directions with negative strain has to 
depend on strain. For simplicity, we assume that 
for the direction of largest strain: Xf = const. (only 
dependant on maximum strain) and Xf = Xmax is 
calculated from eq. (3). Using the assumption of 
constant volume and uniaxial or equibiaxial sym-
metry conditions, the other amplification factors 
can be calculated.

In order to unify the calculation for all required 
deformation states we use an alternative formalism 
by introducing an amplification exponent r, equal 
for all space directions: κ1 = λ1

r, κ2 = λ2
r, κ3 = λ3

r.
r = 1 for unfilled rubbers. The formalism imme-

diately satisfies inner volume constance, if  outer 
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volume constance is given. The amplification expo-
nent is dependent on Xmax and current stretch, λf, in 
direction of maximum strain:

κ λ
λ

λμ μ= =
+ ⋅ −( )r r

X
,

ln ( )
ln( )

,max f

f
    

1 1  (6) 

while now, for all modes of loading the same qua-
tions hold.

3.3 Hysteresis

The damaged clusters are softer and elastically 
more deformable. Cyclic stretching, breakdown 
(stress release) and re-agglomeration of soft clus-
ters causes hysteresis. The stress-strain relation is 
formulated in main axes. Within this framework, 
the reversible fraction of the mechanical energy 
density spent at soft filler clusters is:
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Here, we integrate over the re-agglomerated 
section of the cluster size distribution φμ(x), in 
each space direction μ where clusters are being 
stretched. In the directions of negative strain rate 
we assume that no forces shall act on soft clusters, 
because all of these have been broken in the pre-
ceding cycle and are now re-agglomerating. Addi-
tionally, we assume that clusters deform plastically 
when compressed in a certain direction. Therefore, 
to calculate the strain energy in the up cycle of a 
uniaxial tension test (∂ε1/∂t > 0), we only consider 
the axial elastic cluster strains   εA,1. To describe the 
down cycle (∂ε2/∂t, ∂ε3/∂t > 0) the same isochoric 
state of the material shall be modeled by an equibi-
axial compression test that starts at the end of the 
tension cycle, where still εA,2= 0.
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The hat over σR,μ means the matrix stress relative 
to the start of the cycle. The elastic deformation 
of clusters is caused by this very “relative stress” 
which in turn depends on the hydrodynamically 
amplified local stretch κ1 (ε).

The matrix stress perpendicular to the loading 
direction, σR,2 = σ R,3, is calculated as the stress that 

is needed to cause the same deformation, from 
equivalence of energies, we have:

σR,2(ε) = –κ1(ε)3/2 σR,1(ε). (9)

The integral in eq. (8) is an average of a mutual 
derivative of cluster strains, dεA,μ  /dεA,v  , which has 
to be evaluated in order to calculate the down 
cycle. Because there is no exact solution, we use an 
approximation. In the uniaxial case, therefore: 

∂
∂
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1

2

1
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3 21
2
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This means, the re-agglomerated clusters, in the 
average, shall deform like the specimen as a whole.

3.4 Set behaviour

Filled elastomers also show a certain inelastic 
behaviour called setting which is characterized be a 
permanent deformation εset at released load. The cor-
responding stress contribution has to be described 
by a term separate from elastic potentials. The set 
stress σset is the stress required to get the material 
back into the un-deformed state. Because the phys-
ical mechanism of setting is not fully understood, 
we utilize a semi-empirical description, where σset 
depends on maximum deformation:

σset = sset,0⋅ f (εmin, εmax) (11)

In the expression there is only one free parameter, 
sset,0, which stands for the setting stress at εmax = 1.

4 RESULTS AND DISCUSSION

4.1 CB–filled rubber in combined 
compression–tension test

To identify a parameter set that describes the 
mechanical behaviour of the compound SB6R2, 
multihysteresis measurements in combined 
compression-tension were carried out. Fig. 1 shows 
the extracted 5th cycles, the set of fitted param-
eters is given as an inset. Some parameters can be 
assumed to have specified values. These param-
eters are recognizable from the fitting error = 0 
in the right column. The setting constant sset,0 
was calculated from the evaluated setting stresses. 
And the modulus of topological constraints, Ge, 
should be equal to ≈ 1/2 GN, the plateau value of 
un-cross-linked rubber which is 0.6 MPa for SBR, 
but only under the assumption that there are no 
filler-induced entanglements.

Generally, the identified parameters are physi-
cally reasonable:

• Gc (cross-link modulus) ≈ 2 MPa
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• n ≡ ne/Te (number of chain segments between 
trapped entanglements) ≈ 15

• sd and sv amount to some 10 MPa, whereby: 
sd < sv

• x0 ≈ 5 is near a typical value of about 10 
particles/cluster

• Φeff ≈ 0.32 is higher than the filler volume frac-
tion, Φ = 0.24, and a reasonable value for 60 phr 
of “structured” CB particles of the grade N339

It has been verified in previous studies that 
parameters fitted with the dynamic flocculation 
model vary systematically when the filler volume 
fraction is varied (Klüppel 2009).

4.2 Variation of filler particle size

For investigating the effect of  particle size of CB, 
the compounds S60N1 and S60N3 were tested in 
a multihysteresis tension mode. The stress-strain 
curves (5th cycles) are depicted in Fig. 2 and Fig. 3 
(symbols), where fits with the dynamic flocculation 
model (lines) are also shown. The fitted param-
eters are listed in the legend of the plots, which 
again appear physically reasonable. For taking 
into account the effect of  surface induced entan-
glements and for getting better fitting results, in 
this case the topological constraints modulus, Ge, 
has also been treated as a fit parameter. It is found 
to converge at values of Ge = 1.505 MPa (S60N1) 
and Ge = 1.257 MPa (S60N3), respectively, which 
are larger than the previously used specified value 
Ge = 0.3 MPa of the polymer matrix. This 
 indicates that the attractive interaction of the 
polymer chains with the filler surface increases 
the entanglement density significantly. We point 
out that this modification slightly affects the other 
parameters, but mostly the cross-link modulus Gc 
which is found to be reduced compared to the fits 
with Ge = 0.3 MPa.

The two compounds differ in the kind of  CB 
used: N115 (S60N1) and N339 (S60N3). The 
different morphology of  the filler has a consid-
erable effect on the stress-strain behaviour and 
accordingly on the fit parameters: N115 consists 
of  smaller filler particles with a higher specific 
surface area. This results in a higher relative 
cluster size x0 and Φeff, at constant Φ, compared 
to N339 (N115/N339: x0 = 7.882 / 6.32, Φeff  = 
0.3927/0.3162).

N115 is also a more “active” filler, which appar-
ently leads to stronger filler-filler bonds (N115/N339: 
sd = 25.48/21.86 MPa, sv = 63.92/60.02 MPa). But, 
the filler also affects the parameters of the poly-
mer network: the higher filler surface area of N115 
results in higher cross-linking and entanglement-
densities (N115/N339: Gc = 1.505/1.257 MPa, 
Ge = 1.505/1.257 MPa). If more entanglements are 
present one would also expect a lower n (segments 
between trapped entanglements), but the trapping fac-

Figure 1. Uniaxial multihysteresis measurement and 
fit, inset shows parameter set, SB6R2.
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Figure 2. Uniaxial multihysteresis measurement and 
fit, inset shows parameter set, S60N1.

0 10 20 30 40 50 60 70 80 90 100
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
 Measurement: 22°C
 Fit

G_c 0.7822 ±0.0391
G_e 1.505 ±0.0591
n 12.89 ±0.3693
s_d 25.48 ±1.364
s_v 63.92 ±1.669
x0 7.882 ±0.2576
phi_eff 0.3927 ±0.00761
sSet0 -0.9000±0

no
m

in
. s

tr
es

s 
σ 

[M
P

a]

strain ε [%]

Figure 3. Uniaxial multihysteresis measurement and 
fit, inset shows parameter set, S60N3.
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tor, Te, may also be reduced leading to a higher n for 
N115: n = 12.89, compared to n = 8.109 for N339.

4.3 Finite–element simulation of a rolling wheel

The main part of the flocculation model which 
describes hydrodynamic reinforcement and stress 
softening has been implemented into the Finite-
Element-Method (FEM). This was done by referring 
to a strain amplification exponent, which has been 
described previously in more detail (Klauke et al. 
2005). Here, we demonstrate for the first time the 
evolution of this damage parameter under practical 
conditions, i.e. for a rolling rubber wheel (known 
as “Grosch wheel”), 80 mm in diameter. This 3-D 
model was meshed with symmetric boundary con-
ditions in axial 3-direction.

At the beginning of time history, a compressive 
load of Fmax = 1.9 kN in 2-direction is applied to the 
middle part which consists of a rigid shaft. Under 
the load the wheel is compressed by 7.8 mm, as can 
be seen in Fig. 4. In the following step the wheel 
rotates around the axis and rolls on the ground, fric-
tionless. Despite the constant load, the displacement 
increases by 1.2 mm (between the first and last snap-
shot) while the wheel fulfils one complete revolution. 
This is due to stress softening, as can be seen from 
the strain amplification exponent, r. Prior to load-
ing, r is ubiquitously equal to 1.7. It can be observed 
how it decreases during the test. The smallest values 
of 1.1 are found near the shaft where, simultane-
ously, the highest stresses are found. Because the 
decrease of r corresponds to stress softening, it can 
be regarded as a kind of damage variable.

REFERENCES

Edwards, S.F., & Vilgis, T.A. 1988. The tube model the-
ory of rubber elasticity. Rep. Prog. Phys. 51:243.

Havlin, S., & Bunde, A. 1991. Fractals and disordered 
systems. Springer.

Heinrich, G., Straube, E., & Helmis G. 1988. Rubber 
elasticity of polymer networks: theories. Adv. Polym. 
Sci. 85:33.

Huber, G., & Vilgis, T.A. 1998. Universal Properties of 
Filled Rubbers: Mechanisms for Reinforcement on 
Different Length Scales. Euro. Phys. J. B3:217.

Klauke, R., Meier, J., & Klüppel, M. 2005. FE-
Implementation of a constitutive model for stress soften-
ing based on hydrodynamic reinforcement. In Boukamel, 
Laiarinandrasana, Méo & Verron (eds), Constitutive 
Models for Rubber V. London: Taylor & Francis.

Klüppel, M., Schuster, R.H., & Heinrich G. 1997. Struc-
ture and properties of reinforcing fractal filler net-
works in elastomers. Rubber Chem. Technol. 70:243.

Klüppel, M., & Schramm, J. 2000. A generalized tube 
model of rubber elasticity and stress softening of 
filler reinforced elastomer systems. Macromol. Theory 
Simul. 9:742.

Klüppel, M., & Meier, J. 2001. Modeling of Soft Mat-
ter Viscoelasticity for FE-Applications. In D. Besdo, 
R. H. Schuster & J. Ihlemann (eds), Constitutive Mod-
els for Rubber II, Lisse: Balkema.

Klüppel, M., 2003. The Role of Disorder in Filler Rein-
forcement of Elastomers on Various Length Scales. 
Adv. Polym. Sci. 164:1.

Klüppel, M., Meier, J., & Heinrich, G. 2003. Impact 
of Pre-Strain on Dynamic-Mechanical Properties 
of Carbon Black an Silica Filled Rubbers. In J.J.C. 
 Busfield & G.A.H. Muhr (eds), Constitutive Models 
for Rubber III. Lisse: Balkema.

Klüppel, M., Meier, J., & Dämgen, M. 2005. Modelling of 
stress softening and filler induced hysteresis of elastomer 
materials. In Austrell & Kari (eds), Constitutive Models 
for Rubber IV. London: Taylor & Francis.

Klüppel, M. 2009. Evaluation of viscoelastic master 
curves of filled elastomers and applications to  fracture 
mechanics. J. Phys.: Condens. Matter 21:035104.

Kraus, G. (ed.) 1965. Reinforcement of elastomers. N.Y. 
London Sydney: Wiley, Interscience Publ.

Kraus, G. 1984. Mechanical Losses in Carbon-Black-filled 
Rubbers. J. Appl. Polym. Sci., Appl. Polym. Symp. 
39:75–92.

Meakin, P. 1988. Fractal Aggregates. Adv. Colloid Inter-
face Sci. 28:249.

Medalia, A.I. 1973. Elastic Modulus of Vulcanizates 
as related to Carbon Black Structure. Rubber Chem. 
Technol. 46:877.

Witten, T.A., Rubinstein, M., & Colby, R.H. 1993. Rein-
forcement of rubber by fractal aggregates. J. Phys. II 
France. 3:367–383.
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ing expressed by the damage variable r is depicted in the insets for chosen times.
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1 INTRODUCTION

Many structures and materials such as thin hetero-
geneous and/or fibre-reinforced elastomers struc-
tures, thin living tissues, manufactured woven or 
non-woven 2D textiles, behave as a first and rea-
sonable approximation as elastic and anisotropic 
membranes undergoing finite strains.

In this work, we propose to estimate, from a 
theoretical and numerical multiscale approach, 
the mesoscale effective mechanical properties of 
such membranes, (i) starting from the description 
of both the microstructure and the mechanical 
equilibrium of the membranes at the microscale, 
and (ii) assuming that the involved materials at the 
microscale behave as hyperelastic bodies.

Firstly, the above micromechanical problem 
at the heterogeneity scale is upscaled by using 
the homogenisation method with multiple scale 
asymptotic expansions for periodic structures 
(Bensoussan et al. 1978; Sanchez-Palencia 1980; 
Caillerie 1984; Auriault 1991; Pruchnicki 1998). 
The homogenisation also provides suitable locali-
sation problems to be solved within the Repre-
sentative Elementary Volumes (REV) in order to 
compute the effective hyperelastic responses of the 
membranes.

Secondly, these boundary values problems are 
implemented into a Finite Elements software and 
the effective mesoscale properties of heterogene-
ous membranes are investigated quantitatively. 
The considered membrane is rather simple: it is 
made up of hyperelastic materials and it exhibits 
crenellated cross sections. Hence, its associated 
REV is subjected to meso-scopic in plane load-
ings ( uniaxial/biaxial tensions, pure shear) and 

A multiscale approach to model the mechanical behaviour 
of heterogeneous hyperelastic membranes

L. Meunier, L. Orgéas, G. Chagnon & D. Favier
In memory of Luc Meunier
CNRS/Université de Grenoble, Laboratoire Sols-Solides-Structures-Risques (3S-R), 
Grenoble Cedex, France

ABSTRACT: Within the framework given by the homogenisation method with multiple scale asymptotic 
expansions, a theoretical and numerical analysis is proposed in order to study the mesoscale behaviour of 
hyperelastic thin membranes exhibiting geometrical or material heterogeneities at the microscale. Results 
deduced from this multiscale approach are then used to analyse the mechanical behaviour of a crenellated 
thin membrane made up of a compressible Neo-Hookean material.

their resulting mesoscopic behaviours (stress levels, 
evolving anisotropy) are analysed and discussed.

2 PROBLEM STATEMENT

We consider a thin heterogeneous plate, e.g. that 
shown in figure 1(a), with an initial average thick-
ness e0 along the e3 direction and with a charac-
teristic in-plane initial macroscopic dimension L0 
(in (e1, e2)). The plate is made up of a periodic assem-
bly of Representative Elementary Volumes (REV) 
with a characteristic in-plane initial dimension l0. 
It is supposed that the thickness e0 and the REV 
in-plane length l0 are of the same order of magni-
tude, i.e e0/l0 ≈ O(1), and that they are very small 
with respect to the in-plane size L0 of the plate, i.e 
e0/L0 ≈ l0/L0 ≈ O(ε), the scale separation param-
eter ε being very small. A typical example of such 
REV's is shown in figure 1(b).

For a sake of simplicity, we assume here that 
the plate is only subjected to in quasi-static and 
in-plane mechanical loadings without volumetric 
forces. With the example shown in figure 1(b), this 
means that the upper Γ+ and lower Γ− surfaces of 
the REV are not loaded.

By noting respectively X_ and _x the initial and 
current position vectors of materials points 
and u_(_X) = _x −X_ the displacement vector, the first 
momentum balance equation corresponding to 
this problem and to be solved in the initial con-
figuration is:

DivX π = 0,  (1)

where DivX is the divergence operator with respect 
to the initial configuration and position vectors _X. 
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From the second momentum balance equation, the 
first Piola-Kirchhoff stress tensor π=  must verify:

π π⋅ = ⋅F Ft t.  (2)

In the last equation, F is the transformation gradi-
ent defined as:

F Grad u= +δ
X

,  (3)

δ  and Grad
X  being the identity tensor and the gra-

dient operator with respect to X, respectively.
Besides, the plate is supposed to be made up of 

compressible hyperelastic materials, the character-
istic stiffness of which being of the same order of 
magnitude. Their stress tensors π can therefore be 
written as:

π =
∂

∂
W ( )

,
F

F  (4)

The local strain energy function W per unit of 
unde-formed volume is supposed to be positive 
and such that W ( ) .δ = 0  For example, let us assume 
that the membrane is made up of  compressible 

Neo-Hookean materials. In this situation, W is 
expressed as: 

W I J k J= − + −
⎛

⎝
⎜

⎞

⎠
⎟

−1
2

3 11

2
3μ( ) ( ) , (5)

where

J I t= = ⋅Det Tr( )F F F, 1  (6)

and where μ( ( )X X) and k  are the shear modulus 
and the compressibility modulus, respectively.

3 UPSCALING

3.1 Introduction

In order to obtain the equivalent mesoscopic 
mechanical behaviour of the as-described problem, 
the homogenisation method with multiple scale 
asymptotic expansions is now used ( Bensoussan 
et al. 1978; Sanchez-Palencia 1980; Caillerie 1984; 
Auriault 1991). Hence, provided a good scale sepa-
ration between L0 and l0, the problem can be tack-
led by introducing two distinct and independent 
dimensionless space variables, i.e. �Y Zand  (the 
symbol “∼” denotes quantities which are defined 
in ( , )).e e1 2  The mesoscopic in-plane space vari-
able � �Y X= / L0  is defined in the ( , )e e1 2  plane 
(Y3 = 0) and characterises the membrane geometry 
at the mesoscopic scale. The microscopic one, i.e. 
Z X= / l0 , characterises the membrane geometry 
in the REV’s. Thus, any scalar function ϕ ( )X  
is now written as a function of �Y Zand , i.e.ϕ ( , ).�Y Z
Therefrom, it is further assumed that the displace-
ment field u Y Z( , )�  can be expressed as an asymp-
totic expansion in powers of ε:

u u Y Z u Y Z u Y Z= + + +( ) ( ) ( )( , ) ( , ) ( , ) ...0 1 2 2� � �ε ε  (7)

where the displacement fields u( )i  are supposed to 
be Z -periodic on the lateral surface Γp of  the REV 
(see figure 1(b)).

Accounting for this last assumption, the homog-
enisation method consists (i) in introducing the 
new set of space variables �Y Zand  together with 
the above asymptotic expansion (7) in the problem 
(1–6) and (ii) in identifying and solving the prob-
lems arising at the different ε-orders.

3.2 Main results

Theoretical developments are very similar to 
what was achieved by Pruchnicki (Pruchnicki 
1998) for Saint Venant-Kirchhoff materials. We 
have here extended his work to a larger class of 
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X

Figure 1. Typical plate which is here considered 
(a), geometry with α = 65° (b) and P2 tetrahedral FE 
mesh (≈ 50000 degrees of freedom) (c) of the Representa-
tive Elementary Volume of the considered membrane 
(dimensions in mm).
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 hyperelastic materials and we have also avoided 
any a priori assumption on the first order displace-
ment field u( ).0  The reader is referred to his work 
(P ruchnicki 1998) and to that of Meunier (Meunier 
2009) for details about the theoretical develop-
ments. We briefly summarise hereafter the main 
results deduced from the approach:

• From the assumptions stated for W, it can be 
shown that the first order displacement field 
only depends on the in-plane mesoscopic space 
variable, i.e. u u Y( ) ( )( ).0 0= �

• The mesoscopic equivalent continuum is a 2D 
membrane. In the ( , )e e1 2  plane, its first momen-
tum balance equation in the initial configuration 
is expressed as:

Div� � ��X π( )0 = 0 , (8)

where the mesoscopic first order Piola-K irchhoff 
stress tensor �π( )0  is defined as

� �π π( ) ( ) ,0

0

01
0

= ∫V
Vd

Ω
 (9)

such a volume averaging being performed on the 
initial solid domain Ω0 of the REV, of initial vol-
ume V0. The local first order stress tensor �π( )0  
involved in the last equation is defined from:

π( )
( ) ( )

( ) ( )

( )

( )
,0

0 1

0 1
=

+

+

∂

∂

W �

�
F H

F H
 (10)

where

� � � �
�F Grad u( ) ( )0 0= +δ

X
 (11)

and

H Grad u(1) =
X

ε ( )1  (12)

From (2), it also follows that �π( )0  verifies:

� � � �π π( ) ( ) ( ) ( ) .0 0 0 0⋅ = ⋅F F
t t

 (13)

• The mesoscopic first order Piola-Kirchhoff 

 stress tensor �π( )0  is defined as the partial 

 derivative of the mesoscopic strain energy 

 function W ( ,( )�F 0 microstructure)  with respect

 to the first order 2D transformation gradient �F( ):0

�
�

�
π( )

( )

( )

( , )
0

0

0=
∂

∂

W F

F

microstructure
, (14)

• The first order stress tensor �π( )0
 can be 

obtained by solving in the REV the following 
boundary value problem:

Div 0

F H

F H
H Grad u

X

X

W

π

π

π

( )

( )
( ) ( )

( ) ( )

( )

( )

( )

0

0
0 1

0 1

1

=

=
+

+
=

∂

∂

�

�
(1) ε

(( ) ,0 ⋅ =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪−N 0 on

in

+

0

Γ Γ

Ω  (15)

where the first order periodic fluctuation of the 
displacement field ε u( )1  is the unknown field, 
N  is the unit vector normal to the external 
 surfaces Γ+ and Γ− , and where �F

( )0  is given and
constant within the entire REV.

4 APPLICATION TO A SIMPLE 
MEMBRANE

By following the previous theoretical framework, it 
is now possible to compute the effective properties 
of hyperelastic membranes.

4.1 Considered membrane geometry and material

For that purpose, we consider a thin plate made up 
of upper and lower crenellated profiles. It is shown 
in figure 1(a). The corresponding REV and its 
dimensions are given in figure 1(b). As shown from 
this figure, the upper and lower crenellated profiles 
are identical but they are not parallel: they respec-
tively make an angle ±α/2 = ±32.5° with respect to 
the e1 direction.

For the sake of simplicity, the membrane is 
assumed to be made up of a unique material, 
the mechanical behaviour of which is defined 
from the compressible Neo-Hookean hyperelas-
tic strain energy function (5). The constitutive 
parameters associated with this function, i.e. μ and 
k, are assumed to be constant in the whole REV, 
they were set to 1 and 1000 MPa, respectively. 
Hence, the considered material can be regarded as 
quasi-incompressible.

In order to study the mesoscopic mechanical 
behaviour of such an heterogeneous membrane, i.e.

to analyse the relationship between � �π( ) ( ),0 0
F  

and the membrane microstructure (see (14)), the 
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boundtary values problem (15) was solved on the 
considered REV for given values of the 2D mes-
oscopic transformation gradient �F(0). This allows 
to estimate the displacement fluctuation ε u(0), then 
the local stress tensor �π( )0  (from (15b), and finally 
the mesoscopic stress tensor �π( )0  (from (9)).

For that purpose, the weak form of this 
problem was implemented into the Finite Elements 
(FE) code Comsol Multiphysics, and the REV was 
meshed using FE elements with second order poly-
nomial form functions (P2, see figure 1(c)). Such 
a highly nonlinear formulation was solved incre-
mentally, with an iterative Newton’s like algorithm 
at each time step.

4.2 Anisotropy

A first type of numerical experiments was achieved 
in order to analyse the mechanical anisotropy of 
the considered membrane. Hence, the REV was 
subjected to a plane strain tension along the e1  
direction:

�F e e( )0
11 1 1= ⊗λ  (16)

up to an axial elongation λ11 = 2. Then, the REV 
was rotated by an angle θ in the ( , )e e1 2  plane, and 
the same numerical experiment was achieved. This 
was repeated for various values of θ ranging from 
0° to 180°. Therefrom, the dimensionless stresses 
components:

�
�

�
�

�

�
π

π

π
π

π

π
11
(0) 11

(0)

11
(0) and 22

(0) 22
(0)

22
(

* *
=

=
=

( )
( )

( )θ

θ

θ

0 00) θ =( )0
 (17)

were built and analysed as functions of the ori-
entation angle θ. This is illustrated in figure 2, 
in which these dimensionless stress ratios were 
plotted as functions of θ, for two values of the 
imposed mesoscopic elongation λ11:

• Even if  the membrane is made up of a unique 
material, the architecture of the REV induces 
noticeable anisotropy: stresses components 
depend on θ. For example the dimensionless

 stress component �π11
(0) *  is approximately 25%

 higher when θ = 90° than when θ = 0°. This trend 
is reversed but less pronounced for the second

 dimensionless stress component �π22
(0) *.

• The anisotropy magnitude evolves as the 
imposed mesoscopic elongation is increased. 
For example, it is approximately twice higher

 for �π22
(0) *  when λ11 goes from 1.25 to 2. This is

 much less emphasised and this trend is reversed
 for �π11

(0) *
, as evident from figure 2.

• Whatever the considered elongation λ11, figure 2 
proves that the mesoscopic mechanical in-plane 
behaviour of  the membrane exhibits orthot-
ropy: stress ratios exhibit two symmetries along 
two orthogonal directions, i.e. for θ = 0° and 
θ = 90°.

4.3 Biaxial loadings

We now return to the REV given in figure 1(b) in 
order to analyse the effect of the mechanical load-
ing type on its behaviour. For this reason the REV 
was here subjected to in plane and radial biaxial 
loadings corresponding to the following in plane 
mesoscopic transformation gradient:

�F e e e e( ) ( )0
11 1 1 2 2= ⊗ + ⊗λ β  (18)

When it was possible, the elongation λ11 along the 
e1 was increased until a value of 2. The positive biaxial 
ratio β   = λ22/λ11 was kept constant during each load-
ing. Various numerical experiments were achieved 
with the following β values : −1 (corresponding to an 
in-plane pure shear test), −0.5, 0 (corresponding to a 
plane strain tension test), 0.5 and 1 (corresponding 
to an equibiaxial tension test).

Numerical results have been summarised 
in figure 3, in which the stress-elongation diagrams

�π λ11
(0) − 11 and �π λ22

(0) − 11 have been reported 
forthe different tested values of β, together with 
the deformed shapes of the REV at the end of 
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Figure 2. Evolution of the dimensionless stresses �π11
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and �π22

(0) *  as functions of the angle θ the REV is 
rotated from its initial configuration shown in figure 1(b). 
These stresses have been estimated for two imposed 
mesoscopic elongations λ11.
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the mechanical loadings. This figure brings up the 
following comments:

• The two stress-elongation graphs emphasise 
the key role of the mechanical loading on the 
mechanical response of the membrane. Whatever 
the considered stress component, an increase of 
β yields to an increase of stress levels. Such a 
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Figure 3. Biaxial loadings achieved with various elongation ratios β = λ22/λ11. The two graphs represent the 
evolution of the mesoscopic stress components �π11

0( )  (upper graph) and �π22
0( )  (lower graph) as functions of the imposed

mesoscopic elongation λ11. We have also reported the initial mesh of the REV, as well as its deformed meshes at the end 
of the different mechanical loadings. Colormaps shown on the deformed meshed represent the values of the Von Mises 
stress, ranging from its lowest value (blue) to its maximal one (red).

trend is much more pronounced with the stress 
component �π22

(0)  than with �π11
(0) .

• The anisotropy of the membrane, which was 
emphasised in the previous subsection, can also 
be observed when looking at stress-elongation 
curves in the case of the equibiaxial test, i.e. for 
β = 1. Indeed, the two graphs of figure 3, show
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 that �π22
(0)  is higher than �π11

(0)  (20% higher
 when λ11 = 2).
• Stress-elongation curves for β ≥ 0 exhibit a cur-

vature with a constant sign: this is directly due 
to the Neo-Hookean nature of the membrane 
material.

• Such an expected behaviour is not observed at 
all for stress elongation curves obtained with 
β = −1 and β = −0.5. Indeed, for these two mechan-
ical loadings which involve compression stress 

 components �π22
(0) , the sign of the curvature

 suddenly change around λ11 = 1.25 and λ11 = 1.75 
when β = −1 and β = −0.5, respectively (see the 
circles sketched in the graphs of figure 3). This 
change results in an anomalous increase of the

 strain hardening of �π11
(0)

 and in an anomalous 
strain softening of �π22

(0)  By closely looking at
 the deformed shapes of the REV just after these 

transition zones (see figure 3), one can clearly 
see that the REV has been subjected to a local 
buckling along the e2 direction, such a buckling 
being induced by the imposed meso-scopic com-
pression elongation along this direction.

5 CONCLUSIONS

Within the framework proposed by the homog-
eni-sation method with multiple scale asymptotic 
expansions, and more precisely by pursuing the 
work of Pruchnicki (Pruchnicki 1998), we have 
proposed a method to analyse from numerical 
simulation the mesoscopic mechanical behaviour 
of heterogeneous hyperelastic membranes.

In particular, it has been shown that a mem-
brane made up of a unique homogeneous material 
but with geometrical heterogeneities at the REV 
scale could exhibit significant anisotropy and pos-
sible microstructure instabilities such as buckling. 

A deeper analysis of these phenomena as functions 
of both the membrane geometry (e.g. the inclina-
tion angle α) and the imposed mesoscopic loading 
should be required.

The method also permits to analyse the 
mechanical behaviour under various mechani-
cal loadings, thus allowing to constitute a pre-
cious and exhaustive database in order to propose 
relevant analytical forms of the mesoscopic law 
(14). This work is planned.

Before, its relevance must be proved. For that 
purpose, its prediction could be compared to what 
could be observed experimentally on similar heter-
ogeneous membranes with a homogeneous hyper-
elastic material such as silicone rubber (Meunier 
et al. 2008). This work is also planned.
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1 INTRODUCTION

Investigation of the molecular mobility of polymer 
chains and networks under large static deformations 
is one of the important topics in the modern physics 
of rubbers. On the one hand, superposition of large 
static and small oscillating strains has been pro-
posed recently as a method for studying the molec-
ular mobility and structure of polymer networks 
(Bodneva, Borodin, Khazanovich 2005; Munch, 
Pelletier, et al. 2006). On the other hand, this topic 
is of importance to understand the phenomenon of 
crack propagation in heterogeneous rubbers under 
pulsed loading conditions (Horst and Heinrich 
2008; see also http://www.ipfdd.de/FOR597).

To study the dynamics of strongly stretched 
polymer chains, several approaches have been sug-
gested which take into account the finite extensibil-
ity of macromolecules. Among the approaches one 
should mention theories which used the blob chain 
model (Pincus 1977), the freely-jointed-rods chain 
model (Gotlib, Darinskii, et al. 1984; Darinskii, 
Gotlib, et al. 1994) and FENE potential for chain 
fragments (Febbo, Milchev, et al. 2008). Results of 
these theories were confirmed by direct comparison 
with the results of computer simulations  (Darinskii, 
Gotlib, et al. 1994; Febbo, Milchev, et al. 2008). 
Note, however, that the above-mentioned works 

Dynamic mechanical properties of strongly stretched polymer 
chains and networks: Different molecular models

V. Toshchevikov
Leibniz-Institut für Polymerforschung Dresden e. V., Dresden, Germany;
Institute of Macromolecular Compounds, Saint-Petersburg, Russia

G. Heinrich
Leibniz-Institut für Polymerforschung Dresden e. V., Dresden, Germany
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Institute of Macromolecular Compounds, Saint-Petersburg, Russia

ABSTRACT: A freely-jointed-rods chain model and a modified Rouse model are used to study molecular 
mobility and dynamic mechanical properties of strongly stretched polymer chains and networks. Stretched 
polymer chains and networks are characterized by the anisotropy of dynamic mechanical properties: 
frequency dependent storage and loss shear moduli are different for different geometries of applying 
the shear gradient (parallel or perpendicular to the axis of deformation) and display several plateaus 
(or maxima), whose positions depend on the static strain. Theoretically calculated frequency dependences 
of the loss and storage moduli are in an agreement with experimental data.

considered only normal modes of a polymer chain 
under static deformation and did not deal with the 
frequency dependences of the storage and the loss 
moduli which can be measured in dynamic mechan-
ical experiments (Munch, Pelletier, et al. 2006).

Much progress in theoretical study of dynamic 
mechanical properties of highly stretched  polymer 
chains and networks has been achieved using Gaus-
sian approximation and a corresponding modified 
Rouse model (Borodin, Khazanovich 1973, 1986, 
2005). The latter theories considered the frequency 
dependences of the loss Young modulus E″(ω) 
when a small tensile oscillating strain is applied 
along the direction of the static elongation. How-
ever, in view of recent experimental data (Munch, 
Pelletier, et al. 2006), it is important to calculate 
the moduli for other geometries of application of 
oscillating and static strains.

The main purpose of the present work is to study 
the anisotropy of the dynamic mechanical properties 
of strongly stretched polymer chains and networks 
with respect to the direction of a static elonga-
tion and to calculate the shear moduli for different 
geometries of applying the periodic shear (parallel 
or perpendicular to the axis of deformation). 
In Section 2, we consider the normal modes for a 
freely-jointed-rods chain model. We demonstrate 
that even at large static strains the relaxation times 
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for long-scale normal modes can be described in a 
good approximation by the modified Rouse model. 
In Sections 3 and 4, using the modified Rouse 
model we calculate the frequency dependences of 
the storage and the loss moduli for polymer chains 
and networks under large static strains.

2 RELAXATION TIMES OF A STRETCHED 
POLYMER CHAIN: FREELY-JOINTED-
RODS CHAIN (FJRC) MODEL AND A 
MODIFIED ROUSE (MR) MODEL

The simplest model which is able to describe the 
effect of finite extensibility of real macromolecules 
is the freely-jointed-rods chain (FJRC). Let us con-
sider a freely jointed chain composed of Nrod rigid 
rods having the length l and connecting Nrod + 1 
centres of viscous resistance with the friction coef-
ficient ζ, Figure 1a. Action of a stretching force f 
to the chain ends is equivalent to application of an 
orientation potential affecting to each segment,

U U( ) cos ,α α= − 0  (1)

where U0 = f l and α is the angle between the long 
axis of the rod and the direction of the stretch-
ing force f. End-to-end distance of a chain, h, is a 
function of the stretching force, h/L = Lan(f l/kT), 
where L = lNrod is the contour length of the chain 
and Lan(x) = coth(x) − x−1 is the Langevin func-
tion. Here k is the Boltzmann constant and T is the 
absolute temperature.

The non-linear dynamics of the FJRC affected 
by the potential (1) has been considered by 
 Darinskii, Gotlib, et al. (1994). Fluctuations, δbj, 
of  the end-to-end vectors for the rod-like segments 
(Figure 1a) around their average values 〈bj〉 can be 
presented as a superposition of the normal coor-
dinates, qk:

δ ψb qj k k
k

N

t
N

j t( ) ( ),=
+

( )
=

∑2
1 1rod

sin
rod

 (2)

where ψ k = πk/(Nrod + 1) is the phase shift between 
neighbouring segments at excitation of the kth 
normal mode. Using an approximation which 
relates the values δbj and δbj

2, the autocorrelation 
functions for the normal coordinates was shown to 
obey an exponential decay:

q t q C tk k kξ ξ ξτ, , ,( ) ( ) exp[ / ],0 = −  (3)

where the relaxation times τξ,k (ξ = ||,⊥) are differ-
ent for motions parallel and perpendicular to the 
axis of chain deformation, τ||,k ≠ τ⊥,k, and have been 
 calculated by Darinskii, Gotlib, et al. (1994).

Although the FJRC model describes explicitly 
the effect of  finite extensibility, it is not obvious 
how to use above-mentioned approximation for 
calculating the dynamic modulus. Therefore, we 
introduce here a modified Rouse (MR) model 
which obeys linear equations of  motions and 
allows us to derive expression for the dynamic 
modulus.

We build the MR model as follows: the initial 
chain is divided up into N identical subunits whose 
end-to-end distribution is Gaussian ( Gaussian 
subchains). In Figure 1a, the dividing points are 
marked by stars. In contrast to a nonstretched 
chain, whose shape is isotropic, the distribution 
of end-to-end vectors, Bn, for the subchains in a 
stretched chain is anisotropic:
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B B

B B
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n n n
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( )||, ||,

||

,B
B

= −
−

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢ ⊥
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2
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⎦

⎥
⎥

 

(4)

where B||,n and B⊥,n are the components of the vector 
Bn parallel and perpendicular to the f, respectively.

An anisotropic Gaussian chain can be repre-
sented by a mechanical model: the (N + 1) beads 
are considered to be connected by N harmonic 
springs which are characterized by two  elasticity 
constants K|| ≠ K⊥ (a modified Rouse model). The 
elasticity constants are related to the mean-square 
fluctuations of the end-to-end vectors, K||,⊥ = 
kT/〈ΔB||,⊥

2〉, and are the functions of the degree of 
chain stretching, h/L:

K K h l
h l

Lan h L|| ( / ) ( / )
( / )

= − −
⎡

⎣
⎢

⎤

⎦
⎥−

−

0
2

1

1
1
3

1 2  (5)

K K
Lan h L

h L⊥

−
= 0

1

3
( / )
/

 (6)

lζ
bj

Bn h

f-f 

h

f-f 

Bn

⊥||,K

(a)

(b)

0ζ

Figure 1. (a) Freely-jointed-rods chain under a static 
stretching force f. Stars show the dividing points of the 
chain into subchains, see text for details. (b) Modified 
Rouse model corresponding to the chain presented in the 
Figure 1a.
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where Lan−1(x) is the inverse Langevin function 
and K0 = 3kT/nl2 is the elasticity constant of a non-
stretched subchain (n is the number of segments 
in the subchain). Friction coefficient of the bead 
in MR model, ζ0, is related to ζ as follows: ζ0 = nζ. 
Equations of motion for the MR model are lin-
ear and have been solved by the method of nor-
mal coordinates. The relaxation times for different 
normal modes (with different values of the phase 
shift ψ) have been calculated as a function of h/L.

Figure 2 show the dependences of the relaxa-
tion times τ ||,⊥ on the phase shift ψ for the FJRC 
model (filled symbols) and for the MR model (open 
 symbols) at different values of the parameter h/
L. One can see that the MR model describes in a 
good approximation the values of relaxation times 
for small ψ (i.e. for large-scale motions) where the 
asymptotic behavior τ ∝ψ−2 holds. The last result 
is confirmed also by the theory (Febbo, Milchev, 
et al. 2008). Since the MR model ignores short-scale 
motions, there are discrepancies between the relaxa-
tion times for the MR and FJRC models at ψ → π.

The next problem is to calculate the dynamic 
moduli of a stretched polymer chain. It is a simple 
way now to do this using the MR model since this 
model obeys linear equations of motion. As long 

as the MR model describes correctly the large-scale 
(or low-frequency) dynamics of a polymer chain, 
one can certainly claim that it provides a true pic-
ture for low-frequency behavior of the moduli.

3 SHEAR DYNAMIC MODULI OF A 
STRETCHED POLYMER CHAIN

In order to calculate the shear dynamic moduli of a 
stretched polymer chain we consider an infinitesimal 
periodic shear deformation applied along the x-axis. 
This leads to the shear flow:

v v vx y y zt t R( , ) ( ) , ,R = = =κ 0  (7)

where v(R,t) = (vx,vy,vz) is the macroscopic velocity 
field at the point R = (Rx,Ry,Rz) and κ(t) = dε/dt 
is the shear rate. Here ε = δLx/Ly (Figure 3) is the 
relative periodic shear deformation: ε(t)∼eiωt. We 
consider three geometries of the shear with respect 
to the axis of chain stretching f, denoted by D (dis-
placement), by V (vorticity) and by G (for f along 
the shear gradient), see Figure 3.

The shear deformation results in the appearance 
of the mechanical stress, δσxy. The value δσxy can 
be calculated in terms of the end-to-end vectors 
of the subchains Bp and of the forces Fp ≡ −∂U/∂Bp 
acting on the subchains:

δσ ν δ δxy x p y y p
p

F B B= − +∑ , ,( ) ,  (8)

where ν is the number of  chains in a unit volume; 
δFp and δBp denote the deviations of  the quantities 
Fp and Bp from their equilibrium  values. Note that 
since mechanical stress is a quadratic function of 
the coordinates, it is necessary to keep not only 
the first term for δF (δFx,p

(1) = KxδBx,p) but also the 
 second one δFx,p

(2) ∼ (δBp)2 due to the factor B
_

y 
in the right-hand side of  Equation (8). However, 
B

_
y ≠ 0 only for G-geometry when the axis Oy is 

parallel to the vector f. For this geometry we have 
found for δF⊥,p:
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Figure 2. Relaxation times τ|| (a) and τ⊥ (b) as functions 
of the phase shift ψ for the FJRC model (filled sym-
bols; Darinskii et al. 1994) and for the MR model (open 
symbols) at different values of the parameter h/L. Here 
τr = ζl2/4kT.

f ffLy
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Figure 3. Three principal geometries of the shear with 
respect to the axis of chain stretching, f: D (displacement), 
V (vorticity) and G (for f along the shear gradient).
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δ δ δ δF K B
K K

B
B Bp p p p⊥ ⊥ ⊥

⊥
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||

||
, ||, .  (9)

Now, it is a simple way to calculate the stress 
δσxy, using Equations (8) and (9) as well as using 
the method of normal coordinates. For MR model, 
the dynamics of normal coordinates is described by 
linear differential equations. As a result, we obtain 
at small deformations ( |ε|<<1 ):

δσ εxy xyG= ∗ , (10)

where the complex dynamic moduli G*
xy = G′xy+iG′′xy 

(here G′ and G′′ are the storage and loss moduli, 
respectively) have the following forms for the D-, 
V-, and G- geometries:
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Figures 4 and 5 show the frequency dependences 
of the storage and the loss moduli, respectively, for 
two values of the degree of chain stretching h/L = 
0.4 (a) and 0.8 (b). One can see that at h/L = 0.4 
the splitting of the principal moduli into three 
components G*

D,V,G is rather small and the moduli 
for a stretched chain are close to those for a non-
stretched Gaussian chain. Thus, a broad region 
of stretching exists (h/L < 0.4) where the dynamic 
mechanical characteristics of a stretched chain is 
similar to those for nonstretched Gaussian chain 
(Gaussian regime). At limiting strains (h/L > 0.4) 
the frequency dependences G′  (ω) and G″(ω) for a 
stretched chain are shifted to higher frequencies 
and a significant splitting of the moduli into three 
components G*

D,V,G appears.

4 SHEAR DYNAMIC MODULI OF A 
STRETCHED POLYMER NETWORK: 
THREE-CHAIN NETWORK MODEL

For describing the dynamics of a polymer network 
we use a regular cubic network model built from 
anisotropic Gaussian subchains. A cell of this net-
work model (Figure 6) consists of three identical 
polymer chains whose end-to-end vectors form 
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Figure 4. Three principal storage moduli G′D,V,G for a 
stretched polymer chain (filled symbols) and the  storage 
modulus G′0 for nonstretched Gaussian chain (open sym-
bols) as a function of the reduced frequency (ωτ0); τ0 = 
ζ0/4K0. N = 100.
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Figure 5. Same as Figure 4, but for the loss moduli G″.
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a Cartesian frame of reference; so-called “three-
chain network model” (Gotlib, Torchinskii and 
Toshchevikov V.P. 2002). As in works (Borodin, 
Khazanovich, et al. 1973, 1986, 2005), intrachain 
relaxation processes are considered here when net-
work junctions remain immobile.

Due to the condition of constant volume for elas-
tomers, the end-to-end distances, h|| and h⊥, obey 
the following relations for chains, which lie parallel 
(h||) and perpendicular (h⊥) to the axis of network 
elongation, h|| = h0λ and h⊥ = h0 /λ1/2 ( Figure 6). Here 
λ is the elongation ratio of a  network and h0 is the 
end-to-end distance of chains in a nonstretched 
network. The value of h0 equals the average end-
to-end distance of network strands in an elastomer 
and can be estimated for Gaussian networks as 
h0/L ≅ (NK)−1/2, where NK is a number of Kuhn seg-
ments in network strands (Gotlib, Torchinskii and 
Toshchevikov V.P. 2002).

In the framework of this network model, the 
relaxation spectrum of a stretched network consists 
of two main branches corresponding to the chains 
which lie parallel and perpendicular to the axis of 
network elongation. The former are stretched and 
their relaxation times decrease at network stretch-
ing, whereas the latter are uniaxially compressed 
and their relaxation times increases.

Using the results of the Section 3 for separate 
chains, we have calculated the frequency depend-
ences of the dynamic moduli G*

D,V,G for three 
geometries of the shear applied to a stretched 
polymer network. Contributions of three chains in 
the cell to the total modulus of a polymer network 
have been taken into account.

For networks built from long and flexible chains 
(NK > 10), a broad region of elongation, λ, exists 
where network strands are in a Gaussian regime 
(h/L < 0.4—see Section 3) and the frequency 
 dependences of the relaxation part of the storage 
modulus (G′−Geq) and of the loss modulus (G″) for 
a polymer network do not change with elongation 

h||
h⊥

h⊥ f-f

Figure 6. Cell of a regular cubic network model.
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Figure 7. Three principal storage moduli G′D,V,G for a 
stretched polymer network (filled symbols) and the stor-
age modulus G′0 for a nonstretched Gaussian network 
(open symbols) as a function of the reduced frequency 
(ωτ0); τ0 = ζ0/4K0. A regular cubic network model is used. 
NK = 100 (or h0/L = 0.1).

and coincide with these dependences for soft 
Gaussian networks. For example, if  NK ≈ 100 (as 
in the experiment Munch, Pelletier, et al. 2006), the 
initial stretching of chains is h0/L ≅ (NK)−1/2 ≅ 0.1, 
so that even until λ = 3 (i.e. until 200% of the 
static strain) we have h||/L = λ(h0/L) < 0.4 and the 
frequency dependences of the loss moduli and of 
the relaxation part of the storage moduli for such 
polymer network do not change with elongation 
( Figures 7a and 8a). At such deformations only the 
low-frequency values of the storage moduli G′ (i.e. 
the equilibrium storage moduli, Geq) change with 
deformation. This result is in an agreement with 
experimental data (Munch, Pelletier, et al. 2006).

Strong effects of a static strain on the dynamic 
moduli of polymer networks take place at limiting 
elongations, when h||/L > 0.4. At such elongations, 
the contributions from network strands which 
lie parallel and perpendicular to the axis of net-
work stretching lead to the broadening of the fre-
quency dependences of storage and loss moduli, 
which can display several plateaus and maxima 
( Figures 7b and 8b). Positions of these plateaus 
and maxima depend on the elongation ratio, λ.
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5 CONCLUSIONS

A theory of molecular mobility and mechanical 
relaxation properties of strongly stretched polymer 
chains and networks has been proposed. A freely-
jointed-rods chain model and a modified Rouse 
model have been used. The large-scale relaxation 
spectrum of a stretched polymer chain consist-
ing of freely-jointed rods has been shown to be 
described in a good approximation by a modified 
Rouse model. For describing the network struc-
ture we use a regular cubic network model. In the 
framework of this network model the relaxation 
spectrum of a deformed network consists of two 
main branches corresponding to chains which lie 
parallel and perpendicular to the axis of a network 
deformation. The former are stretched and their 
relaxation times decrease at network stretching, 
whereas the latter are uniaxially compressed and 
their relaxation times increases.

We show that both stretched polymer chains and 
stretched polymer networks are characterized by 
the anisotropy of the dynamic mechanical proper-
ties: frequency dependent shear modulus is differ-
ent for different geometries of applying the shear 
gradient (parallel or perpendicular to the axis of 
deformation). For all geometries of the shear, the 
fine structure of the relaxation spectrum leads to 
the broadening of the frequency dependences of 
the loss moduli, this result being valid both for 
stretched polymer chains and for stretched polymer 

networks. Frequency dependent storage and loss 
moduli for highly stretched polymer networks can 
display several plateau (or maxima, respectively) at 
strong deformations due to the contributions from 
the chains which lie parallel and perpendicular to 
the axis of a network deformation. A broad region 
of stretching exists (both for single chains and for 
polymer networks) where the storage and the loss 
moduli do not display the splitting with respect to 
the axis of deformation and behave like those for 
flexible Gaussian systems. The significance split-
ting of the storage and of the loss moduli with 
respect to the axis of deformation takes place at 
limiting values of the degree of stretching. Theo-
retically calculated frequency dependences of the 
loss and storage moduli for polymer networks are 
in a good agreement with experimental data.
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1 INSTRUCTION

1.1 Characteristic behavior of shape memory 
polymers

Shape memory materials are materials that have 
the ability to memorize a permanent shape, be 
manipulated and fixed to a temporary shape under 
specific conditions of temperature and stress, and 
then later relax to the original, stress-free condi-
tion under thermal, electrical or environmental 
command, see e.g. Otsuka &Wayman 1998. Due to 
the fact that this class of materials has the capacity 
to remember two (Lendlein & Kelch 2002) or three 
(Chen et al. 2008) shapes at different conditions 
gives shape memory materials an increasing poten-
tial for application in the area of sensor/actuator 
development, for detailed reviews see e.g. Poliane 
et al. 2000, Lendlein & Kelch 2002, Beloshenko 
et al. 2005.

The most prominent shape memory materials 
are shape memory alloys (SMAs). Their shape 
memory effect arises from the existence of two 
stable crystallographic structures, an austenitic 
phase and a martensitic one. However, concerning 
e.g. stent implantation, SMAs show several disad-
vantages that limit their application, such as only 
moderately large recoverable strains, an inherently 
high stiffness, high cost and a hardly c hangeable   

A direction dependent approach to the modeling of shape 
memory polymers

M. Böl & S. Reese
Institute of Solid Mechanics, Braunschweig University of Technology, Germany

ABSTRACT: Shape memory materials represent a promising class of multi-phase materials that have 
the ability to memorize a permanent shape, be manipulated and fixed to a temporary shape under spe-
cific conditions of temperature and stress, and then later relax to the original shape under a stimulus 
such as heat, electricity or magnetism. In this regard, the biomedical field is showing large interest in this 
class of materials, especially in shape memory polymers (SMPs), whose mechanical properties make them 
extremely attractive for many biomedical applications. However, shape memory properties of polymers 
can be quantified by cyclic thermo-mechanical investigations. One cycle includes the “programming” 
of the sample and the recovery of its permanent shape. Based on the different micro structures SMPs 
can be programmed direction dependent (non-isotropic behavior) of direction independent (isotropic 
behavior).

The first part of the paper deals with the isotropic, thermo-mechanical modeling of these materials. 
Aspects as the transition from entropy to energy elasticity are included. The constitutive equations are 
derived in the framework of large strains. In the second part of the work we extend the modeling to direc-
tion dependent SMP effect in the sense of transversal isotropic material behavior. The paper closes with 
representative examples such as simulation of a realistic stent structure.

transition temperature. Such limitations have 
p rovided motivation for the development of alter-
native materials, especially polymeric shape mem-
ory materials.

In comparison to SMA polymeric shape mem-
ory materials show the advantages of large elas-
tic deformation (e.g. several hundred percents of 
strain), low cost, low density, potential biocom-
patibility and biodegradability. Other important 
properties are a broad range of application tem-
peratures that can be well adjusted by the polymer 
chemist and a tunable stiffness. In addition SMPs 
are easily formed into a variety of complex shapes 
and sizes using standard processing methods such 
as extrusion, molding or forming that are normally 
used in manufacturing processes of plastics.

The mechanisms of SMPs differ dramatically 
from those of metal alloys. In SMAs, pseudoplas-
tic fixing is possible through the martensitic de-
twinning mechanism, while recovery is triggered 
by the martensitic-austenitic phase transition. 
Thus, fixing of a temporary shape is accomplished 
at a single temperature and recovery occurs upon 
heating beyond the martensitic transformation 
temperature. In contrast, SMPs achieve tempo-
rary strain fixing and recovery through a variety 
of physical means, their extreme extensibility being 
derived from the intrinsic elasticity of polymeric 
networks. Above their glass transition temperature 



444

Θt cross-linked polymers are elastic up to very 
large strains. The thermo-mechanical behavior is 
called rubber-like. In the temperature range Θ < Θt 
polymer networks behave more stiffly than in the 
high temperature range. The mobility of the poly-
mer chain segments between the cross-link points 
is reduced, the material behavior can be approxi-
mately described by energy elasticity, the so-called 
glass-like behavior.

The characteristic behavior of shape memory 
polymers is illustrated in Figure 1 in form of a 
stress-strain-temperature (σ−ε−Θ) diagram.

The guiding idea of such (mostly biodegradable) 
SMP strands is the application of it as suture mate-
rial. The material is programmed to be laced up at 
high temperatures, such as the body temperature. 
Considering Figure 1, the thermo- mechanical cycle 
begins at the stress-free state at the high tempera-
ture level Θhigh (see point IV in Figure 1a), whereas 
this temperature level is in the case medical implants 
the body temperature. This state corresponds to 
the initial structure of the strand illustrated in 
Figure 1b (point IV). Subject to purely mechanical 
loading the material shows the classical rubber-like 
material behavior (S-shape). At a certain point I 
one may hold the mechanical loading fixed and 
decrease the temperature. Near the glass transition 
temperature Θt the material behavior changes from 
being rubber-like to glass-like. In particular, the 
deformation reached up to this point is “frozen”. 

The lowest temperature Θlow is reached at point II. 
At this point the mechanical loading is reduced 
until zero, see point III. In the case of an inhomo-
geneous stress state a redistribution of the stresses 
takes place. Residual stresses remain in the system. 
These two aspects contribute to the fact that the 
deformed state at point III (see Figure 1b) differs 
from the one at point II. Increasing the tempera-
ture again above the glass transition temperature 
Θt lets the structure “remember” its initial shape 
and deform back to this state, see point IV.

1.2 Material modeling of SMPs

Experimental investigation on the field of dual-
shape SMP proved popular in the last years, 
see e.g. Lendlein & Kelch 2002, Lendlein & 
Langer 2002, Abrahamson et al. 2003, Liu et al. 
2003a/b, Alteheld et al. 2005, Behl & Lendlein 
2007a/b. Recent research focuses on the experi-
mental characterization of triple-shape SMP, 
see e.g. Bellin et al. 2006, Bellin et al. 2007, Chen 
et al. 2008, Lendlein & Behl 2008. In contrast to 
such experimental work little effort has been real-
ized in the modeling of such material behavior. In 
contrast, there has been very little effort spent on 
modeling SMPs.

Several authors have developed one- dimensional 
models, mostly based on linear viscoelasticity, 
which are partially valid only for small strains, 
see Abrahamson et al. 2003, Liu & Mather 2004, 
Barot & Rao 2006, Kafka 2008, Qi et al. 2008.

On the other hand, there exist only a few fully 
three-dimensional model approaches. The three-
dimensional concept of Liu et al. 2006 incorpo-
rates the molecular mechanism of SMPs and is 
also based on experimental results. However, the 
model has been formulated in the framework of 
small strains which limits the range of application. 
The work of Diani et al. 2006 includes large strains 
and differs from the present approach (see also 
Reese et al. 2009) in several regards. For instance 
changes in the internal energy are fully attributed 
to the glassy state of the material. In contrast we 
apply a simple rule of mixture to indentify the 
energy parts of the rubbery and the glassy phase. 
Also the evolution of the two phases differs in 
the approaches and will be discussed later in this 
paper. The modeling approach of Barot et al. 
2008 bases on earlier works of Barot & Rao 2006 
and models constitutively the thermo-mechanical 
behavior of crystallizable shape memory polymers. 
The modeling is carried out using a framework 
that was developed for studying crystallization in 
polymers and is based on the theory of multiple 
natural configurations. The work does not include 
complex three-dimensional examples but shows its 
ability on an example of an inflated and extended 

Figure 1. Typical thermo-mechanical cycle of SMP 
material. (a) σ−ε−Θ diagram and (b) shape memory 
effect, illustrated by four deformed states of a polymer 
strand (adopted from Lendlein & Langer 2002).
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hollowed cylinder. In the present approach, see also 
Reese et al. 2009, we develop a three-d imensional, 
fully thermo-mechanical coupled model for the 
simulation realistic geometries like stents. To the 
author’s knowledge, finite element-based simula-
tions of realistic three-dimensional structures are 
not found in any previous publication. Especially 
from the aspect of direction depended shape mem-
ory effects in three-dimensional structures no mod-
eling approaches are available.

2 SHAPE MEMORY POLYMER 
MODELING

2.1 Phase transition between rubber-like 
and glassy-like behavior

Fundamental properties of elastomers are so-called 
switch temperatures. These temperatures repre-
sent limits, where the material switches (mostly 
continuously) from one phase to the other. In the 
case of SMPs this switch temperature is the so-
called glass transition temperature Θt which dif-
fers from one elastomer to another. Basically this 
means that above Θt the material is dominated by a 
r ubber-like behavior, below Θt glass-like behavior 
can be observed. In the glassy state natural rubber 
is about magnitudes stiffer than in its rubbery state. 
In Figure 2 typical polymer examples are illus-
trated. In the energetic region the different mate-
rials are thousand-fold stiffer than in the entropic 
state. Between these states the glass transition area 
is given. The reason for the existence of a glass 
transition temperature can be understood in terms 
of the molecular structure of rubber. Above Θt the 
molecular chains are in a constant state of thermal 
motion (Brownian motion). As the temperature is 

lowered and reaches the glass transition temperature 
the deformed shape becomes fixed because the 
Brownian movements of shape.

In both, the glassy and the rubbery state, the 
molecular structure is amorphous. Due to the fact 
that at temperatures clearly below Θt the positions 
of the chain molecules are frozen a deformation 
of the material is achieved by an elongation of 
the intermolecular bonds. After unloading the 
molecules return to their original position. This 
is typical for a so-called energy elastic process. 
In contrast, at temperatures clearly above Θt the 
chains will always tend to assume a configuration 
corresponding to a state of maximum entropy, see 
also Böl & Reese 2006.

For the realistic description of the SMP effect 
as illustrated in Figure 1 we have to take following 
aspects into account, see also Reese et al. 2009:

(1)  With decreasing temperature the Helmholtz 
free energy becomes more and more domi-
nated by the internal energy.

(2)  The mechanical stiffness noticeably increases 
with decreasing temperature.

(3)  The material passes a temperature range where 
time-dependent effects are strongly dominant.

In the current contribution we limit our material 
modeling on the first two aspects.

2.2 Isotropic two-phase model

As already mentioned both, the rubbery and the 
glassy phase, are amorphous. It is therefore rea-
sonable to assume isotropy of the Helmholtz free 
energy per reference volume for both material 
phases. For the total Helmholtz free energy we 
apply a simple rule of mixture

W(b, be, Θ) = (1−z)Wr (b, Θ) + zWg(be, Θ) (1)

In Equation (1) Wr(b, Θ) is the free energy func-
tion of the rubber-like phase above the glass transi-
tion temperature Θt. It depends on

b = FFT, (2)

the classical left Cauchy Green tensor. Below the 
transition temperature the material is specified by 
the second contribution Wg(be, Θ), the energy func-
tion for the glassy phase. Herein, the left Cauchy 
Green tensor

b FC Fe f
T= −1   (3)

is extended by, Cf
−1 the inverse right Cauchy 

Green tensor including the “frozen” deforma-
tions. Therefore, be can be seen to be analogous 
to the so-called “elastic” left Cauchy Green tensor 
in plasticity.

Figure 2. Transition and condition states: shear modu-
lus μ in dependence on the temperature T for a thermoset 
(UP), elastomer (NR), amorphous (PVC) and for a semi-
crystallized (PA6) thermoplastic.
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Furthermore, in Equation (1) the two material 
phases are coupled via the glass transition variable 
z by means of the relation

z
exp(w ) exp( w )

w w
=

+
⎛
⎝⎜

⎞
⎠⎟

1

2
1−

− −
−

ΔΘ ΔΘ
ΔΘ ΔΘexp( ) exp( )

 (4)

Herein, ΔΘ = Θ−Θt is the difference between 
the current temperature Θ and the glass transition 
temperature Θt. Furthermore w describes the tran-
sition width between the rubber-like and glassy-
like state, see Figure 3.

Obviously, due to the fact that the material 
behavior in the rubber-like state is much softer 
than the one in the glass-like state, different sets of 
material parameters have to be chosen for the two 
phases in Equation (1).

2.3 Transversal isotropic two-phase model

Taking into account that SMP have a great poten-
tial in the area of sensor/actuator techniques it is 
obvious to cover with such SMP structures as much 
as possible movements. A single SMP dual-shape 
layer is capable of only one shape change since it 
exhibits only one thermal transition. Further, the 
programming of such layer is mostly done in an 
isotropic way. In order to achieve more complex 
movements it is necessary to program such layers 
in one preferred direction. The conglutination of 
layers programmed in different directions with dif-
ferent thermal transitions would lead to complex 
deformation states.

Due to the fact that such layers can be pro-
grammed in one preferred direction only, we extend 
the modeling approach in Section 2.2 and establish 
a transversal isotropic approach for the modeling 
of SMP effects. By introducing a unit vector a0, 
describing the direction of the material program-
ming, we establish the fourth and fifth invariant 

in order to describe transversal isotropic material 
behavior. The Helmholtz free energy function of the 
rubber-like material behaves still isotropically, only 
the glassy-like material behaves non-isotropically, 
therefore Equation (1) formally changes to

W(b, be, Θ, a0) = (1–z)Wr (b, Θ) + zWg(be, Θa0) (5)

In contrast to Equation (1) here we freeze dur-
ing the thermo-mechanical cycle the deformation 
including the preferred direction.

3 NUMERICAL EXAMPLES

This section is devoted to the assessment of mod-
eling capabilities of the proposed model. Therefore 
we apply simulations on isotropic as well as on 
transversally isotropic SMP examples.

3.1 Isometric behavior: Realistic stent polymer

In order to show the potential and the robustness 
of the proposed modeling approach we realize a 
simulation on a three-dimensional stent geometry, 
see Figure 4.

The stent is mechanically loaded by an uni-
formly distributed load q = 300 N/m and an axial 
displacement of u = 0.035 m. The thermal load is a 
constant temperature at the whole stent (to be equal 
to the body temperature Θ = 310.15 K), whereby 
a glass transition temperature is assumed to be 
Θt = 250 K. Furthermore the stent has a length of 
L = 0.2 m, an inner radius of Ri = 0.096 m and a 
outer one of Ro = 0.1 m. The material parameters 
read μr = 3 Pa, μg = 300 Pa and Λr/g = 30000 Pa.

Figure 3. Transition variable z: influence of the width 
parameter w in dependence on the temperature.

Figure 4. Geometry and boundary conditions of a realistic 
stent structure.
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The contours in Figure 5 refer to the von Mises 
stress given in MPa. The state depicted in Figure 5 
(a) represents the state after mechanical loading. 
By cooling down the stent, what is identical with 
the thermal loading, the stent further deforms, see 
(b). In the next step the mechanical load is removed 
(c) and the stent is now stress-free, but deformed. 
In this state the stent is implanted into the blood 
vessel. By the body temperature, the thermal 
unloading, the stent is heated up so that it is able 
to expand and hold the blood vessel open. In doing 

so, the stent “remembers” its old shape what is 
documented in Figure 5d. Here in the simulation, 
the stent is perfectly recovered illustrated by the 
original, undeformed state of the structure. This 
will not necessarily be the case inside the blood ves-
sel where an interaction between the blood vessel 
wall and the stent takes place.

3.2 Transversal isometric behavior: Rectangle 
under non-isotropic programming

In the second example a three-dimensional rectan-
gle is generated whereby the preferred program-
ming direction is chosen to be a sinus-like curve, see 
the deformed structure in Figure 6b. The system is 
pressed from top and bottom by a pressure load of 
3 kPa. Further the rectangle is bounded on all eight 
corners via springs in all directions in space.

The thermal load is a constant temperature at 
the whole rectangle (to be equal to Θ = 310.15 K), 
whereby the glass transition temperature is assumed 
to be Θt = 250 K. Furthermore the rectangle has a 
height of H = 0.12 m, a width of W = 0.04 m and a 
thickness of T = 0.01 m. The material parameters 
read μr = 5 kPa, μg = 50 Pa and Λr/g = 1000 Pa.

Figure 5. Typical thermo-mechanical cycle. stent (a) 
after mechanical loading, (b) after thermal loading, 
(c) after mechanical unloading and (d) after thermal 
unloading.

Figure 6. Finite element simulation of structure with 
preferred programming direction (sinus-like curve). (a) 
Geometry and boundary conditions, (b) deformed struc-
ture after mechanical loading, (c) after thermal loading, 
(d) after mechanical unloading and (e) after thermal 
unloading.
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In a first step, the example is loaded mechani-
cally, see Figure 6b. Then the rectangle is cooled 
below the glass transition temperature as illustrated 
in Figure 6c. Now the specimen behaves glassy-like. 
By removing the mechanical loading the example 
shows a stress-free deformed shape, see Figure 6d. 
The state depicted represents the so-called frozen 
state. In the application field of actors/sensors it is 
possible to position the geometry in a region where 
it has to expand. This situation takes place if  the 
rectangle is heated up, see Figure 6e. In this state 
the system expands.

4 CONCLUSION

In this paper we present a new constitutive approach 
for the modeling of shape memory polymers. The 
focus is on the modeling of direction dependent as 
well as direction independent material behavior. 
The results show that the suggested method is a 
powerful tool to simulate the deformation behav-
ior of SMPs in various situations.

Here, the development of the model is the main 
focus of the work, therefore we dispensed with any 
quantitative comparison with experimental data. It 
is, however, already at this point clear that the model 
offers enough flexibility for a satisfactory correlation 
with such data. This will be shown in future work.
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1 INTRODUCTION

Lead perforation, acute or delayed, are rare but 
serious complications of pacemaker implanta-
tions (Khan, Joseph, Khaykin, Ziada, and Wilkoff 
2005). This risk is thought to be minimized by 
appropriate lead design, where naturally the con-
stitutive properties of ventricular tissue play a cen-
tral role.

Mechanical failure of vascular tissue is a fairly 
unexplored field of biomechanics and only a few 
experiments are reported in the literature. Most 
commonly, uniaxial tensile tests in different direc-
tions have been proposed, which conform that vas-
cular tissue exhibits anisotropic failure properties, 
see, e.g., (Mohan and Melvin 1982) (MacLean, 
Dudek, and Roach 1999). Apart from that, tear-
ing (Purslow 1983), dissecting (Sommer, Gasser, 
Regitnig, Auer, and Holzapfel 2008) and inflation 
of circular specimens (Mohan and Melvin 1983) 
have been reported to derive failure properties 
from vascular tissue. For the present study, i.e. ana-
lyzing trauma due to lead perforation, the failure 
properties derived from deep penetration experi-
ments (Gasser, Gudmundson, and Dohr 2009) are 
most relevant.

Despite experimental studies performed in the 
past, the failure mechanisms of ventricular tissue 
are poorly understood. Complex material prop-
erties like spatial inhomogeneity, nonlinearity, 

Modeling of myocardial splitting due to deep penetration

Caroline Forsell & T. Christian Gasser
Department of Solid Mechanics, School of Engineering Sciences, The Royal Institute 
of Technology (KTH), Stockholm, Sweden

ABSTRACT: The risk for pacemaker lead perforation, a rare but serious clinical complication, is 
thought to be minimized by perforation resistant device design. Fracture properties of ventricular tis-
sue play a central role in such optimization studies, however, this information is currently not provided 
by the open literature; even failure models for soft biological tissue in general are rare. Incompressible 
finite deformations, material nonlinearity and time-dependent anisotropic properties require sophisti-
cated approaches to identify and model failure of such a material. In this study we investigated myocardial 
failure due to deep penetration, where previously collected data from in-vitro experiments are integrated 
in a non-linear Finite Element model. In details, the proposed model describes tissue splitting by a cohe-
sive process zone, and hence, tissue failure is modeled as a gradual process, where all inelastic phenomena 
are accumulated and mathematically captured by a traction separation law. The cohesive zone is embed-
ded in a fibrous bulk material thought to capture the properties of passive myocardial tissue, where a 
transversely isotropic hyper-elastic constitutive description proposed in the literature was utilized. The 
developed numerical model integrates latest experimental data and is able to replicate quantitative and 
qualitative data from ventricular penetration experiments.

 anisotropy, and time- dependent finite deformations 
require sophisticated approaches to identify and 
model failure of soft biological tissue. Up to date 
no constitutive law for damage and failure of soft 
biological tissue enjoys broad acceptance, however, 
reliable models are perquisite to enrich our current 
knowledge in the field of accidental biomechanics 
and to guide medical device development.

In the present study a finite element model has 
been developed to analyze mechanical trauma of 
myocardium (the muscular layer of the ventricu-
lar wall) due deep penetration, i.e. under mechani-
cal circumstances applicable to lead perforation. 
The model has been compared and adjusted to 
earlier experiments (Gasser, Gudmundson, and 
Dohr 2009) and thought to assist lead design 
development.

2 METHOD

2.1 Experiments

To estimate the cohesive strength of myocardial 
tissue in cross-fiber direction uniaxial tension 
tests have been performed. In details, tissue from 
pig hearts (n = 12) was tested in physiological salt 
solution at 37 ± 0.5 degrees Celsius within less than 
four hours post mortem. Data was derived from 
in total 64 bone-shaped specimens and the test-
ing was performed at a uniaxial testing machine 
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(Mts 305,03/30KN, Eden Prairie, Minn) with a 
10N-Load cell under displacement control.

2.2 Modeling

Histological examinations of penetrated bovine 
and porcine ventricles confirmed localized tissue 
failure, i.e. tissue failure did not spread away from 
the penetration site. Likewise, the primary fail-
ure mechanism, even for flat-bottomed punches, 
was a splitting mode, where the crack faces were 
wedged open by the advancing punch (Gasser, 
 Gudmundson, and Dohr 2009). To model this type 
of failure, cohesive interface elements were embed-
ded in an otherwise anisotropic hyperelastic model 
for myocardial tissue.

In details, a fibrous tissue is considered and 
described by the transversely isotropic strain 
energy function

Ψ(C, N) = c1(α – 1)2 + c2(α – 1)3 + c3(I1 – 3)
 + c4(I1 – 3) (α – 1) + c5(I1 – 3)2,

as it has been derived from the myocardium of 
canine left ventricles (Humphrey, Strumpf, and 
Yin 1990b). Here, I1 = trC and α 2 = I4 = C: (N ⊗ N) 
are coordinate invariant measures of tissue defor-
mation, where the referential fiber direction N 
and the Right Cauchy Green strain C = FFT with 
the deformation gradient F have been introduced. 
Stress-like material constants c1,…, c5, as identi-
fied from experimental data (Humphrey, Strumpf, 
and Yin 1990a) were used. The strain energy func-
tion Ψ(C, N) entirely renders the constitution of 
passive myocardium and standard arguments lead 
to the Second Piola Kirchhoff stress S = 2∂Ψ/ ∂C 
and the associated elasticity tensor C = 2∂S/∂C 
(Ogden 1997).

In cohesive theory the separation of  mate-
rial surfaces is resisted by cohesive traction and 
the development of  fracture is thought to be a 
gradual process. The constitution of  the cohesive 
zone is described by traction separation law, i.e. 
by relating traction T and opening û of  the mate-
rial surfaces. For the present study the cohesive 
potential 

0
1ˆ( , ) exp( ) ,

2
t

a iψ δ = − δ
δ

u

aims at modeling the fracture process, where 
i1 = û • û and 0ˆmax[| |]tδ = u  at time t. The cohe-
sive strength t0 and the material parameter a of  
dimension 1/Length need to be identified from 
experimental data. The cohesive potential ψ (û,δ) 
entirely defines the constitution of  the cohe-
sive zone and standard arguments lead to the 
First Piola Kirchhoff  traction T = ∂ψ/∂ û (Ortiz 

and Pandolfi 1999) and the associated cohesive 
stiffness c = ∂T/∂û + (∂T/∂δ) ⊗ (∂δ/∂û) (Gasser 
and Holzapfel 2005).

2.3 Myocardium penetration model

Previous experiments (Gasser, Gudmundson, and 
Dohr 2009) considered ventricular tissue penetra-
tion of bi-axially stretched patches under quasi-static 
loading conditions. In Figure 1 the basic experimen-
tal principle is illustrated and Figure 2 summarizes 
the identified load displacement responses when 
using a punch of 1.32 mm in diameter.

In the present study a single failure site of such 
an experiment is numerically modeled, which allows 
us to investigate the induced failure mechanisms 
with respect to the punch design parameters. Due 

Figure 1. Penetration of bi-axially stretched ventricular 
heart tissue under quasi-static loading conditions (Gasser, 
Gudmundson, and Dohr 2009).

Figure 2. Load displacement response due to penetrat-
ing bi-axially stretched myocardial tissue with a punch 
of 1.32 mm in diameter. Gray lines denote recorded data 
from single penetrations, and the dark line denotes their 
algebraic mean.
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to symmetry conditions half  of the problem was 
modeled and a stretch of 1.128 and 1.084 in fiber 
and cross-fiber directions were considered, respec-
tively. Myocardial tissue was represented by 2500 
hexahedral elements using the Q1P0 finite element 
formulation (Simo and Taylor 1991), where the 
fiber orientation N was in parallel to the cohesive 
zone. The punch was assumed rigid, with typical 
dimensions of pacemaker leads, and a c ontractor-
target formulation rendered the frictionless con-
tact problem, where the contact constraint was 
(approximately) enforced by the Penalty method 
(Wriggers 2002). The numerical problem is illus-
trated by the stress plot in Figure 3 and a dynamic 
simulation using implicit Newmark integration 
was followed, where nodal viscosity was added to 
damp out oscillations.

3 RESULTS AND CONCLUSION

Load displacement curves from uniaxial tensile 
tests in cross-fiber direction exhibited shape as 
they are typical for soft biological tissues, i.e. the 
stress increased progressively until rupture and 
irreversible (damage) mechanism could frequently 
be identified before reaching the ultimate load. 
The elastic part of the curve was quantitatively in 
accordance with data reported earlier (Humphrey, 
Strumpf, and Yin 1990a) (Humphrey, Strumpf, 
and Yin 1990b) and an ultimate tensile strength of 
32.6(SD 15.9) kPa was identified.

Using t0 = 32.6 kPa in the cohesive failure model 
in combination with realistic numbers for a, i.e. 
those causing a cohesive length in the range of 
0.1 mm, overestimated severely the experimentally 

observed penetration force. Hence, uniaxial tensile 
test in cross-fiber direction might not be appro-
priate to identify failure properties, which in turn 
characterize deep penetration.

Finally the set t0 = 2.0 kPa and a = 17.0 mm–1 
of cohesive material parameters predicted a pen-
etration force of about 0.9 N, i.e. that matches 
experimental data; Figure 4 illustrates an overlay 
of numerically predicted (solid line) and experi-
mentally defined (dashed line) load displacement 
curves. It is emphasized that a = 17.0 mm–1 defines 
a realistic cohesive length, i.e. the cohesive trac-
tion is reduced by 90% at an opening of 0.135 mm 
and the used set of parameters defines a fracture 
energy of 0.118 mN mm−1 of tissue splitting due to 
deep penetration.
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etration, where crack faces are wedged open by the 
advancing (rigid) punch.
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1 INTRODUCTION

Recently a number of industrial applications of 
magneto-sensitive (MS) elastomers have been devel-
oped considerably owing to providing relatively 
simple and quiet variable-stiffness devices as rapid-
response interfaces between electronic and mechan-
ical systems including controllable membranes, 
controllable stiffness devices and applications for 
the active control of structural components.

Constitutive equations and appropriate strain-
energy functions to model the magnetoelastic 
properties of these isotropic materials which con-
sist of micron-sized ferrous particles dispersed ran-
domly can be found in the recent series of papers 
by Dorfmann, Ogden, Brigadnov & Bustamante 
(2003–2007). However, in some particular cases 
during fabricating processing the MS materials 
can be embedded in a magnetic field, so that all 
ferrous particles are oriented in the same direction 
of the specified magnetic field. Therefore we have 
formulated constitutive equations of MS aniso-
tropic elastomers with a single preferred direction 
which work in a magnetic field akin to compos-
ite materials reinforced by two families of fibers 
(more details see Holzapfel (2000)): one oriented 
in the direction of the chains of ferrous particles 
and one given by the direction of applied magnetic 
field based on the general theory of nonlinear 
magnetoelasticity incorporated with the theory of 
two fiber-reinforced composites.

The utilization of the constitutive equations 
of MS anisotropic elastomer into Comsol Mul-
tiphysics finite element code with supporting the 
Moving Mesh mode which involves large geomet-
ric changes of the domains is performed. The FE 
simulations of the magneto-mechanical coupling 

Magnetoelastic anisotropic elastomers in a static magnetic field: 
Constitutive equations and FEM solutions

Hoang Sy Tuan & B. Marvalová 
Technical University of Liberec, Czech Republic

ABSTRACT: In this paper we present briefly constitutive equations describing the behavior of 
magnetoelastic (or magneto-sensitive) anisotropic elastomers. The equations of the mechanical equilib-
rium and Maxwell’s equations are summarized and a Helmholtz strain-energy functions for MS aniso-
tropic elastomers is proposed in order to govern the interaction between a magnetoelastic anisotropic 
material and a magnetic field. Some FEM solutions are implemented in Comsol Multiphysics to illustrate 
a coupling of the magnetoelastic anisotropic material and the applied magnetic field.

response of the magnetoelastic material are pre-
sented in which an incompressible magnetoelastic 
anisotropic material capable of  large deformations 
is embedded in the uniform magnetic field and sub-
sequently the body is subjected simultaneously by 
the magnetic force and the mechanical loading.

2 GOVERNING EQUATIONS

The balance equations for nonlinear magnetoelastic 
elastomers in a static magnetic field, as developed 
generally by Bridgadnov & Dorfmann (2003), 
 Dor  fmann & Ogden (2005), are summarized con-
cisely in this section.

2.1 Magnetic equations

In the Eulerian description, Maxwell’s equations in 
the absence of time dependence, free charges and 
free currents reduce to

div curlB H= 0, = 0  (1)

which hold both inside and outside a magnetic 
material (for example, Kovetz (2000), Bridgadnov & 
Dorfmann (2003)), where div and curl relates to the 
spatial configuration.Thus, B and H can be regarded 
as fundamental field variables. In the vacuum, we 
have a basic relation between B and H as

B H= μ0  (2)

where μ0 = 4π × 10−7 is a universal constant.
Associated with the equations (2) are the bound-

ary continuity conditions

B n H n 0[ ]⋅ = [ ] × =0,  (3)
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where [•] signifies a discontinutity across the 
boundary and n is its outward unit normal.

Lagrangian counterparts of B and H, denoted 
Bl and Hl, respectively, are only considered in 
material domains to be given by (for example 
Dorfmann & Ogden (2005))

B F B H F Hl l
TJ= =−1 ,  (4)

where the superscript T denotes the transpose of 
a tensor.

And these quantities equations (1) become

Div Curll lB H 0= =0,  (5)

where Div and Curl are ‘div’ and ‘curl’ operators 
relative to the reference configuration respectively.

The boundary conditions (3) can also be 
expressed in Lagrangian form

B F B N H F H N 0l l
TJ−( ) ⋅ = −( ) × =−1

0 00,  (6)

in which B0 and H0 are the corresponding fields 
exterior to the material, but evaluated on the 
boundary in the reference configuration.

2.2 Mechanical equations

The conservation of mass equation is written 
simply as

ρ ρ0 = J  (7)

where J is a volume ratio, J = det F and F is the 
deformation gradient of the MS body.

The influence of the magnetic field on the 
mechanical stress in the deforming body may be 
incorporated through magnetic body forces or 
through a magnetic stress tensor (see Dorfmann & 
Ogden (2005)). Herein, we use the latter approach 
and denote the resulting total Cauchy stress tensor 
by τ, which has the advantage of being symmetric. 
In case the absence of mechanical body forces, the 
equilibrium equation for a magnetoelastic solid in 
Eulerian configuration has the form

divτ = 0  (8)
By using the total nominal stress tensor, here 

denoted T, which is related to τ by

T F= −J 1τ  (9)

then the equilibrium equation (8) may be expressed 
in Lagrangian form as

DivT 0=  (10)

The boundary condition involving the stress τ, 
where traction rather than displacement is speci-
fied, may be written in the form

[ ]τ n 0=  (11)

and it can be noted that the traction τn on the 
outer boundary includes a contribution from the 
(symmetric) Maxwell stress outside the material as 
well as any mechanical traction applied to the sur-
face of the body.

According to Dorfmann & Ogden (2005) as well 
as Bustamante, Dorfmann & Ogden (2007) that 
the Maxwell stress outside the material, denoted 
τM, is given by

τM = ⊗ − ⋅( )H B H B I* * * *1
2

 (12)

where I is the identity tensor and B* and H* are the 
corresponding fields exterior to the material evalu-
ated on the boundary in the Lagrangian configura-
tion, of cause B*= μ0H*.

2.3 Constitutive equations

For isothermal MS anisotropic materials we pos-
tulate the existence of a Helmholtz free energy 
function Ψ, which depends not only on a defor-
mation gradient tensor F and a preferred direction 
of ferrous particles represented by a0 but also on a 
magnetic induction Bl, denoted in the Lagrangian 
configuration, and the total free energy function is 
expressed as

Ψ Ψ= ( )F a B, ,0 l  (13)

From Clausius–Duhem inequality for electro-
magnetic media, see Brigadnov & Dorfmann 
(2003), we can derive constitutive equations which 
are obtained by differentiation of Ψ with respect to 
F or Bl. The total nominal stress tensor T and the 
magnetic field Hl are given by the simple formulas

T
F

H
B

=
∂
∂

=
∂
∂

Ψ Ψ, l
l

 (14)

and for an incompressible material by

T
F

F H
B

=
∂
∂

− =
∂
∂

−Ψ Ψ
p l

l

1,  (15)

where p is a Lagrange multiplier associated with 
the constraint det F = 1.

2.4 The free energy function

As above mentioned a MS anisotropic elastomers 
with one preferred direction undergoing an applied 
magnetic field is similar to composite materials 
reinforced by two fiber families (more details see 
Holzapfel (2000)), hence instead of only depend-
ency of 6 invariants as for MS isotropic materials 
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(see Brigadnov & Dorfmann (2003), Dorfmann & 
Ogden (2005)) the free energy function has to depend 
on 10 invariants of C, a0 and Bl that are defined as 
follows

I tr I tr tr

I J I
1 2

2 2

3
2

4 0 0

1
2

( ) , ( ) [( ) ]

( ) det , ( , ) .

C C C C C

C C C a a C

= = −

= = = aa
C a a C a B B B
C B B CB C B B

0

5 0 0
2

0 6

7 8

I I
I I

l l l

l l l l

( , ) . , ( ) .
( , ) . , ( , )

= =
= = ll l

l l l

l l

I
I

.
( , , ) ( . ) .
( , ) ( . )

C B
C a B a B a CB
a B a B

2

9 0 0 0

10 0 0
2

=
=

 (16)

The free energy function can be rewritten as

Ψ Ψ= ( )I I I I I I I I I I1 2 3 4 5 6 7 8 9 10, , , , , , , , ,  (17)

For incompressible materials, I3 = 1, and the 
invariant I10 does not depend on the deformation 
therefore only the eight invariants I1, I2, I4, …, I9 
remain. Then the total stress tensor τ is expressed as

τ = − + + −
+ ⊗ + ⊗ + ⊗
+ ⊗ +

p
I I
I b b b

a a a ba ba a
B B

2 2
2 2
2 2

1 2 1
2

4 4 4 5
7

Ψ Ψ
Ψ Ψ

Ψ Ψ

( )
( )

I

88

4 9
1

( )
( )( )

B bB bB B
a b B B B a

⊗ + ⊗
+ ⊗ + ⊗−I Ψ . a  

(18)

where Ψ Ψa aI a= ∂ ∂ =, , , ,...,1 2 4 9, and b is the left 
Cauchy-Green tensor. The total nominal stress
tensor T is given by

T F F F F b
a Fa F a ba F a a

= − + + −
+ ⊗ + ⊗ + ⊗

−

−
p I

I

T T T

T

1
1 2 1

4 0 0 4 5
1

2 2
2 2

Ψ Ψ
Ψ Ψ

( )
( )

++ ⊗ + ⊗ + ⊗
+ ⊗ + ⊗

2 27 8
9 0 0 0

Ψ Ψ
Ψ

B B B bB F B B
a B a B B Fa

l l
T

l l

( )
( . )( ) (19)

Finally, the magnetic field vector Hl is found 
from (15)2 as

H B CB C B
a CB a a B Ca

l l l l

l l

= + +
+ +
2 6 7 8

2

9 0 0 0 0

( )
(( . ) ( . ) )

Ψ Ψ Ψ
Ψ  (20)

and its Eulerian counterpart is

H b B B bB
a F B F a a B Fa

= + +
+ +( )

−

−
2 6

1
7 8

9 0 0 0 0

( )
( . ) ( . )

Ψ Ψ Ψ
Ψ T T

l  (21)

In order to simulate behaviors of incompress-
ible MS anisotropic elastomers, we choose the free 
energy function similar to Ottenio et al.(2008)

Ψ Ψ Ψ= + −iso ani p J− ( )1  (22-a)

Ψiso
G

I I= +( ) −( ) + −( ) −( )⎡
⎣

⎤
⎦4

1 3 1 31 2γ γ  (22-b)

Ψani
k

I I I= −( ) + +( )2
1 1

4
2

0
6 7

μ
α β  (22-c)

where the free energy function is splitted into 
isotropic and anisotropic contributions that the 
isotropic part is the basic Mooney-Rivlin model 
while the anisotropic part contains both the elas-
tic energy of ferrous particle chains and the mag-
netic energy. We assume that G G IG= +( )0 61 η  is 
the shear modulus in the reference configuration, 
G0 is the field independent shear modulus (or 
zero-field modulus) and k k Ik= +( )0 61 η  repre-
sentes the anisotropic characteristic of MS elas-
tomers. The material parameters α, β and γ are 
non-d imensional material constants and ηG and 
ηk are material constants involving the magnetic 
strength, these parameters need to be determined 
by coupling magnetic and mechanical experiments, 
and p is the hydrostatic pressure.

3 FEM SIMULATION OF MS 
ANISOTROPIC ELASTOMERS

3.1 Coupling magnetic and mechanical solution

To implement the coupled interaction of magnetic 
field and mechanical material we assert the mag-
netic field is solved in the spatial coordinates and 
the deformation response is computed in the refer-
ence coordinates. We also suppose that the external 
boundaries of the surrounding space (vacuum) are 
far away from the surfaces of the MS elastomer 
body, hence the remote magnetic field is consid-
ered to be homogeneous.

The influence of the magnetic field on the sur-
face of magnetoelastic body is expressed via the 
corresponding tractions in the material coordi-
nates by using Nanson’s formula n F Nda J dAT= − ,  
where dA and da are the associated area elements 
respectively, and using equation (9) to derive as

t F Na M
TJ= −τ  (23)

where τM is the Maxwell stress defined by equation 
(12) and N is a unit outer normal vector on the 
boundary of the undeformed body.

The stress and strain response of the body is 
calculated undergoing both magnetic and external 
forces, the displacement components are passed 
simultaneously into the magnetic solution by 
means of an advance technique as the Moving 
Mesh mode so that the magnetic field domain is 
changed in compliance with the large deformation 
of body. Therefore we can investigate the effect of 
the magnetic field to the magnetoelastic materials 
during the mechanical loading or vice versa.

In order to investigate the interaction of the MS 
anisotropic elastomers and the magnetic field we 
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use material parameters as listed in Table 1 for all 
following FEM examples.

3.2 Compression of a block

First we consider an MS anisotropic block with dif-
ferent aligned directions of ferrous particle chains 
embedded in a static uniform magnetic field parallel 
to its axis and simultaneously subjected a compres-
sive load as a constant pressure p0 = 1 MPa. A scheme 
sketch of the MS anisotropic block together with an 
applied magnetic field is depicted in figure 1.

We have obtained series of stress and strain 
responses of the block as well as the distribution 
of the magnetic field interior and exterior domains 
of the MS anisotropic material. In figure 2 illus-
trates some achieved results of deformations and 
equivalent stress distributions corresponding to 
ferrous particle orientations by 0° and 30° with-
out and with the magnetic field applied by B = 1 T, 
moreover the direction of the magnetic traction 
vectors implies the body tends to lengthen along 
the direction of the applied field. In figure 3 we 
try to represent a distribution of the magnetic field 
and a magnetization of the body with the chain 
o rientation by 30° and the magnetic flux density at 

Figure 3. Distribution of the magnetic field and mag-
netization of the MS anisotropic material.

Table 1. Material parameters of a MS anisotropic 
composite.

G0 [MPa]
1.8

ηG [T−2]
0.6

k0 [MPa]
5.0

ηk [T−2]
0.9

α [−] β [−] γ [−]

0.05 0.1 0.6

p0 

B  

ϕ 30
 m

m
 

20 mm 

Figure 1. A scheme sketch of the compressive block in 
a magnetic field.

a) Orientation of particle chains: ϕ = 0° at B = 0T and B = 1T

b) Orientation of particle chains: ϕ = 30° at B = 0T and B = 1T

Figure 2. Deformation of the MS anisotropic block 
without and with a uniform magnetic field.
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b) Horizontal displacement of the top surface

a) Vertical displacement of the top surface 

Figure 4. Displacements of the top surface of the block 
versus the magnetic flux density.

that time as 0.5 T, it can be seen that owing to the 
change of the domains induced by the deformation 
of the block the distribution of magnetic field does 
not remain to be symmetric and a strong depend-
ency of the magnetic field on the deformation of 
the material is still denoted by the distribution of 
the magnetization inside the material.

Next dependencies of horizontal and vertical 
displacements of the top surface on orientations 
of ferrous particle chains and on an applied mag-
netic filed are shown as figure 4, the stiffness of 
the body increases fast that is demonstrated by the 
deformed block recovered nearly complete when 
the magnetic field reaches to 1 T.

3.3 Simple shear

In this subsection a rectangular MS anisotropic 
composite plate subjected a simple shear state is 
investigated according to altered directions of an 
applied magnetic. Here we assume ferrous particles 
are oriented in a vertical direction, only the modifi-
cation of the applied magnetic field is considered. 
The geometry of the plate and loading conditions 

τ0

B

θ -+

20
 m

m
 

30 mm

Figure 5. A geometry of a plate subjected a simple shear 
state is embedded in a static uniform magnetic field.

a) Shear deformation of the plate without magnetic field

b) Magnetic field oriented in a vertical direction

c) Magnetic orientation compared to a vertical direction θ = 50°

Figure 6. Simple shear state of the plate with different 
directions of the applied magnetic field.
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distributed higher otherwise it still depends on the 
deformation of the body.

Dependencies of a displacement of the top sur-
face applied by the external loading and a shear 
stress at the central position of the plate on the 
altered direction of the applied magnetic field are 
investigated in figure 8. Combination of both the 
displacement and the shear stress results state that 
we should apply the contrary direction of the mag-
netic field against the direction of the deformation 
in order to enhance a recovery back to the initial 
form of the deformed MS material.

4 CONCLUSION

We have summarized constitutive equations and 
shown a particular Helmholtz strain-energy func-
tion to represent an interaction between an MS ani-
sotropic elastomer and an applied magnetic field. 
A coupling of the magnetic field and the mechani-
cal problems for MS anisotropic materials are 
implemented successfully in Comsol Multiphysics. 
Reciprocal effects of MS materials and the mag-
netic field are examined via two standard examples: 
A compression and a simple shear. Achieved FEM 
results agree with practical experimental results and 
with the predictions in the mentioned papers.
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a) Displacement of the top surface versus different directions 
of the applied magnetic field

b) Shear stress at the center of the body versus different 
directions of the applied magnetic field

Figure 8. Dependencies of a displacement and a shear 
stress on the applied magnetic field.

Figure 7. Distribution of the magnetic field with θ = 500.

are represented in figure 5. The direction of the 
magnetic field is defined by θ compared to the ver-
tical direction. The external loading is set up by a 
constant traction as τ 0 1= MPa.

In order to verify effects of the applied magnetic 
field on the MS body suffered a simple shear state a 
direction of the magnetic field is changed and some 
deformation results are obtained as in figure 6. It can 
conclude that the magnetic forces always affect towards 
to lengthen the MS body and enhance strongly the stiff-
ness of the material. A high concentration and a large 
alteration of the magnetic field through the interface 
of the material and the surrounding space are shown in 
figure 7, of cause inside a dense material the field is 
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1 INTRODUCTION

Magneto elastomers can respond to an applied 
magnetic field with an instantaneous change in 
the mechanical behavior. This novel behaviour is 
caused by consisting of micron-sized ferrous parti-
cles dispersed within an elastomeric matrix such as 
rubber and polymer. Recently magneto elastomers 
are used in the automobile application area such 
as the stiffness tunable mounts and suspension 
devices, see for example Kordonsky (1993), Carl-
son & Jolly (2000), Jolly et al. (1996) and Watson 
(1997). On the other hand, the constitutive equa-
tions governing deformations of these materials 
were recently discussed on various literatures, see 
for Brigadnov & Dorfmann (2003), Dorfmann & 
Ogden (2004, 2005), Kankanala & Triantafyllidis 
(2004), Steigmann (2004) and Bustamante et al. 
(2008).

In this study, our purpose is the establishment 
of numerical analysis method for mechanical 
explication of magneto elastomer. For this purpose, 
we performed the pure shear experimental test for 
PDMS including carbonyl iron particles under the 
variance of magnetic field that is controlled by 
the distance of permanent magnets. In addition, 
we identify the strain energy function of magneto 

Identification of strain energy function for magneto elastomer 
from pseudo pure shear test under the variance of magnetic field

S. Ishikawa
Mechanical Design & Analysis Corporation, Nagoya, Japan

F. Tsumori
Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Japan

H. Kotera
Department of Micro Engineering, Graduate school of Engineering, Kyoto University, Japan

ABSTRACT: Magneto elastomers are a class of smart materials whose mechanical properties may be 
controlled instantly by the application of an external magnetic field. Recently magneto elastomers are 
used in the automobile application area such as the tunable mounts and suspension devices. Such mate-
rials typically consist of micron-sized ferrous particles dispersed within an elastomeric matrix. In this 
present paper we performed the pseudo pure shear test for PDMS (polydimethylsiloxane) including car-
bonyl iron particles under the variance of magnetic field to explore the features. Furthermore we develop 
the governing equations for a more general form of constitutive model into the Nonlinear Finite Element 
Analysis program. The results, which show the stiffening of the shear modulus response with increasing 
magnetic field strength, are indicated on both of experimental tests and numerical analyses.

elastomers to analyze its nonlinear behaviour by 
using FEM.

The key results reveal the stiffening of the shear 
modulus response with increasing magnetic field 
strength; the results are also signified on both of 
experimental tests and numerical analyses. Pro-
posed numerical method can handle the nonlinear-
ity of magneto elastometric behaviour accurately.

2 PURE SHEAR EXPERIMENTAL TEST

2.1 Material

The PDMS is used as a Deformable micro struc-
ture in industrial field; for example, DMD (Digital 
Micro-mirror Device), acceleration sensors and 
etc. Recently, it is reported by Tsumori et al. 
(2007) that micro actuator and smart device are 
dispersed 50 nm sized ferromagnetic particles and 
driven by the exterior magnetic field. In this study, 
we prepared the PDMS including ferromagnetic 
particles by the same previous method.

The test specimens were prepared with con-
taining 0, 1 and 2% iron by volume, on account 
of taking the different behavior through the 
volumetric density. The matrix was mixed ten 
parts of PDMS with one parts of curing agent. 
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The matrix was stirred about 10 minutes by an 
agitator, and degassed by vacuum equipment for 
one hour. The test specimen was mixed the matrix 
with 0, 1, and 2 volumetric percent of 50 nm sized 
ferromagnetic particles. Each specimen were 
molded and degassed for one hour, and held at 
80°C for two hours in an oven to heat curing.

2.2 Pure shear test

Figure 1 shows the concise figure of pure shear 
test under the variance of magnetic field. For an 
incompressible material such as rubber, a state of 
pure shear may be achieved by the stretching of a 
rectangular sheet in one direction so as to produce 
an extension ratio λ1, while maintaining the perpen-
dicular or transverse dimension unchanged (λ2 = 1), 
see Treloar (1944). The test specimen represents the 
appearance of wide strip (20 mm × 2 mm × 1 mm).

There are two adjustable permanent magnets on 
both sides of the test specimen for applying vari-
able magnetic field parallel to the width direction. 
The strength of magnetic field is controlled by the 
position of permanent magnets and applied to the 
specimen with 0, 0.25, and 0.4 Tesla.

2.3 Result

Figure 2 shows the stress-strain relation of pure 
shear test under the variance of magnetic field. It 

2

1
λ =

1λ

3 11λ λ=

Figure 1. Concise figure of pure shear test.
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Figure 2. Experimental test of pure shear test.
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Table 1. Grand state of elastic modulus (N/mm2).

External magnetic field (T)

Volume ratio (%) 0 0.25 0.4

0 0.651 0.651 0.651
1 1.096 1.309 1.645
2 1.590 1.883 2.620
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can be seen that the shear stiffness varies with the 
volumetric particle and the external magnetic field. 
The grand state of elastic modulus was calculated 
from each stress-strain relationship (see Table 1). 
Figure 3 shows the elastic modulus of each 
external magnetic flux density against the volume 
ratio. Figure 4 also shows the elastic modulus of 
each volumetric ratio against the magnetic flux 
density. It can be seen the linear relationship on 
each external magnetic field, also the stiffness 
hardening by the magnetic particle volume ratio.

3 NUMERICAL ANALYSIS

3.1 Constitutive equation

To analyze the magneto elastomer behaviour in an 
applied magnetic field by the continuum mechan-
ics, the electromagnetic equations should be 
coupled with mechanical deformation equations. 
In this study, it is assumed that the applied mag-
netic field is static and also the applied magnetic 
field does not change among the materials.

The Maxwell stress Tm without electric field 
defined by the following equation is induced by the 
magnetic field in the ferromagnetic material:

T B H Um = ⊕ − ,  (1)

where B is the magnetic flux density and H is the 
magnetic field strength and U is magnetic energy 
per unit volume defined as follows:

U B H I= ⋅( )1
2

,  (2)

where I is the second order unit tensor. Magnetic 
flux density in the material is defined as

B H M= +( )μ ,  (3)

where μ is permeability of the material and M 
refers to magnetization.

In the Finite Element Analysis, the strain energy 
function should be used for describing the non-
linear elastometric behaviour. In this study, it is 
assumed that the rotation of magnetic particle in 
the magneto elastomer is infinitesimally, therefore, 
the symmetry condition covers not only the strain 
energy function but also the stress tensor. There-
fore the Cauchy stress tensor T is defined in terms 
of the strain energy function Ψ under the symme-
try condition as follows:

T F
C

F=
∂
∂

−J 1 Ψ T,  (4)

where J = detF > 0 is the volume ratio, F is the 
deformation gradient, and C = FTF is the right 
Cauchy deformation tensor.

The strain energy function can be split into 
the mechanical strain energy of deformation and 
the magnetic strain energy of magnetic field as 
follows.

Ψ Ψ Ψ( , ) ( ) ( , ).C B C C B B= + ⊗mech mag  (5)

The magnetic strain energy function has, 
consequently, two variables of the right Cauchy 
deformation tensor and the tensor dyad of the 
magnetic flux density.

Furthermore Equation 5 should satisfy the 
objectivity. Hence the strain energy function takes 
below six invariants according to the invariants 
theory of Spencer (1971).

I1 = tr ,C  (6)

I2
21

2
= −(tr tr tr ),C C C  (7)

I3 = det ,C  (8)

I4 = ⋅ ⋅ = ⊗B C B C B B: ( ),   (9)

I5
2 2= ⋅ ⋅ = ⊗B C B C B B: ( ),  (10)

I6
2=| | ,B  (11)

where tr is the trace of a second-order tensor. And 
the invariants of I1, I2 and I3 are the mechanical 
invariant from the deformation gradient, while 
I4, I5 and I6 are the magnetic invariant from the 
deformation gradient and the magnetic flux den-
sity. A slightly more general theory could accom-
modate direction dependence of B, but here we 
restrict attention to the simpler case.

Then, the second Piola-Kirchhoff stress tensor S, 
for example, is given explicitly in terms of Ψ as

S
C B

C
C B B

C
=

∂ ⊗( )
∂

∂ ⊗( )
∂

∂
∂=

∑2 2
1

6Ψ Ψ, ,
.

B
=

I
I

a

a

a  
(12)

By using differentiation with respect to six 
invariants

S I

B

=

+

2 ∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

+
∂
∂

⊗
∂
∂

−Ψ Ψ Ψ Ψ

Ψ Ψ
I

I
I I

I
I

I

1
1

2 2
3

3

1

4

C C

B
II5

( )B CB BC B⊗ + ⊗
⎤

⎦
⎥.

 (13)

The last two terms are contribution from 
magnetic field.

If  the material is incompressible, so that I3 ≡ 1, 
for isotropic magneto hyperelastic incompress-
ible materials a suitable strain energy function is 
given by
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Ψ Ψ= + −( , , , , ) ( ),I I I I I p I1 2 4 5 6 3 1  (14)

where p is the negative hydrostatic pressure as an 
indeterminate Lagrange multiplier.

Finally, the total Cauchy stress tensor can be 
defined as follows:

T I b b

b B B B b

= +
∂
∂

+
∂
∂

⎛
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I I
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1
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2
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2

Ψ Ψ Ψ

Ψ Ψ
BB Bb B+ ⊗( )⎤
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⎥

2 ,
 

(15)

where b = FFT is the left Cauchy deformation ten-
sor or the Finger objective tensor. This stress ten-
sor is the same tensor as the transverse isotropic 
material (Holzapfel 2000; Ishikawa & Kotera 
2005). Mechanical behaviour can be analyzed by 
substitution the magnetic flux density for the initial 
fiber orientation of elastic tangent as transverse 
isotropic material. Here, however, B is not a unit 
vector so the theory involves one more invariant I6 
than in the case for transverse isotropy.

It should also be added the relationship of 
magnetic field and magnetic flux density as follows:

H B bB b B B M=
∂
∂

+
∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −− −2
4 5 6

1
0

1Ψ Ψ Ψ
I I I

μ .(16)

3.2 Strain energy function

Assuming that the initial stress arisen from the 
magnetostriction is very small, also the magnetic 
flux density is uniform and same direction; we 
propose the following two parameter strain energy 
function for simplicity to analyze the mechanical 
behaviour of an isotropic magneto elastomer.

Ψ( , )
( )

( )( ) .( )I I
q I

G I I q I
1 6

6
6 1

21 3 6= −  (17)

Here G is the shear modulus in the reference 
configuration, known from the linear theory, and 
q > 2 is the parameter of growth, which are func-
tions of I6 only. For q = 2 we obtain the classi-
cal neo Hookean model, which may be derived 
using concepts from the statistical theory of the 
elasticity of the molecular network structure of 
vulcanized rubber, see Treloar (1975). We assume 
that the shear modulus G and the growth param-
eter q can be written in the form

G I G G G I
G I

( ) coth( ) ,6 0 1 2 6
2 6

1
= + ⋅ −

⋅
⎡

⎣
⎢

⎤

⎦
⎥  (18)

q I q q I( ) ,6 0 1 6= + ⋅  (19)

where G0 and q0 are the field independent shear mod-
ulus and growth parameter; the others G1, G2 and q1 
are the field dependent parameters; G0 and G1 have 
the same unit of the stress, the others are dimen-
sionless material parameters. The function of shear 
modulus G is modified from the Langevin function, 
since it should be able to manage the flux saturation. 
As a result, the strain energy function requires five 
material parameters for an isotropic incompressible 
magneto elastomer. This proposed energy function 
is not complicate, therefore five material parameters 
are easily fitted from the pure shear experimen-
tal test by using the least square methods. At first, 
G0 and q0 are determined from the stress-strain rela-
tionship from the non magnetic field result, secondly 
the other three parameters are computed from the 
results of varying magnetic field. Table 2 shows the 
fitted material parameters of each volume ratio test 
specimen from the pure shear test in Figure 2.

We implemented this strain energy function 
to MSC. Marc by using a user subroutine which 
executes the shear modulus change from the 
variance of magnetic field. The finite element 
analysis was executed to simulate the pure shear 
test results described previous section. The results 

Table 2. Material parameters for pure shear experimen-
tal test.

Volume
ratio (%)

G0
(N/mm2)

G1
(N/mm2) G2 q0 q1

0 0.223 – – 2.072 –
1 0.397 1.767 2.087 2.079 −0.059
2 0.546 2.963 1.917 2.050 −0.313
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Figure 5. Pure shear test for volume ratio 0%.



463

of finite element analysis and experimental test 
appear in Figure 5, 6, and 7 on each volumetric 
ratio. The numerical results coincided with the 
experimental results in whole conditions.

4 ADDITIONAL EXAMINATION

We measured the stress strain relationship by the 
pure shear test under the constant magnetic field, 
whereas Jolly et al. (1996) measured the change in 
modules while varying the magnetic field.

In their study, the simple shear test was 
performed on the double lap specimen which was 
prepared in a mould using silicone oil loaded with a 
specified volume percent of carbonyl iron particles 
of a 3–4 μm mean diameter (see Figure 8). Three 
double lap shear specimens of MR elastomer were 
prepared containing 10, 20 and 30% iron by vol-
ume. The elastomer segments (shaded) are 20 mm 
by 7.5 mm by 1.0 mm thick and are sandwiched 

B

F

F

Figure 8. Double lap simple shear test.

between an inner iron plate and two outer iron 
plates. The bold vertical arrow indicates the direc-
tion of applied field.

In order to verify the accuracy of our numerical 
model, we examined material parameter of our 
proposed model applying to the results of the 
literature. For this numerical examination, one 
of the non magnetic parameter G0 is applied from 
nominal modulus of Jolly et al. (1996, Table 1); 
another non magnetic parameter q0 is set 2.0 as 
same as neo Hookean material. In the later, the 
magnetic dependent material parameters are fitted 
to the experimental shear modulus change of Jolly 
et al. (1996, Figure.8). Table 3 shows the estimated 

Table 3. Material parameters of proposed model for 
dual lapped shear experimental test.

Volume
ratio (%)

G0
(MPa)

G1
(MPa) G2 q0 q1

30 1.80 0.938 4.883 2.0 0.016
20 0.74 0.411 8.052 2.0 0.013
10 0.26 0.733 3.725 2.0 0.300
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Figure 9. Variance of shear modulus by increasing the 
external magnetic flux density.
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material parameters of our proposed model for 
three volume ratio specimens.

Numerical testing is carried out by Finite Ele-
ment Methods with our proposed strain energy 
function. The symbol plots in Figure 9 denote the 
experimental data, and the numerical results of 
our method are indicated by line plot in the same 
figure. The calculated results agree very well with 
experimental ones. Especially, our model can treat 
accurately the no modulus change at the magnetic 
flux saturation plateau area.

5 CONCLUSIONS

We performed the pure shear test under the vari-
ance of magnetic flux density. The shear modulus 
of magneto elastomer was stiffened with increasing 
the external magnetic field. The stiffness change 
was linear through increasing the magnetic parti-
cle volume ratio.

A comparison between experimental results and 
FE-analysis has been conducted. The conclusion 
to be drawn from these results is that this proposed 
strain energy function accurately estimates the mate-
rial testing under the magnetic flux density. In the 
additional examination, furthermore, our model was 
applied to the magnetic flux saturation plateau area.
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1 INTRODUCTION

Biomechanics studies biological soft tissue materi-
als (growth, remodeling) in vivo. For this objective, 
the detailed information of material properties 
must be well defined to construct reliable consti-
tutive models. In the paper, the bulge test is car-
ried out with elastomers in order to develop a test 
method. Then, application of the test for soft tissue 
materials is straightforward due to the similarities 
between elastomers with soft tissue materials as 
proved in Holzapfel 2005, Ogden 2009. It means, 
after the preliminary experiments and parameter 
identification with rubber materials has been set-
up, experiments on soft tissue materials can be 
similarly carried out. Elastomers have a complex 
behavior which strongly depends on the largest 
previous load cycle. For simplicity we consider 
only the first loading.

For elastomeric materials, experiments in multi-
ple strain states such as simple tension, pure shear 
and biaxial tension may be needed to adequately 
define a material. The paper presents a simple 
equibiaxial test (bulge test) that can accompany 
with the tensile test to adequately define a material 
model. Neither sensitive to specimen’s geometry 
(as pure shear test) nor sensitive to friction (as sim-
ple compression test), a pure state of strain can be 
easily attained with this equibiaxial test.

In order to estimate performance of the proposed 
Kilian model, fitting of experimental data based 
on the Ogden model is also taken into account. 

Experiment and material model for soft tissue materials

M. Staat, S. Sponagel & Nhu, Huynh Nguyê~n
Institute of Bioengineering, Aachen University of Applied Sciences, Jülich, Germany

ABSTRACT: The bulge test is an efficient but simple biaxial setup using only a minimum of biological 
material. This experiment is well suited to measure stretches in thin-walled materials such as rubber mem-
branes, chorioamnion, bladder or intestinal tissue, etc. up to the ultimate stretch. The principal stretches 
are easily calculated from the experimental data, especially when the tested material shows isotropic behav-
ior. The growth of biological tissue generates residual stresses which can be also measured with the bulge 
test. Tests with small specimens also permit local measurements of inhomogeneous tissues. In the paper, 
the small size bulge test is first developed with elastomers. For fitting of the data a modified version of the 
Kilian network is proposed for hyperelastic modeling of rubberlike materials. This strain-energy function 
represents both entropic elasticity and in addition energetic elasticity. Fitting the results shows that the 
proposed model, with only two material constants, can describe the behavior of rubberlike materials up to 
large elastic strains as accurate as the Ogden model with four or even six material constants. In a second 
phase the bulge test is used to test planar soft biopolymers or tissues.

The Ogden model with six material parameters 
gives an excellent correlation with experimental 
data, Holzapfel 2000. The proposed Kilian model 
can predict the behavior of the rubberlike materi-
als as well as the Ogden model does.

2 DESCRIPTION OF THE BULGE TEST

Many soft tissue materials, such as urinary blad-
der, mesentery, etc. are thin-walled and hence, can 
be investigated by membrane theory. The possible 
choices for testing membrane materials are in-
plane biaxial tests and bulge (inflation) test.

This section investigates the inflation of elas-
tomeric materials with various deformation levels. 
Based on relations between the internal pressure 
in the balloon (inflated material, i.e. in the current 
configuration) and the circumferential stretch λ, the 
material model and material parameters are identi-
fied. For isotropic materials, Ogden 2009 pointed 
out that only bulge tests are sufficient to fully deter-
mine the three-dimensional material properties. 
Compared to other biaxial tests, such as the biaxial 
tension test of a square specimen or the equiradial 
tension of a circular disk, the bulge test is the sim-
plest one in experimental set up, see Figure 1.

In order to define the pressure-stretch relation, 
it is necessary to measure the pressure difference   
Δp and to measure geometrical data (h, La1, La2, Lb 
to calculate principal stretches), see (6). The side 
 camera is used for monitoring the overall profile 
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of the specimen. The instance when the inflated 
specimen changes from spherical dome to ellipsoid 
is important because with each shape we need to 
use a specific formula for calculating surface area of 
the inflated specimen. The surface area is required 
to calculate the thickness stretch. The top camera is 
used for monitoring the semi-major axes of the ellip-
soid. It is indispensable if the tested material shows 
some anisotropic behavior, at that time La1 ≠ La2.

2.1 Strain calculation

The specimen is clamped between two solid metal 
plates (Fig. 1). Pressurized air from one side inflates 
the specimen through the hole of radius R. The air 
pressure is increased gradually. By using a video-
based system, we see that initially the specimen 
has a spherical dome shape. Increasing pressure, 
the inflated specimen will assume an ellipsoidal 
shape. If  the material is isotropic, the ellipsoid will 
be rotational symmetric with two semi-major axes, 
which have the same length (La1 = La2 = La), and one 
semi-minor axis, which has the length Lb (Lb < La), 
see Figure 1. The ellipsoid with this form is named 
oblate spheroid.

The bulge test is considered as an equibiaxial 
tension with the membrane stresses:

σ σ σ σ1 2 3 =  =  ;    = 0.  (1)

Consequently, the membrane stretches for the 
incompressible elastomer are:

λ λ λ λ
λ λ λ1 2 3

1 2
2

1 1
= = = =  ;  .  (2)

The principal stretch λ can be calculated pre-
cisely by the formula on the basis of conservation 
of material volume as:

λ
π

= =
t
t

A
R

0
2

 (3)

where t and t0 are the actual and the reference 
thickness, respectively. A is the surface area of the 
spherical dome or ellipsoid, depending on the cur-
rent deformation. For the spherical dome, the sur-
face area is analytically calculated. For the ellipsoid 
the surface area from γ to 2(π−γ) (see Fig. 1) can 
be numerically calculated by a simple MATLAB 
program.

For the equibiaxial tension test, the deformation 
gradient F and the left Cauchy strain B = FFT are:
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(4)

The equilibrium equations of the specimen at 
any stage of deformation, both the spherical dome 
and the ellipsoid, have the common form as:

Δp
t

La
= +( )2

11 11σ ρ  (5)

where for the spherical dome, La ≡ R is the initial 
radius of the specimen; for the ellipsoid La is the 
length of the semi-major axis; ρ11 is the residual 
stress. For the sake of simplicity the relationship of 
equibiaxial residual stresses ρ11 = ρ22 was assumed.

The above formulas are valid for isotropic mate-
rials. If  the material is orthotropic, membrane 
stretches are directly calculated as:

λ λ1 1 2 2= =S R S R/ ; /       (6)

where S1 is the periphery of the ellipse through 
the radius La1 (the largest semi-major axis); S2 is the 
periphery of the ellipse through the radius La2 
(the smallest semi-major axis).

3 HYPERELASTIC MATERIALS

We call a material Green-elastic or hyperelastic if  
there is an elastic potential (strain-energy function) 
W whose derivative with respect to a strain or defor-
mation component determines the corresponding 
stress components. In the undeformed state W = 0 

Figure 1. Schematic of bulge test.
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for the energy (then also the stresses) to vanish in 
the reference configuration. In this section a typi-
cal model that is useful for elastomeric materials 
and another typical model for soft tissue materi-
als are presented. Then, a modified Kilian model is 
proposed. Expansion of the modified  Kilian model 
for various tests is introduced. Later, in section 4, 
application of the modified Kilian model for fit-
ting data from the bulge test is illustrated.

3.1 Ogden model

Most material models in commercially FEM codes 
allow the analyst to describe a subset of the struc-
tural properties of elastomers. The popular hyper-
elastic material models, such as Mooney-Rivlin or 
Ogden formulations, are available in almost com-
mercial FEM codes. Ogden postulated that the 
strain energy is a function of the principal stretches 
λi  (i = 1, 2, 3), see Ogden 1984, as:

W W i

ii

N
i i i= = + + −( )

=
∑( , , ) .λ λ λ μ

α λ λ λα α α
1 2 3

1
1 2 3 3  (7)

The consistency condition for the model is:

2
1

μ μ α=
=
∑ i i
i

N
 with μ αi i > 0  (8)

where μ  is the shear modulus of the material in 
the (undeformed) reference configuration.

It is suggested that three pairs of constants 
(N = 3) in (7) are enough for giving an excellent 
correlation with experimental data Holzapfel 2000. 
Applying the Ogden function (7) to calculate the 
membrane stresses in equibiaxial deformation for 
incompressible materials we have:

σ σ
λ λ

μ λ λα α
1 2

1 2 1

3
2= = ∂

∂
= ∂

∂
= −( )

=
−∑W W

i
i

i i  (9)

where 6 material parameters are used for fitting 
experimental data.

3.2 Modified Kilian’s model

Extending the application of the van der Waals 
equation of state for technical polymers, Kilian 
proposed the stress-stretch relation in tension tests 
as, Kilian 1985:
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⎟
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λ

Λ
Λ

Λ

Λ  (10)

where, Λ( ) ,λ λ λ= −1 2  Λ Λm m= ( ).λ

Here P  is the given load; A0  is the initial 
cross-section of the specimen; ρ  is the material 
density; R = − −8 31451 1 1.  Jmol K  is the (general) 
molar gas constant; Mm  is the molecular weight of 
the stretch-invariant basic unit. Thus ρ = −1 3 gcm  
and Mm = −68 11 1.  gmol  if natural rubber ( C H5 8 ) 
is considered. λm  is a material parameter which 
relates to the ultimate elongation of the rubberlike 
material.

The formula above is derived from an energy 
function that only depends on the first invariant I1. 
When correlating with experimental data, one sees 
that the Kilian model is able to represent the experi-
mental data in the total range of stretch, Kilian 
1985.

Staat et al. (2008) proposed an energy function 
for incompressible isotropic materials as:

ψ ψ ψ= +1 1 2 2( ) ( )J J  (11)

where alternative invariants are defined:

J I tr J tr I I1 1 2
2

1
2

22= = = = −( ) ( ) .B B    ;     (12)

Then the Cauchy stresses can be calculated as:
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or  σσ = − + +pI B Bϕ ϕ1 2
2  (13b)

where, p is the hydrostatic pressure.

3.3 Modified Kilian model for simple tension test

Considering the simple tension test, the deforma-
tions are:
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The invariants defined in (12) are:

J J1
2

2
4

2
2 2
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λ

λ
λ

          ; .  (15a, b)

From (13), stresses in tension test are calculated:

σ ϕ λ ϕ λ11 1
2

2
4= − + +p  (16)

σ σ ϕ
λ

ϕ
λ33 22 1 2 2

1 1 0= = − + + =p .  (17)
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Eliminating the undetermined pressure in 
equation (16) from (17) leads to:

σ λ
λ

ϕ λ
λ

ϕ11
2

1 1
2

2 2
1 1= − + +⎡

⎣⎢
⎤
⎦⎥

( ) ( ) ( ) ( ) .J J  (18)

Applying the model (11) for the tension test, for 
more details see Staat et al. 2008, leads to:
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The correlation of (10) with (19) suggests a form 
for the functions ϕ1 1( )J  and ϕ2 2( )J  as:
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where Λ Λ1 1 1= ( )�λ  and Λ Λ2 2 2= ( )�λ ; �λ1  is the 
solution of equation (15a), solved by Cardano’s 
method and �λ2  is the solution of equation (15b), 
solved by Cardano’s method, Staat et al. 2008.

For the uniaxial tension test � �λ λ λ1 2= = . The 
material model proposed in (11) is different from 
the Kilian model because the second term of (11) 
is a function of the second invariant defined in 
(12). According to Staat et al. 2008, the first term 
of the energy function (11) is a representative of an 
entropy-elastic term (function of J1). The second 
term is a representative of an energy-elastic term 
(function of J2).

3.4 Fung model

Contrary to the hard tissues (bone, tooth, etc.), the 
soft tissues (skin, muscles, lung, etc.) show strongly 
non-linear behavior. Furthermore, because of the 
presence of collagen fibers distributed in soft tissues, 
the soft tissue materials exhibit anisotropic charac-
teristics. Fung 1990 showed that the elastic stress 
for many specific soft tissues can be modeled by an 
exponential function of stretches. This is usually used 
in biomechanical applications. It is known however, 
that the Fung material fails to be polyconvex, Itskov 
et al. 2006. The strain-energy function is:

W
c

Q( ) [exp( ) ]E = −
2

1  (21)

where the principal values Ei i= −( )λ2 1 2 of the 
Lagrange strain tensor E are given by the principle 

stretches λi  (i  = 1,2,3). Then Q c E c E c E= + +1 1
2

2 2
2

3 3
2  

+ + +2 2 24 1 2 5 2 3 6 3 1c E E c E E c E E  with the material 
constants c,c1,c2,...,c6. c has the dimension of an 
elastic modulus; c1,c2,...,c6 are dimensionless.

The associated stresses are obtained by:

S
E

=
∂
∂
W .  (22)

4 FITTING DATA FROM BULGE TEST 
FOR NATURAL RUBBER MATERIAL

Dimensions of the rubber specimen are t0 = 
0.173 mm and R = 10 mm. Experiments were con-
ducted at room temperature. To define the maxi-
mum stretches, specimens are loaded until fracture.

4.1 Fitting with the modified Kilian model

Using (20), the functions ϕ1(J1) and ϕ2(J2) for natu-
ral rubber at room temperature T = 293 K the fac-
tor ρRT / λm

2 Mm = 35.8257 Nmm−2 / λm
2  contains only 

the material constant λm.
In order to define the relation between the pres-

sure difference Δp and the stretch λ in (5), one has 
to find two material parameters λm and a, see (10), 
by a least square method. Lower bounds of the 
material parameters λm and a are constrained to be 
positive to assure the energy function stable.

If  we use expression (15) for calculating �λ1  
and �λ2, and use expressions in (20) for calculating 
ϕ1(J1) and ϕ2(J2), values of the material parameters 
are obtained: λm = 8.235 and a = 0.159 N/mm2, see 
Figure 2. As pointed out by Holl et al. 1990, the 
term λm is not identical to the maximum stretch 
λmax in networks. However, there is an empirical 
relation λmax = λm + λmin with (0 ≤ λmin ≤ 3). Hence, 
the maximal stretch of the material would be 
λmax = 8.0 ÷ 11.0. This value can be attained with 

Figure 2. Curve fitting for equibiaxial test—pressure 
difference.
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tension tests. At small stretches (λ <1.5) there is a 
little discrepancy between theory and experiment. 
This may be a consequence of using expressions 
(15), expressions for the tension test.

For the bulge test, curve fitting with pressure-
stretch should be preferred over curve fitting with 
stress-stretch. In the former case values along the 
vertical axis are small (<0.03 N/mm2). Hence, it is 
easier to check sensitive differences between experi-
mental data and fitting curves. In the later case val-
ues along the vertical axis are larger (<60 N/mm2). 
Consequently, the differences between curves are 
more difficult to recognize than in the later case. 
See Figures 4 and 5 for a comparison.

4.2 Fitting with the Ogden model

When N = 2, the curve fitting process defines mate-
rial parameters of the Ogden model as below:

μ α1 10 803 0 902= − = −. ; . ;N/mm                2

μ α2
5

24 10= − ⋅ = −−.169 N/mm   ;    4.386.2

The solutions above satisfy the consistent con-
dition (8). As shown in Figure 2, the model of 
Ogden with 4 parameters does not give a good 
fitting. Hence, the Ogden model with more 
parameters should be preferred. With the same 
convergence criteria, when N = 3, the curve fitting 
process defines six parameters of the Ogden model 
as below:

μ α1 1= − = −3.828 N/mm            0.1342 ; ;

μ α2
6

21 10= − ⋅ = −−.0 N/mm   ;    5.676;2

μ α3 3= =0.118 N/mm              3.263.2 ;

For the curve fitting process, the Kilian models 
satisfy the convergence criteria in 13 steps. Mean-
while using the Ogden models, the maximum 
iteration number was reached but the termination 
tolerance 1 . 10−12 on the function was not reached. 
In fact tolerances were equal to 2.312 . 10−4  and 
1.746 . 10−4 for Ogden models with 4 and 6 param-
eters, respectively.

5 VALIDATING WITH SIMPLE 
TENSION TEST

Objective of curve fitting is to define the necessary 
material parameters to input for the material model. 
To validate the modified Kilian model parameters 
which have been found with the bulge test, the 
identified material parameters are used to predict 
stresses of the simple tension test, Figure 3.

In this phase, the Ogden model with six material 
parameters is also investigated. It was shown by 
Ogden et al. 2004 that by fitting the data for sim-
ple tension test (equibiaxial test) the prediction for 
equibiaxial tension test (simple tension test) is not 
good. This argument is again assured by the pre-
diction curve of the Ogden model (6 parameters) in 
Figure 3. However, the modified Kilian model M1 
seems to give better predictions than the Ogden 
model. Experimental stresses from the tension test 
have been used to validate the prediction results.

6 FITTING DATA FROM BULGE TEST 
FOR PORCINE SMALL-INTESTINE

A part of fresh, porcine small-intestine was 
extracted from an adult swine from a butcher’s 
shop. Ten specimens were extracted and immersed 
in warm physiological saline solution (37°C). The 
porcine small-intestine shows orthotropic property 
as illustrated in Figure 4. The goal of this part is to 

Figure 3. Uniaxial tension test prediction—Cauchy 
stress.

Figure 4. Curve fitting for equibiaxial test—intestine 
material.
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illustrate the application of the bulge test for soft 
tissue materials. The average thickness of the large-
intestine is 0.065 mm.

The orthotropic samples do not inflate into a 
spherical cap geometry. In static equilibrium the dif-
ferential pressure Δp is related to ratio between the 
tensions T1, T2, and the corresponding local radii of 
curvature, La1, La2 (Fig. 1) by the following equation 
(Laplace’s law, see Fung 1990, section 11.7):

Δp
T
L

T
L

h
L

h
La a a a

= + = +1

1

2

2

1 1

1

2 2

2

σ σ  (23)

where h1 and h2 are thickness of the material in 
direction 1 (longitudinal) and 2 (circumferential 
direction). For the sake of simplicity, let’s assume 
h1 = h2 = h. The equilibrium equation (23) will be 
applied for determining material parameters of 
Fung’s model (21) with σ1 and σ2 are calculated 
from (22) where hydrostatic pressure is calculated 
from the plane stress condition (σ3 = 0).

7 CONCLUSIONS

The paper presents a modified Kilian material model 
with 2 material constants for tension and biaxial. 
Results from curve fitting show that the modified 
Kilian model is able to describe the behavior of elas-
tomeric material at large stretch (λ > 4.5) as well as 
the Ogden model with 6 material constants. By fit-
ting the data for equibiaxial test the modified Kilian 
model is better than the Ogden model in predicting 
stress for the simple tension test. However, the form 
of the functions ϕ1(J1) and ϕ2(J2) is not fixed. Dif-
ferent choices are currently tested also in pure shear. 
This will be reported together with a FEM imple-
mentation of the modified Kilian model.

The paper also illustrates an application of the 
bulge test for soft tissue materials. Normally, soft tis-
sue materials are orthotropic. That property can be 
determined by using geometrical data collected from 
a camera system and then the curve fitting process is 
carried out with (23). The mechanical characteriza-
tion is important with respect to modeling aspects 
and medical problems such as aneurisms and 
PROM (premature rupture of amniotic sac before 
labor begins), Prévost 2006, Lindner 2006.
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Quantitative structural analysis of filled rubber by AFM
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ABSTRACT: The mechanical properties of carbon black reinforced rubbers, strongly depend on the 
uniformity of filler distribution in the material and the size of filler clusters in the finished product, i.e., 
on the quality of mixing of composite components. In this paper, we present methods for quantitative 
analysis of the structure of filled rubbers by Atomic Force Microscopy (AFM). Next microstructure 
characteristics as Morishita’s index, cross-section area, volume, compactness and cluster size have been 
obtained by testing three specimens consisting of different fillers and binders. In one of these specimens, 
essential non-uniformities in cluster distribution and sizes have been revealed. It is shown that the density 
of clusters decreases with increasing size. The area and perimeter of clusters as well as their volume and 
size are governed by fractal mechanisms.

1 INTRODUCTION

Carbon black (CB), one of the main components 
of rubber composites (tires, insulators, conveyer 
belts, etc), is preferably delivered in the form of 
granules of diameter 1–2 mm. During mixing of 
the polymer and the fillers, the carbon granules are 
broken down, and the CB structures (aggregates 
and agglomerates) are distributed throughout the 
material. The more uniform the distribution of 
clusters is and the smaller their sizes are, the larger 
is the filler surface area that interacts with the 
binder.

Insufficient mixing and grinding of granules 
lead to strong filler-filler interactions. In this case, 
stresses are distributed non-uniformly during 
deformation. Breakage of large-size clusters results 
in an essential change in the dynamic modulus of 
the material, which, in turn, causes high hyster-
esis losses. All these factors adversely affect the 
mechanical properties of the end product. Hence, 
the deciding factor that influences the quality of 
filled rubbers, all other factors being equal, is the 
degree of filler dispersion. As the filler distribu-
tion in the material gets more uniform, the scatter-
ing in particle sizes decreases, improving thus the 
mechanical characteristics of the filled rubber.

Atomic force microscope provides a powerful, 
yet rather simple, way to study the nanostruc-
ture of materials, in particular, filled elastomers 
(Johnson, 2008).

This study presents methods for qualitative 
analysis of the structure of filled rubbers. The pro-
posed approach includes two stages: 1) Processing 
of AFM images for further statistic analysis of the 
structure of clusters. 2) Analysis of quantitative 
estimates of the filler distribution in the material, 
its sizes, areas, volume fraction and compactness. 
The obtained characteristics give us insight into 
the microstructure of elastomeric composites.

2 EXPERIMENT

For AFM imaging, three industrial tire rubbers 
manufactured at the “Scientific-Research Insti-
tute of Tire Industry” (Moscow) were prepared 
(Table 1).

The materials were imaged in a close contact 
mode using DI Nanoscope IV (nominal radius of 
the tip <10 nm). For statistics, from each rubber 10 
images of 10 × 10 and 3 × 3 μm with resolution 
512 × 512 points in plane were obtained and ana-
lyzed by our procedures written in Matlab.

3 GENERAL ANALYSIS OF THE IMAGES

The surface structure obtained by AFM is a com-
plex three-dimensional relief. If we observe only such 
part of the AFM-image that is higher as some height 
h above the zero level, the relief will be  separated 
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into ‘islands’. As we cannot define whether this 
‘island’ is part of CB aggregate or agglomerate 
any structural feature of the AFM image, whose 
cross-section A is larger than 0.01 μm2, is called a 
cluster. The smaller objects of the surface relief are 
excluded from the analysis, since the probes of the 
microscope are unable to provide the reliable images 
of small (<20 nm) features in the xy-plane.

For images 10 × 10 μm, the following height 
dependences are constructed:

1.  The average compactness (Bogaert et al. 2000) 
of the cluster cross-section c(h):

c
N h

h
A h
P h

k

kk

N h
(

( )
,)

( )
( )

( )
=

=
∑2

1

π  (1)

where N(h) = number of clusters; Ak(h), Pk(h) 
are the area and perimeter of the k –th cluster 
cross section. Equation (1) shows how much the 
shape of the circle and some figure are different. 
For circle c ≡ 1, the smaller is c, the less compact 
is the profile of the cluster cross-section.

2. The volume fraction of clusters φ(h):

φ( .)h
V h

h
=

+

⋅

20

20 10000
 (2)

By equation (2) we calculate the volume frac-
tion of the material in the layer 20 nm above h. 
To determine A and P we examine the clusters 
that do not intersect the image edge. Figure 1 
illustrates cross-sections of the specimen with 
countours of separate clusters.
Figure 2 presents the dependences of c and φ on 

the relative height h/hmax, where hmax is the maxi-
mum height over the zero level.

As one can see (fig. 2) for h = h*∈[0.45…0.52]hmax, 
the compactness is minimal and volume fraction 
of clusters close to the filler volume fraction 0.2. 
At small heights we observe compact and dense 
clusters with high volume fraction. Such objects 
cannot truly represent shape of CB clusters in 
rubber which are known for its branchy structure 
(Kohjiya et al. 2006). Only from some height h ≡ h* 
we can suggest that the relief  structure is closest to 
the filler geometry. Therefore, our further analysis 
of AFM images is concerned with the study of the 
upper part of the relief: h ≥ h*.

4 RESULTS

For the analysis of cluster distribution in 10 × 10 μm 
images, we use Morishita's index (Karasek et al. 
1996):

I q n n N Ni i
i

q

δ = − −[ ]
=
∑ ( ) / ( ) .1 1

1

The image is separated into q squares, the clusters 
are replaced by the points coinciding with geomet-
ric center of the clusters; ni is the number of points 
in the i-th square; N–total number of clusters. 
Obtained values of Iδ(q) are presented in Fig. 3.

The obtained dependences Iδ(q) lead to a con-
clusion that the largest non-uniformities in cluster 
distribution are observed in specimen 2, which cor-
responds to the case where small cluster agglom-
erates with uniform distribution of smaller units 
occure (Karasek et al. 1996). For specimens 1 and 3 

Figure 1. Upper part of one of the AFM images: 
h ≥ 0.5 hmax.

Figure 2. Example of picture obtained after cutting off  
the lower part of the image for h = 0.5 hmax.

Table 1. Materials.

No CB Volume fraction Binder

1 N220 0.2 NR
2 N330 0.2 SBR
3 N339 0.2 NR
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the cluster distribution is considered to be uniform 
with weakly pronounced heterogeneities.

Figure 4 gives distribution histograms for clus-
ter cross sections at h ≡ h*.

The histograms in Figure 4 show that more than 
90% of clusters have an area <1 μm2. However, 
there are also separate large-size objects of area 
4…6.5 μm2, which is compatible with the area of 
all small-size clusters. We suggest that the observed 
large-size clusters are parts of CB granules that 
have not been broken completely. The d istributions 
for A ≤ 0.5 μm2 are also given in Figure 4. For an 
accurate analysis of  the geometry of small clusters, 
the 3 × 3 μm images are used. Figure 4 also shows 
the contribution of cluster volumes, calculated 
using expression (2), to their observed total volume 
depending on their cross-section area. It follows 
from measurements that from 17 (material 1) to 
23% (material 2) of  the total volume fractions of 
fillers are large-size objects (A > 2 μm2).

The sizes and number of large-size clusters are 
important mixing-quality indices. The higher are 
these characteristics, the smaller is the filler area 
wetted by the polymer, and the stronger are the 
filler-filler interactions.

It is known that the CB generates fractal struc-
tures in the material (Herd et al. 1992). The perim-
eter Pk and the cross-section area Ak of  the k-th 
cluster are related by the fractal relationship:

P Ak p k
Dp= ( )μ ,

where μp is a constant, and Dp is the fractal dimen-
sion of the perimeter. The volume Vk and diameter 
dk of  the cluster are related as:

V dk m k
Dm= μ ,

where μ is a constant, and Dm is the mass fractal 
dimension. The cluster volume above h* is denoted 
by Vk. Diameter of the k-th cluster dk calculated 

as average distance between its geometrical centre 
and farthest point changing polar angle from 0 to 
2 π with step π/16. Figure 5 presents the obtained 
experimental values and lines approximating these 
values in logarithmic coordinates.

As shown in Figure 5, the dependences P(A) 
and d(V) within the entire size scale governed by 
fractal relationships. For primary aggregates Dp 
and Dm, the values 1.28 and 2.43 (N220), 1.28 
and 2.40 (N330), 1.30 and 2.40 (N339) (Herd et 
al. 1992) are valid. The corresponding values are 
supposed to be equal with accuracy to decimals. 
The same values have been obtained for specimens 
under study. Differences can be caused by many 
factors: agglomeration, binder layer, manufacture 
peculiarities, etc.

5 CONCLUSIONS

A method for analyzing filled rubber structures 
by AFM has been developed. Statistic treatments 

Figure 3. Morishita’s index.

Figure 4. Distribution of cluster cross sections and 
contribution of clusters with respective areas to the filler 
volume.
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of 10 × 10 and 3 × 3 μm images have been carried 
out for three filled rubbers (Table 1). The analysis 
of the cross-section of the relief  has indicated that 
the compactness reaches its minimum and volume 
fraction of clusters equal to the filler fraction at the 
height h* = 0.45…0.5 of the maximum height above 
the zero level. In the further analysis of the surface 
features, the value h* is taken to be a zero level.

The uniformity of cluster distribution in the 
material has been is evaluated using Morishita’s 
index. It is shown that the cluster distribution in 

materials 1 and 3 is almost uniform, while in 2 one 
can observe heterogeneities as agglomeration of 
small units. Examination of cross-sections reveals 
that more than 90% of clusters are relatively small 
(less than 2 μm2), and the rest of clusters of area 
reaching 6.4 μm2 (material 2) comprise 23% of the 
total filler volume fraction.

Cluster distribution and sizes are significant 
product-quality indices. The more non-uniform 
the cluster distribution is and the larger are the 
clusters themselves, the stronger is the filler-filler 
interaction, the more non-uniform is the stress 
field, and the greater is the amount of hysteresis 
losses under cyclic loading conditions. Under these 
aspects, the 2nd material has the worst mechanical 
characteristics.
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1 INTRODUCTION

Rubbers used in oilfield experience downhole oil 
well temperatures that can reach 180°C. Chemi-
cal behavior of those elastomers has been a very 
important focus of both chemical companies 
(DuPont, Lanxess, Solvay, etc) and end-users as 
Schlumberger. Their mechanical behavior at high 
temperature has been far less studied and under-
stood, even though the decrease of mechanical 
properties with temperature has been an important 
concern for oilfield end-users and particularly for 
Schlumberger.

Some industrial elastomers exhibit a drop in mod-
ulus of more than 50% when temperature increases 
from 20°C to 150°C. This decrease in modulus is 
highly dependent on the nature and the quantity of 
reinforcing fillers present in the elastomer.

The reinforcing effect of carbon blacks has been 
found to be dependent on the filler loading (Guth, 
1945) and the physical nature of the carbon black 
(Medalia, 1970). More specifically, it is highly cor-
related to the specific surface area of the filler 
(Göritz et al. 1999), (Göritz et al. 1999), the filler 
aggregate structure (Payne, 1962), ( Payne et al. 
1971), (Medalia, 1974), (Mele et al. 2002) and the 
filler structure and surface properties (Heckman, 
1964), (Dannenberg, 1986), (Göritz et al. 1999). 
The effect of interactions between rubber and 
filler, driving property changes in the polymer 
close to the rubber filler, has also largely been dis-
cussed, referring to “occluded rubber” and “bound 
rubber”. The occluded rubber is the immobilized 

Role of the interphase on reinforcement of filled rubbers: 
Influence of temperature, carbon black content and strain

A. Robisson & B. Chartier
Schlumberger, Cambridge, USA

ABSTRACT: We present a model that is able to describe the modulus of filled rubbers as a function 
of carbon black content, temperature and strain amplitude. In this model, the rubber is described as a 
composite of polymer, filler and the interphase between rubber and filler, the so-called bound rubber. The 
rubber is filled with N330 carbon black. The elastic modulus is measured using a dynamical mechanical 
analyzer (DMA). This modulus is measured at constant strain amplitude, sweeping temperature from 
35°C to 180°C. It is also measured at constant temperature, sweeping strain amplitude from 0.015% 
to 15%. The modulus dependence of the composite material to carbon black content is expressed using a 
Guth and Gold model. The strain influence is based on Maier and Göritz model. Finally, the temperature 
dependence is introduced by considering the effect of temperature on bound rubber through an Arrhenius 
equation.

rubber within aggregates. The bound rubber is 
the rubber modified (“immobilized” or “insolubi-
lized”) by vicinity of filler (Stickney et al. 1964), 
(Dessewffy, 1962), (Meissner, 1974), (Wolff  et al. 
1993). This bound rubber is weakly bonded to the 
filler surface by Van des Waals forces.

Temperatures considered here have little 
effect on carbon black itself, and theoretically 
little effect on the crosslinked polymer, but has a 
large effect on bound rubber properties (Dessewffy, 
1962). Strain also influences both the carbon black 
network structure and the properties of  the bound 
rubber (Maier et al. 1996).

This paper discusses the effect of temperature 
and strain amplitude on the filled rubber mechani-
cal properties. In the first section, we present the 
Dynamical Mechanical Analysis (DMA) results 
that characterize the reinforcing ability of carbon 
black as a function of carbon black content, strain 
and temperature. Section II describes classic mod-
els of reinforcement and discussion on their limi-
tation to predict our experimental results. In the 
last section, we propose a model of reinforcement 
that includes the effects of carbon black content, 
strain amplitude and temperature, and we discuss 
the limitations of the model.

2 EXPERIMENTAL

2.1 Material

The base polymer used in this study is a hydro-
genated nitrile butadiene rubber (HNBR). N330 
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carbon black is the reinforcing filler; its content 
varies between 0 phr (parts per hundred of rub-
ber, by weight) and 70 phr. The material also con-
tains plasticizer for processing and is sulfur cured. 
All ingredients besides filler content are constant. 
Summary of tested formulations is shown in Table 1. 
The glass transition temperature of the vulcanized 
material has been measured by Differential Scan-
ning Calorimetry and is equal to −26.5 ± 0.5ºC, 
independent of the carbon black content.

2.2 Coefficient of thermal expansion (CTE) 
measurements

Thermal coefficient was measured using a Thermo-
mechanical Analysis (TMA) testing setup (Q400 
from TA Instrument). Sample was measured in the 
sheet thickness section (thickness of 2 mm) and 
using a constant force of 0.01 N applied by a flat-
ended probe. The coefficient of thermal expansion 
is calculated by measuring the tangent of the sam-
ple expansion at a temperature of 100°C.

It displays non-linearity as a function of filler 
content as shown Figure 1.

2.3 Dynamic Mechanical Analysis (DMA) 
measurements

Uniaxial storage modulus E′ was measured under 
uniaxial tension, using Dynamic Mechanical 
Analysis (DMA) testing setup (Q800 from TA 
Instrument). A first set of experiments was run 
at constant strain amplitude (0.001   = 0.1%), at a 
constant frequency of 5 Hz, and sweeping tem-
perature between 35ºC and 180ºC. A second set 
of experiments investigated the so-called Payne 
effect 6. Strain sweep tests were run between 
0.0002 (0.02%) and 0.2 (20%) strain amplitude, at 
a  constant  frequency of 5 Hz. Four temperatures 
were investigated: 35ºC, 80ºC, 100ºC and 150ºC.

The modulus values are averaged over three 
cycles after four stabilization cycles (softening or 
“Mullins” effect can therefore be neglected). The 
error is estimated to be mainly due to dimension 
measurements and equal to   ± 5%. The storage 
modulus, as measured using the DMA, is the secant 
modulus measured through oscillation amplitude. 
In the linear domain (i.e. at very small strain), this 
modulus is equivalent to the tangent modulus. At 
larger strains (observed during the strain sweep 
experiments), the moduli differ.

Temperature Sweep Tests—Figure 2 shows the 
samples’ moduli plotted versus temperature. The 
unfilled rubber sample exhibits a quasi-constant 
modulus with temperature, around 3 MPa 
(E0 = 3 MPa in this study). Although rubber entro-
pic elasticity does predict an increase of the modulus 
with  temperature 20, we envision that the plasticiz-
ers present in those industrial compounds introduce 
an enthalpic effect that covers the entropic effect.

Filled rubber exhibit an increased modulus 
with increased carbon black content, as well as 
an important drop of modulus with temperature. 
For example, the sample with 0.28 volume fraction 

Figure 1. Coefficient of thermal expansion as a  function 
of carbon black volume fraction.

Figure 2. DMA experimental data’s—storage modulus (E′) 
as function of temperature–HNBR rubber filled with N330 
carbon black, ΦCB = 0, 0.05, 0.10, 0.16, 0.21, 0.25, 0.28.

Table 1. Carbon black content of HNBR-carbon black 
composite sample.

Sample name
Carbon black 
content (phr)

Carbon black 
 volume fraction 
(  ΦCB)

N330-0  0 0
N330-0.05 10 0.05
N330-0.10 20 0.10
N330-0.16 35 0.16
N330-0.21 50 0.21
N330-0.25 60 0.25
N330-0.28 70 0.28



479

carbon blacks exhibits a modulus drop from 
56 MPa at 35°C to 21 MPa at 180°C. The drop is 
also non-linear with temperature.

Strain Sweep Tests—Figure 3 shows moduli as a 
function of strain amplitude, for samples filled with 
0.21 carbon black volume fraction, at temperatures 
of 35°C, 80°C, 110°C and 150°C. The strain ampli-
tude is plot in logarithmic scale. The typical Payne 
effect is observed: The modulus is constant at very 
low strain, up to 0.1%, and then decreases. At 10% 
strain amplitude, the decrease has not stabilized yet, 
but it seems all temperature plots are converging. 
Curves are very similar for all other samples and are 
not displayed here. Figure 4 shows the modulus as 
a function of strain sweep for all samples, at a tem-
perature of 80°C. Not surprisingly, the Payne effect 
is not observed for unfilled sample and its effect 
increases for increasing carbon black content.

Figure 3. DMA experimental data’s—storage modulus 
(E′) as function of Double Strain Amplitude (DSA)—
HNBR rubber filled with 0.21 volume fraction N330 
 carbon black at four temperatures, T = 35°C, 80°C, 
110°C, 150°C.

Figure 4. DMA experimental data’s—storage Modulus 
(E′) as function of Double Strain Amplitude (DSA)—
HNBR rubber filled with different volume fractions of 
N330 carbon black at temperature T = 80°C,   ΦCB = 0, 
0.05, 0.10, 0.16, 0.21, 0.25, 0.28.

Figure 5. Uniaxial tensile tests to failure—room 
 temperature—HNBR rubber filled with different volume 
fractions of N330 carbon black.

Figure 6. Uniaxial tensile tests to failure—175°C—
HNBR rubber filled with different volume fractions of 
N330  carbon black.

2.4 Uniaxial tensile tests to failure

Dumbbell specimen were cut out of the rubber 
sheets and stretched until failure, following ASTM 
D412 Standard. Crosshead speed was 50 mm/min. 
Engineering strain was measured in the straight 
area of the sample using a video-extensometer. 
Engineering stress was measured using a load cell 
and the initial cross-section of the sample. Three 
tests were performed at each condition and repre-
sentative results are displayed here.

At room temperature, the elongation at break 
decreases and the tensile strength increases when the 
carbon black content increases, Figure 5. The rein-
forcing effect seems to plateau above 0.21 carbon 
black volume fraction. At 175°C, carbon blacks are 
favorable for both elongation at break and tensile 
strength, with an optimized composition around 
0.25 carbon black volume content, Figure 6.

Those test results will not be used to develop the 
constitutive equation but for qualitative comments.
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3 CLASSIC MODELS OF REINFORCEMENT

3.1 Reinforcement as a function of filler content

Reinforcement (R) is described in this paper as 
the ratio between the filled rubber uniaxial storage 
modulus (E′) and the unfilled rubber uniaxial stor-
age modulus (E′0).

R
E
E

=
′
′0

 (1)

Reinforcement has mainly been described in 
literature as a function of carbon black volume 
fraction (ΦCB). Guth and Gold used Smallwood-
Einstein developments on fluids filled with spheri-
cal particles to describe filled rubber reinforcement 
(R) as a function of carbon black content (ΦCB) 
(Guth et al. 1938):

R
E
E CB CB= = + +

′
′0

21 2 5 14 1. .Φ Φ  (2)

The first term of the equation (2.5ΦCB) is  linear 
and describes a hydrodynamic reinforcement. The 
second term on the series (14.1Φ 2CB) was intro-
duced by Guth and Gold to account for the inter-
actions between particles, or filler networking. The 
equation is still widely used today.

Guth observed that modulus of rubbers with 
carbon black concentration above 10% exhibited 
“accelerated stiffening”. He associated this effect 
with the formation of rodlike filler particles. He 
therefore suggested a modified equation taking 
into account a shape factor f.

R
E
E

f f= = + +
′
′0

1 0 67 1 62. . . .Φ ΦCB CB
2 2  (3)

Figure 7 illustrates both those models, as well 
as the previously shown experimental data’s, 
with yet another angle: The reinforcement is plot 
as a function of carbon black content. Experi-
ments clearly show that reinforcement varies non-
linearly with carbon black content, as predicted by 
Guth and Gold. Nevertheless, the original model 
 (Equation 2) greatly underestimates the modulus. 
Above 10% carbon black content, the shape fac-
tor, identified on the experimental data’s at 35°C 
(shape  factor = 11), improves the prediction but is 
still not satisfactorily. More importantly, the tem-
perature effect is not described.

3.2 Bound rubber and occluded rubber concepts

The Guth and Gold shape factor being unsuccessful 
to describe accurately the reinforcing effect of 
filler, bound rubber concept was introduced in 
the late 1930’s by Fielding (1937). Bound rubber 
results of an adsorption of the polymer chains on 
the filler surface. Those adsorbed polymeric chains 
have restricted mobility and the resulting phase is 
therefore stiffer than the “free” rubber (un-bound 
polymer composing the matrix). Bound rubber 
would then participate in the reinforcement.

The phenomenon was also described as a 
“salvation” (Guth, 1945): the rubber would bind 
on the carbon black particles, or as an “insolubili-
zation” (Meissner, 1974). Practically, bound rubber 
is the rubber portion that cannot be removed when 
the raw rubber is put in a good solvent. Authors 
mention several factors as the origin of this filler-
r ubber interaction: Adsorption effects (Van der 
Waals) or chemical process (reaction between 
r ubber and functional groups on the filler surface) 
(Stickney et al. 1964), (Wolff, 1996), (Dannenberg, 
1986), (Litvinov et al. 1999).

The bound rubber layer thickness was meas-
ured to be 4 to 8 nm for seventeen different carbon 
blacks using solvent methods (Wolff, 1993).

Meissner (1974) described the bound rub-
ber content (Φ  BR) as a function of carbon black 
content (  ΦCB) and other physical parameters, 
Equation (4):

Φ ΦBR CB
W

A

M P
N A

=
0

 (4)

where Mw is the weight average molecular weight 
of the polymer, P the specific surface area, NA the 
Avogadro number, A0 the filler surface area for 
reactive site (adjustable parameter).

In case of Mw = 300,000 g/mol, P = 78 m2/g and 
A0 = 104 as recommended by Meissner, the bound 
rubber content is calculated to be

Φ ΦBR CB= 0.39  (5)

Figure 7. Carbon black content dependence of rein-
forcement (R = E′/E′0) for HNBR rubber filled with 
N330 carbon black at different temperatures, T = 35°C, 
80°C, 110°C, 180°C—Experimental data’s and Guth and 
Gold model predictions.
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Medalia (1974) introduced the concept of 
“occluded rubber”. He defined the occluded 
rubber as a geometrical concept: It is the rubber 
trapped within the filler aggregates. This rubber is 
not contributing to the deformation, and therefore 
contributes to the rubber stiffening. Medalia pro-
poses an “effective” filler fraction (Φ  eff) as being 
the volumetric fraction which does not participate 
to the strain. In other terms, both the carbon black 
and the “occluded” rubber are infinitely stiff.

Φ Φeff CB=
(1 0.02139 )+ DBPA

1.46
 (6)

where DBPA is the dibutyl phthalate absorption 
(Oil Absorption Number, ASTM D241; gives 
information on the carbon black structure).

Wolff, Wang & Tan (1993) also used Equation (6) 
to describe the bound rubber content.

In the case of N330 Carbon Black, DBPA value 
is 102 cm3/(100 g) (Medalia, 1974), the volumet-
ric effective filler content (Φ  eff) or the volumetric 
bound rubber content (  ΦBR) are then

Φ Φ Φ Φeff CB BR CBor= =2.18 1.18
 (7)

Guth and Gold equation then becomes:

R
E
E eff eff= = + +

′
′0

21 2 5 14 1. . ,Φ Φ

with Φ Φ Φeff CB BR= +  (8)

If we assume that the Guth and Gold model is 
valid, we can use Equation 7 to identify the bound 
rubber content as a function of carbon black content, 
using experimental results from Figure 7. The posi-
tive root of the Guth and Gold quadratic equation is 
solved at every data point, i.e. for every carbon black 
content and for every temperature, using the experi-
mental reinforcement value. The calculated root is 
equal to the effective filler fraction, from which we 
calculate the bound rubber fraction. The bound rub-
ber fraction is then plotted as a function of carbon 
black content at four temperatures, see Figure 8.

The linear relationship proposed by Medalia 
(Equation 8) is plotted as well. Medalia’s equation 
largely underestimates the amount of bound rubber 
at 35ºC for carbon black volume fraction above 0.1. 
Also, it does not account for the non-linearity 
between bound rubber content and carbon black 
content, nor does it for temperature effect.

We should note that the highest bound rubber 
content, occurring for sample with 28% carbon 
black content at room temperature, is equal to 0.76, 
which is higher than the available rubber volume 
fraction equal to (1−0.28) = 0.72. The Guth and 
Gold equation does therefore slightly underestimate 

Figure 8. Bound rubber (BR) content as a function 
of carbon black content for HNBR rubber filled with 
N330 carbon black at different temperatures, T = 35°C, 
80°C, 110°C, 180°C—experimental data’s and Medalia 
prediction.

Figure 9. Raw filled rubber samples after 2 days in 
acetone (picture)-samples with carbon black volume 
fraction of 0.28 do not dissolve.

the reinforcing ability of the effective filler content 
but we consider this result as acceptable. Indeed, the 
prediction is consistent with observations that show 
that the sample containing 28% of carbon black 
content does not contain any free rubber matrix 
but only bound rubber. Figure 9 shows raw samples 
after two days exposure to acetone. Samples contain-
ing 21 and 25% of carbon blacks dissolve: the free-
rubber matrix dissolves and a suspension of carbon 
black fillers covered with bound rubber remains. 
The sample with 28% carbon blacks remains bulk, 
indicating that none of the rubber could dissolve 
(no free rubber) and therefore that the whole rubber 
fraction is bound rubber, or that the bound rubber 
phases are interconnected at large scale, as described 
in Leblanc (2002) extensive paper.

Also, from the volumetric bound rubber con-
tent identified from Guth and Gold equation 
(Figure 8), we can calculate the bound rubber shell 
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 thickness, assuming all bound rubber is due to chain 
adsorption on filler surface (no occluded rubber), 
a perfect dispersion of carbon black (bound rubber 
is all around the spherical filler, filler/filler contact 
surface area is negligible), and a monodisperse size 
distribution of carbon black particles. We make this 
calculation for effective filler fraction below 52% 
(fraction where the effective filler sphere diameter 
is equal to the matrix cubic cell edge), as above this 
value, interference between bound rubber spheres 
occurs. With these assumptions, the bound rubber 
would be a perfect uniform and stiff  shell around 
perfectly spherical stiff  filler. Those assumptions 
are far too simple but the goal is to give an order 
of magnitude of the rubber shell thickness.

First, carbon black filler radius is estimated. 
Knowing that N330 has a nitrogen surface area 
(NSA) of 78 m2/g (ASTM D1765) and assuming a 
density of 1.8 for carbon black, we can estimate a 
carbon black filler radius of 21.4 nm. The bound 
rubber thickness can then be estimated using 
bound rubber fraction. It is calculated using results 
from Figure 8 for every carbon black content and 
every temperature. Our results indicate shell thick-
ness varying between 1.5 and 8 nm depending on 
temperature and carbon black content. Those val-
ues are similar to the ones measured using solvent 
methods and NMR: 4–8 nm as measured by Wolff, 
Wang & Tan (1993) and in the order of nm as 
measured by Litvinov & Steeman (1999). We think 
our estimation might be underestimated, consid-
ering that the model assumes an infinitively stiff  
bound rubber (it does not participate in the strain), 
whereas the bound rubber is probably still compli-
ant. To reach the same values of reinforcement, the 
fraction of bond rubber would need to be higher 
and therefore the shell would be thicker. Indeed, the 
bound rubber shell is probably not in a glassy state, 
as no consistent change in glass transition tempera-
ture has been observed in all samples, measured by 
Differential Scanning Calorimetry (DSC).

3.3 Temperature influence on bound 
rubber content

Bound rubber fraction was measured in past studies 
by exposing uncured samples to a good solvent at 
different temperatures. The bound rubber content 
decreases when exposure temperature increases, 
and it was found to follow a Maxwell–Boltzmann 
distribution (Dessewffy, 1962), (Wolff  et al. 1993), 
(Göritz et al. 1999) as shown in  Equation (9). 
Physically, the bound rubber is resulting from 
equilibrium between absorption and desorption of 
polymer chains on carbon blacks and the process is 
thermally activated (Maier et al. 1996).

ln( )ΦBR E +
E

RT
= 0  (9)

where E0 is a constant and E is the adsorption 
energy, R is the gas constant, T is the temperature.

From measurements on carbon black filled 
natural rubber exposed to benzene between 20°C 
and 90°C, and from using Equation (9), Dessewffy 
(1962) calculated adsorption energies in the range 
of 7.5 and 17.6 kJ/mol (resp. 0.08 eV and 0.18 eV) 
depending on carbon black nature and con-
tent. Göritz, Raab & Fröhlich (1999) mentioned 
very similar values of 17.6 kJ/mol (0.18 eV) for 
SBR (styrene butadiene rubber) and 14.6 kJ/mol 
(0.15 eV) for NR (natural rubber).

Equation (9) was used to identify the two 
parameters E and E0 using Figure 7 data’s for a 
constant carbon black content of 0.28. Results are 
displayed Figure 10. The equation is able to cap-
ture the bound rubber drop. This bound rubber 
drop can therefore explain the modulus drop with 
increasing temperature.

3.4 Strain amplitude effect on reinforcement

Payne attributed the modulus drop with strain 
to the breakdown of the three dimensional agglom-
erates of carbon blacks (Payne, 1962). Maier and 
Göritz proposed a molecular interpretation of 
this effect (Maier et al. 1996). In their model, the 
number of polymer chains weakly bonded to the 
filler surface by Van des Waals forces participate 
to the shear modulus G′, and this equilibrium 
between adsorbed and desorbed chains depends 
on the shear strain   ϒ following Equation 10.

G N N
N

k TC St
0

B′ = + +
+

( ).I

c1 γ  (10)

where Nc is the density of chemically crosslinked 
chains, NSt the number of polymer chains tightly 

Figure 10. Bound rubber content (Φ  BR) as a function of 
temperature for HNBR rubber filled with N330 carbon 
black, Φ  CB = 0.28—experimental data’s and prediction 
using Dessewffy equation.
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bound to the active filler surface, independently 
of strain, NI0 the maximum number of possible 
adsorbed chains, c a constant, T the temperature 
and kB the Boltzman constant.

Maier and Göritz identified those param-
eters for different carbon black contents at every 
temperature.

4 PROPOSED MODEL TO PREDICT 
REINFORCEMENT AS A FUNCTION 
OF CARBON BLACK CONTENT, 
TEMPERATURE AND STRAIN

Temperature influence on rubber moduli is usu-
ally studied around the glass transition tempera-
ture (Tg), where a 3-orders of magnitude drop in 
modulus is observed. After Tg, i.e. on the rubbery 
plateau, pure rubbers (no filler, no plasticizer, no 
additives) have their modulus increasing linearly 
with temperature, due to entropic elasticity 20. This 
increase if  often neglected and the rubbery region 
is considered as a “plateau”, i.e. the modulus is 
constant with temperature. Current results confirm 
this result: Temperatures investigated have no effect 
on the unfilled rubber (Figure 2, curve N330 = 0).

However, filled rubbers studied here do not 
exhibit constant modulus with temperature 
 (Figure 2, curves N330 = 0.05 to 0.28). For exam-
ple, the sample filled with 0.28 carbon black con-
tent shows a 60% drop in storage modulus between 
35°C and 180°C.

Models described previously are not able to 
describe the drop in filled rubber moduli with 
temperature. We propose here to complement 
those models and introduce the bound rubber 
shell concept to predict the modulus drop with 
temperature.

The steps to build such a model include:

– Identification of the effective filler fraction using 
the Guth and Gold model

– Identification of the bound rubber fraction 
change with temperature using an Arrhenius 
equation

– Unification with Maier and Göritz model to 
build a model that predicts the effect of carbon 
black content, temperature and strain.

This work proposes a reinforcement model that 
is able to predict the elastic modulus of filled rub-
ber as a function of filler content, strain amplitude 
and temperature using bound rubber concept.

The bases of the model are the observations and 
hypothesis previously described:

1. The Guth and Gold model is valid
2. The bound rubber is infinitively stiff  when com-

pared to matrix rubber

3. The bound rubber varies non-linearly with 
carbon black content (Figure 6)

4. The bound rubber content decreases with tem-
perature and follows an Arrhenius equation

5. Maier and Göritz description of weakly bonded 
chains and their dependence on strain ampli-
tude is valid
Those assumptions translate into equations 11 

to 15

1. R = + +1 2 5 14 1. .Φ Φeff eff
2  (11)

2. Φ Φ Φeff CB BR= +  (12)

3.  Φ Φ Φ ΦBR CB CB CBA B( ) .( . )= +o o , (13)

at constant temperature
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Finally, the model we propose is
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where ε   is the strain amplitude, A0, B0 and c con-
stants, E the adsorption energy, R the gas constant 
(8.31 J  K−1.  mol−1) and T the temperature (K).

A0, B0, c and E are the four parameters to identify. 
Those parameters were identified using a  Matlab 
routine for all strain sweep tests, where strain ampli-
tude was swept between 0.0002 and 0.2, at a con-
stant frequency of 5 Hz, and at four investigated 
temperatures: 35ºC, 80ºC, 100ºC and 150ºC.

Table 2 shows the four identified parameters. 
Figures 11 to 14 show the experimental results and 
numerical results from identification, at tempera-
ture respectively of 35ºC, 80ºC, 110ºC, 150ºC.

The identified adsorption energy is close to 
the values identified by Dessewffy and Göritz 
Raab & Fröhlich using solvent desorption, and 
are within the range of Van des Waals interac-
tions. Note that activation energies related to glass 
transition are much higher than values mentioned 
here. For example, Cerveny, Ghilarducci, Salva & 
M arzocca (2000) calculated the activation energy 

Table 2. Fitted parameters on proposed model—data 
are identified from strain sweep tetss (Fig. 4 and 5).

E (kJ/mol) A0 B0 c

8.43 0.0167 0.308 62.6
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Figure 11. Model identification result-T = 35°C—dotted 
lines are experimental data’s, dashed lines result from numer-
ical simulation.

Figure 12. Model identification result-T = 80°C—dotted 
lines are experimental data’s, dashed lines result from numer-
ical simulation.

Figure 13. Model identification result-T = 110°C—dotted 
lines are experimental data’s, dashed lines result from numer-
ical simulation.

Figure 14. Model identification result-T = 150°C—dotted 
lines are experimental data’s, dashed lines result from numer-
ical simulation.

for the glass transition of an SBR (styrene butadi-
ene rubber) and found a value of 294 kJ/mol. This 
corroborates the assumption that most part of 
bound/adsorbed rubber has restricted mobility 
but is not in a glassy state. This was discussed by 
R obertson, Lin, Rackaitis & Roland (2008) and 
was confirmed here by DSC results.

Figures 15 and 16 display the results given by 
the above model on temperature sweep tests using 
parameters identified on strain sweep tests. The 
curves show very good agreement between model 
prediction and experimental data’s.

In conclusion of this paragraph, we consider, 
in this simple empirical model, a uniform bound 
rubber layer around filler which thickness varies 
with strain and temperature. This bound rubber 
phase exhibits a higher modulus (or slower relaxa-
tion times) because adsorption prevents molecular 
mobility, and the adsorbed chains composing the    
interphase experience desorption when  temperature 

Figure 15. Model validation–dotted lines are experi-
mental data’s, dashed lines result from numerical 
simulation.
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(2,000 s) for the polymer/polymer relaxation time. 
They measured a thickness of the adsorbed layer 
in the swollen hydrogel around 15–20 nm depend-
ing on the filler type and above a critical concen-
tration of polymer in water.

From DMA tests, they also conclude that the tan 
δ is highly dependent on the filler/polymer inter-
action and related to the adsorption/d esorption 
process of chains around particles.

5.2 Static strain or static stress effect 
on reinforcement

The role played by adsorbed rubber chains onto 
filler surface has been discussed by Maier and 
Göritz. To our knowledge, this is the only micro-
mechanical model describing the Payne effect in an 
accurate manner. In their model, both strain ampli-
tude and temperature change the chain adsorption/
desorption equilibrium towards more desorption 
and are therefore both qualitatively equivalent: 
they reduce the physical crosslink density.

Göritz, Raab & Fröhlich (1999) also show that 
the static strain has no effect on the Payne effect: 
the storage moduli are superposed for pre-strain 
varying from 0 to 8.6%.

In order to qualitatively differentiate the strain 
amplitude effect, from the static strain or stress 
effect and from the temperature effect, we con-
ducted several DMA experiments, in addition to 
the series presented earlier in the paper: (1) strain 
sweep tests with preloads of 5 N and 10 N, (2) time 
sweep test on a sample swollen in acetone and dry-
ing during the test. Figures 17 and 18 gather those 
results combined with results previously described, 
displaying respectively storage modulus E′ and 
tan δ. The strain on the x-axis is the maximum 
strain seen by the sample. It is the addition of 
the static strain due to pre-loading, temperature, 

Figure 16. Model validation—dotted lines are experi-
mental data’s, dashed lines result from numerical 
simulation.

increases. The quality of the prediction seems to 
confirm that the modulus drop with increasing 
temperature can be explained by the disappearance 
(or transition) of this stiffer phase (bound rubber) 
in polymer. We should also note that the activa-
tion energy of desorption is at least one order of 
magnitude lower that the activation energy of glass 
transition. Therefore, the adsorbed layer observed 
here is mostly still elastomeric and not glassy.

5 DISCUSSION

The model empirically takes into account carbon 
black content, temperature and strain amplitude. 
It does not consider the effect of static strain or 
stress that can be superposed to a strain amplitude, 
and that arises from swelling, thermal expansion or 
mechanical pre-loading.

This effect has largely been discussed, beginning 
with Payne (1962) himself. The following para-
graphs discuss the effects of particle agglomeration 
and static loading, considering particle/particle 
and particle/matrix interactions.

5.1 Particle agglomeration effect on reinforcement

Numerous papers discuss about the particle/ 
particle versus particle/polymer interaction. It 
has been historically difficult to de-correlate 
those effects as particle dispersion is very diffi-
cult to achieve in polymer and rubber compound. 
Recently, Yanagioka, Toney & Frank (2009) could 
compare ordered silica hydrogel with random silica 
hydrogel using the polymerized crystalline colloidal 
array (PCCA) developed by Asher, Holtz, Liu & 
Wu, (1994). They determined three typical relaxa-
tion behaviors: short time (≈0.5 s) for the particle/ 
particle relaxation time, medium time (≈10 s) for 
the polymer/filler relaxation time and long time 

Figure 17. DMA experimental data’s—storage modu-
lus (E′) as a function of total strain—HNBR rubber 
filled with 0.28 volume fraction N330 carbon black.
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or swelling, and the cyclic strain amplitude. The 
moduli are pre-treated by the TA Instruments soft-
ware: the elastic modulus is calculated from the 
stress and strain amplitude; the tan δ is calculated 
from the phase angle between stress and strain.

Storage modulus results show a strong corre-
lation between the elastic modulus and the total 
strain in three cases: the 30°C strain sweep test, 
the 150°C strain sweep and the temperature sweep 
test. On the other hand, when a static load is super-
imposed to the cyclic strain, the storage moduli 
diverges and there is no good correlation with the 
total strain. Also, during solvent drying, a large 
increase of elastic modulus is observed as well.

The tan δ results are more difficult to conclude 
from as the strain amplitude varies from one point 
to another. Two data point can be compared though: 
they are shown on Figure 18. At those points, both 
samples are approximately being at the same state 
of strain: sample A (30°C) is at 11.6% static strain 
(due to pre-loading) and 2.4% cyclic strain ampli-
tude; sample B (150°C) is at 8% static strain (due 
to thermal expansion) and 2.4% cyclic strain ampli-
tude. The filler networks ion A and B should there-
fore be at a comparable state of aggregation. At 
those particular points, sample A exhibits an elas-
tic modulus of 16 MPa and sample B of 12 MPa. 
Those values are comparable. On the other hand, 
the tan δ values are respectively 0.32 and 0.14. The 
sample tested at 30°C is therefore twice as much dis-
sipative. From this we conclude that the dissipation 
is not related to a network cyclic breakdown and 
re-aggregation of filler/filler bonds but to an 
adsorption/desorption phenomenon of chains on 
the filler surface, as described by Maier and Göritz.

The same conclusion seems to arise from the 
CTE measures. At 100°C, the filler network is 
disrupted. The non-linearity with carbon black 
content therefore tends to show that the adsorbed 

layer of polymer does exist and restricts the 
thermal expansion.

Along the same lines, tensile test to failure also 
show a very important effect of temperature on 
elongation at break and tensile strength. At room 
temperature, carbon black content increase goes 
along with a decrease in elongation at break and an 
increase in tensile strength. That can be explained by 
adsorbed chains on the filler surface that are not going 
through a desorption process despite the important 
strain. However, at 175°C, both elongation at break 
and tensile strength increase with carbon black con-
tent. At those temperature, more chains are under-
going desorption but still need to disentangle from 
adsorbed chains, increasing the overall elongation at 
break. Fukahori (2007) describe his interesting view 
on the role of filler in rubber failure.

6 CONCLUSION

Experimental data’s presented in this paper underline 
a dependence of filled rubber moduli to filler con-
tent, strain amplitude and temperature. Elastic mod-
uli increase with carbon black content, and decrease 
with strain amplitude and temperature. The last two 
effects can be related to the interphase that forms 
between the rubber and the filler, also called bound 
rubber, i.e. the layer of rubber with restricted mobil-
ity (adsorbed) on the filler surface. In this paper, the 
modulus of filled elastomers is therefore described 
using the three composite components: the polymer, 
the filler and the bound rubber.

The model we propose is based on a Guth and 
Gold model that fits the modulus changes with 
filler content and a Maier and Göritz model that 
accounts for the strain dependence. The tempera-
ture dependence follows an Arrhenius equation 
that applies on the bound rubber phase.

The model requires identification of four param-
eters and is able to quantitatively describe the elas-
tic modulus of the rubber composite as a function 
of carbon black content, strain and temperature.

The model does not take into account the static 
strain effect and could be improved by considering 
not only the adsorbed polymer on filler surface but 
also the networking of such entities.

This work also emphasizes the importance of 
controlling the interface and interphase between 
the polymer and the rubber, especially when the 
composite rubber is used at high temperature.
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1 INTRODUCTION

Earlier experimental studies of the quasi-static 
mechanical behavior of filled rubberlike materials 
demonstrated significant softening in each load-
ing cycle. The softening has the highest value in 
the first cycle which is referred to as Mullins effect 
and reduces in the subsequent cycles till it reaches 
a stabilized value generally related to hysteresis. 
According to the experimental results, stress sof-
tening at the same strain level decisively depends 
on the filler concentration in the rubber network 
(see e.g. Rault, 2006). In unfilled elastomers, sof-
tening is negligible but becomes very pronounced 
in rubbers with a high filler concentration.

The influence of  the filler network on the 
Mullins effect has been studied in detail by many 
authors (see e.g. Dargazany & Itskov, 2009), but 
so far the influence of  the filler network on the 
hysteresis is not sufficiently understood.

From the micro-mechanical point of view, in 
order to obtain a proper prediction of the mechani-
cal response of the filler network, both the mechani-
cal behavior of a single aggregate and interaggregate 
interactions should be taken into account.

The elastic modulus of the aggregates depends 
sensitively on their geometry, deformation history 
and moreover, on the nature and the strength of 
the interparticle interactions. The attractive forces 
between colloidal particles are the main reason for 
the formation of aggregated structures. The nature 

Non-linear elastic behavior of carbon black filler aggregates 
in rubber-like elastomers

Roozbeh Dargazany & Mikhail Itskov
Department of Continuum Mechanics, RWTH Aachen University, Germany

ABSTRACT: Mechanical properties of filled rubbers depend to a large extend on the behavior of 
carbon black aggregates inside them. In turn, the density and distribution of the aggregates is influenced 
by the aggregation process while their elastic modulus is determined by the nature and strength of the 
interparticle interaction. Moreover, the initial topology and its deformation induced evolution play an 
important role. In this contribution, a micro-mechanical model is proposed which describes the non-
linear behavior of aggregated structures at large strains. To this end, the directional stress paths inside 
the aggregates are simulated by a backbone chain model. In contrast to previous works, the topology of 
the backbone chain during deformation is described by angular distribution pattern of chain segments. 
Extending the Kantor-Webman model, angular averaging concept is proposed which predicts the defor-
mation induced evolution in the aggregate geometry. This concept enables to express the elastic modulus 
of the aggregate in terms of central and non-central inter-particle forces. The model predictions are in 
accord with the broad range of experimental observations.

of interparticle bonds of carbon black (CB) fillers 
in polymers is still not quite clear, but it can result 
from entropic depletion forces (W.C.K. Poon, 
2002) or van der Waals forces (Derjaguin, 1989). 
Due to the strong attractive interactions between 
particles, an aggregate can form even at very low 
particle fractions.

Generally, aggregates appear in complex geomet-
rical structures and are identified by three param-
eters: aggregate correlation length ζ  generally 
known as aggregate length, the fractal dimension 
df and the particle diameter l (see Fig. 2). Aggre-
gates are considered to be fractal on length scales 
up to ζ. The fractal dimension df is smaller than 
the Euclidean dimension d. This implies a volume-
filling structure which means that as the aggregate 
size increases, its density reduces. The values of 
the fractal dimension df for different aggregation 
mechanisms are well established from experimen-
tal observations (see e.g. Herd et al., 1992).

With a yet further increase in the filler concentra-
tion, the particulate aggregates start to touch each 
other, thereby forming an electrically conductive 
body in the polymer matrix. Such a concentration 
range is known as the “percolation threshold”.

The elasticity of aggregates is inherently much 
more complex than the geometry of them, but 
it can also be understood within statistical mechan-
ics framework. In order to describe the mechanical 
behavior of filler networks, a number of approa-
ches based on percolation theory are developed 
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(see e.g. Rueb et al., 1999) which do not consider 
the fractality of the particle structures.

A generic observation on mechanical behavior 
of aggregates confirms the appearance of appar-
ent power law dependences of the elastic modulus 
and yield stress on the interparticle forces and cor-
relation lengths. Thus, the mechanical behavior of 
fractal aggregates at small deformation regimes 
was described by scaling power law approaches 
(see e.g. De Rooij et al., 1994), in which a phenom-
enological formula is fitted to a set of experimental 
results.

Our goal in this study is to develop an analytical 
model which can explain and accurately simulate 
the nonlinear behavior of a single aggregate. An 
outline of this contribution is schematically shown 
in Figure 1. In order to simulate the mechanical 
response of filler network inside the rubber, the 
behavior of a single aggregate should necessarily 
be understood. To this end, the concept of back-
bone chain (BB chain) is further developed and 
implemented. In order to model a backbone chain, 
it suffices to determine the deformation dependent 
elastic modulus of it Kζ. The influence of geom-
etry on Kζ is described by two geometric param-
eters, relative normal length L⊥ and relative parallel 
length L||. Thus, one can write

Kζ = K(L⊥, L||), (1)

where deformation induced changes of L⊥, L|| are 
taken into account by expressing these values in 
terms of the averaged bond correlations. These aver-
aged coefficients can be obtained by means of exact 
angular distribution discussed in the following.

2 PRINCIPLES AND ASSUMPTIONS

A backbone is a single chain of particles through 
which an external stress is transmitted. The path 
and shape of  this chain is highly dependent on 
the aggregation process and load direction. In 

Figure 2, an aggregate subjected to load F at two 
points and the stress transmission path inside the 
sample are depicted. This path is considered as 
a BB chain which transmits the main portion of 
load. The rest of the aggregate is supposed to be 
stress-free. In the following, we assume that BB 
chains are formed for all aggregate sizes ζ and at 
any stressed state.

The bonds between particles within a BB chain 
are simulated by elastic elements with a spring con-
stant Q and an averaged bending-rotational stiff-
ness G  (see Fig. 3). The latter constant takes into 
account different kinds of angular deformation 
(Lin & Lee, 1996; Klüppel, 2003).

Our model is based on the following assumptions:

1. All particles in one chain have the same mass 
and diameter l.

2. In the virgin state, adjacent particles are assumed 
to be placed close to each other, thus the distance 
between their centers can be approximated by l.

3. In the deformed state, the average distance 
between centers of adjacent particles (bond

 length) is denoted by l .  Note that in the case of
 uniaxial tension l l> .
4. In aggregates with the same values of ζ, df and l, 

BB chains can form with different conformations, 
where the term conformation denotes a unique 
configuration of particle locations. Thus, the chain 
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Figure 1. Flowchart of the mathematical approach, rounded rectangles are the deformation dependent coefficients 
and sharp cornered rectangles are constant coefficients.

l

F
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F

Figure 2. Schematic view of an aggregate subjected to 
force and the resulting BB chain.
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conformation used in the further calculations, is 
the average of all possible configurations.

5. The chain center of gravity is located on the 
reflection plane of two ends of the chain 
denoted by P in Figure 3.

Let bi (i = 1, 2,…, N ) be vectors connecting the 
centers of adjacent particles of a BB chain. The 
chain is subjected to a force F at its two ends as 
shown in Figure 3. Then, a vector ri connecting the 
first particle with the ith particle is expressed by

r bi j=
=

∑ .
j 1

i
 (2)

Thus, the chain end-to-end distance can be 
written as

||rN|| = ||L||. (3)

Note that the parameters ζ and L represent the 
BB chain end-to-end distance in the virgin and 
deformed state, respectively. Thus, in the virgin 
state, it holds ||rN|| = ||L|| = ζ. The number of par-
ticles N in a BB chain is related to its end-to-end 
distance by 

N
l

db

= ⎛
⎝⎜

⎞
⎠⎟

ζ ,  (4)

where the exponent db is called the bond dimension 
and has a lower bound of 1 to provide a closed 
path. An upperbound to db is given by min [df , 5/3], 
where the value of 5/3 corresponds to the dimen-
sion of chains simulated by self-avoiding walk 
(SAW).

2.1 Deformation states

In view of eq. (4), the contour length of a BB 
chain denoted by LC is expected to scale with its 
end-to-end distance by

L Nl
N l

vdC
db

v

=
⇒ =

=

∼ ζ
ζ 1, (5)

where ν is an universal exponent. Eq. (5) just 
holds for the stress-free state after production 
denoted here as mechanically initial state (MIS). 
The bond dimension and some other geometrical 
properties of aggregates at MIS have been well 
studied in numerous experimental observations 
(i.e.  Dinsmore & Weitz, 2002).

For a BB chain in MIS, db lies between 1.2 to 1.35 
(Fixman, 1962), and so the value of ν is about 0.83 
which results from the correlations of orientations 
between near-neighbor particles along the chain.

In polymer models, one can assume a very ide-
alized case where there is no correlation between 
the bond angles, which is generally referred to as 
unperturbed state. The value of d in unperturbed 
state is 2, which is specific for highly coiled chains.

Now, let us assume that the BB chains in MIS 
has some residual stretch inside and have already 
been elongated from unperturbed state. Thus, an 
initial unperturbed state (IIS) for all BB chains is 
imagined in which the spatial distribution of bonds 
along the chains is homogeneous, and the angular 
probability distributions have a constant value. IIS 
will further be used in order to formulate a bound-
ary condition for differential equations governing 
the geometrical changes of the aggregate structure.

Considering that in transition from IIS to MIS, 
the major changes of the chain topology is due to 
the bond rotations rather than bond stretching, 
one can assume that the bond lengths remain con-
stant in this transition.

In view of eq. (5), one obtains the end-to-end 
distance of a BB chain as

L Nl N lv
0
2 2 2 2 2= =, ζ  (6)

in IIS and MIS, respectively. Thus, the amount 
of residual stretch required for transition of a BB 
chain from IIS to MIS can be expressed by

λres
v

L
N= =

−ζ
0

1
2 .  (7)

Now, let us denote the micro-mechanical stretch 
applied on the virgin sample by λζ (see Fig. 4). 

LL0

res

IIS MIS Deformed state

Figure 4. Conceptual representation of the deforma-
tion states and corresponding stretches.

l̄

l

P

Figure 3. A BB chain with N bonds and a symbolic 
representation of interparticle forces.
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Then with λres at hand, a pseudo stretch λ is 
introduced by the following identity

λ λ λ= =res
L
Lζ

0
.  (8)

2.2 Affine deformation condition

The end-to-end length of a BB chain is written by

L bi=
=
∑ .
i

N

1
 (9)

Then, L = ||L|| results from

L

Nl l

i

N

j

N

i

N

j i

N

i

N

2

1 1

1 11

1

2

2

2

= ⋅

= ⋅ + ⋅

= +

= =

= = +=

−

−

∑ ∑

∑ ∑∑

b b

b b b b

i j

i i i j

−−

= +=

−

∑∑2

11

1
cos( ),φij

j i

N

i

N
 

(10)

where φij is the angle between two bond vectors of 
the chain bi and bj. To obtain the accurate result, 
the term cos(φij) should be evaluated. Consider-
ing the current chain geometry as an averaged 
conformation, one can write the mean square 
end-to-end length 〈 〉L2  as

〈 〉 = ⋅ + 〈 〉
=

−

= +=

−

∑ ∑∑L l
i

N

j i

N

i

N
2

1

2

11

1
2b bi i cos( ) ,φ  (11)

where 〈 〉cos( )φ  is interpreted as an ensemble aver-
age of cos(φij) over all segments of the BB chains 
distributed in the three dimensional space.

The ensemble average of an arbitrary function 
F(φ) is calculated by

〈 〉 = ∫F F P
g

d( ) ( ) ( , ) ,φ φ φ φ φ
π

0

λ) sin(  (12)

where g stands for a normalization factor and 
P(φ,λ) represents the angular distribution function.

In view of eq. (12), when the BB chain is in the 
unperturbed state

〈 〉 =cos( ) ,φ 0  (13)

due to the fact that all bond directions are equally 
probable. In addition, in the case of a fully 
stretched chain

〈 〉 =cos( ) .φ 1  (14)

Further, L2 α N when bonds are uncorrelated, 
and L2 α N2 when bonds are perfectly correlated. 
Thus, a partial correlation between bonds can be 

assumed which leads to a dependence of L2 on 
N in form of a power function with the exponent 
between 1 and 2.

For illustration, we consider a model in which 
bonds have a weak angular correlation just between 
first neighbors. In this case, 〈 ⋅ 〉 = 〈 〉+b bi i l1

2 cos( ) ,φ
where 〈 〉cos( )φ  is a positive constant. There are 
no correlations beyond the first neighbors so that 
〈 ⋅ 〉 = − ≥b bi j 0 2if i j . Hence, for large N, one 
can deduce from eq. (11) that

〈 〉 = + =− − −L l N l Nb C NlN
2 2 2 22 ,  (15)

where b = 〈 〉cos( )φ  and the multiplicative coeffi-
cient CN is called the characteristic ratio.

In order to obtain the end-to-end distance of a 
BB chain, two different methods can be applied. 
First method is based on angular correlations and 
directional distributions of bonds. The resulting 
value is denoted by Lm and is calculated by

〈 〉 = + −( ) = ⋅− −
L Nl N b C Nlm N m

2 2 21 1( )  (16)

In the second method, we obtain the chain 
end-to-end distance by means of chain initial 
length and deformation history. The resulting 
value is specified by LM and is calculated by

〈 〉 = = ⋅
−

L Nl C NlM NM

2 2 2
λ2  (17)

Bearing in mind that LM = Lm, we get by virtue 
of eqs. (16) and (17)

λ2

2

1 1=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ −( )⋅
−
l
l

N b( )  (18)

Thus in view of eq. (12), the probability func-
tion should be defined in a way that it satisfies 
eqs. (13), (14) and (18).

3 ANGULAR DISTRIBUTION FUNCTION

The concept of angular averaging is based on the 
replacement of bond correlations by their averaged 
values which are calculated by the distribution 
function of bond angles. Let us suppose that the 
angular distribution of bonds in a BB chain can be 
described by the von Mises density function. This 
function with respect to angle x is written as

f x V
e

I V

V x
( | , )

( )
,

cos( )
μ

μ
=

−

2 0π
 (19)

where I0 (V ) is the modified Bessel function of the 
order 0. Furthermore, the measure of location μ 
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and the concentration measure V are both func-
tions of λ and N.

In the case of uniaxial tension, the maximum of 
the distribution is always located at x = 0, so that

μ (λ, N ) = 0. (20)

Normalizing the distribution function to the 
range of availability of the angle φ which is [0..π] 
we obtain

P(φ,λ) = 2f (φ |0, V ). (21)
Expanding eq. (18) gives

λ λ
π

2 =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ −
⎛

⎝
⎜

⎞

⎠
⎟ ⋅

−

∫l
l

N P
g

d

2

0

1 1 2
2

( ) ( , ) sin( )φ φ φ  (22)

The distribution function P(φ, λ) is uniform at 
unperturbed state. Thus, we can write

P x( , ) .1 1
=

π
 (23)

Furthermore, all the bond angles in a fully 
stretched chain are 0. Hence, the distribution func-
tion is only non-zero at the angle 0 which yields

P x N x( , ) ( | ).= δ 0  (24)

Now, it remains to find a concentration meausre 
V(λ, N ) for the distribution function P(x, N ) 
such that it satisfies the affine motion constraint 
(22) and the boundary conditions represented by 
eqs. (23) and (24).

In view of eq. (18), finding an analytical solu-
tion for V is not tractable. Thus, we begin with the 
evaluation of V by minimizing the functional given 
in terms of the residual error. Regarding the con-
straint of affine deformation (18), a residual error 
R can be defined as

R C CN NM m
= − ⋅  (25)

With the aid of eqs. (12), (19) and (21), one can 
represent the residual error by

R l
l

N
g I V

e dV=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−( ) + −
−

⋅∫
2

0 0

21
2

2 1
π

λ
π

( )
sin( )cos( )φ φ φ (26)

Furthermore, the square error functional is 
given by

∏ λ= ∫∫ R d dN
NNmax

2

11

,  (27)

where Nmax is the maximum available size of the 
aggregate inside the network. In order to obtain 
V, the boundary conditions (23) and (24) are 
rewritten as 

V(1, N ) = 0, V(λf , N ) = ∞. (28)

We require stationarity of functional (26) over a 
special range of functions V̂  given by

1ˆ = ( , ),
1 i i

iN

V V a N Nλ≈ λ
− ∑  (29)

where the trial functions Ni are defined by

N N
Ni

i

i
(

( )
.λ

λ, ) = ( 1)−
−

α

β1
 (30)

In this contribution, the function V is approxi-
mated by the first two terms of eq. (29). To this end, 
the square error function (27) is minimized with 
respect to variables ai, αi and βi(i = 1, 2) by means of 
the Levenberg-Marquardt algorithm. For example, 
we consider aggregates with the mean size of 100 nm. 
The so-obtaine d variables of the representations 
(29) and (30) are given in Table 1. The micro and 
exact end-to-end lengths of the BB chain obtained 
on the basis of eqs. (16) and (17), respectively, are 
plotted and compared in Figure 6. Accordingly, the 
predicted lengths Lm for different aggregate sizes fit 
well with the exact deformed lengths LM as far as the 
BB chains are not fully stretched.

In the vicinity of the fully stretched state, the 
deviations become stronger and more terms of 
the series (29) have to be considered. However, BB 
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Table 1. Parameters of the representations (29) and (30).

a1 α1 β1 a2 α2 β2

1.028 1.001 0.574 0.306 0.585 1.787
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chains are ruptured far before reaching their fully 
stretched state.

By means of P(φ, λ), the average values of L⊥, L|| 
in each state of deformation are obtained by 
calculating 〈 〉 〈 〉⊥L L, ||  using eq. (12). Then, by 
inserting 〈 〉 〈 〉⊥L L, ||  into eq. (1), we obtain the 
nonlinear elasticity modulus. Taking the initial 
geometry of the BB chain into account, we can 
further predict the mechanical behavior of the 
BB chain which is supposed to be identical to the 
mechanical behavior of the whole aggregate.
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1 INTRODUCTION

1.1 General

The Filler-reinforced vulcanized rubber and its 
blends are frequently-used for engineering applica-
tions, e.g. tires, base isolation bearings, air springs, 
acoustic coatings, tunnel linings for over a century 
(cf. Morawetz 2000, Amin et al. 2002, 2006). To 
shape the geometry of these products, geomet-
ric nonlinearities need to be considered together 
with the mechanical properties. The application 
of a numerical procedure which considers an ade-
quate constitutive model founded on nonlinear 
continuum mechanics and the principles of ther-
modynamics (c.f. Haupt 2000) can bring realistic 
sophistication to a computer aided design and 
manufacturing process.

The mechanical behavior of filler-reinforced 
rubber originates from a network of macromol-
ecules containing chemical and physical crosslinks, 
entanglements and filler particles. The macro-
molecular network of filler-reinforced rubber 
exhibits rate-dependent behavior, hysteresis and 

Temperature dependence of Mullins softening-healing 
phenomena: An outline for theoretical description 
based on experiments

A.F.M.S. Amin
Civil Engineering Department, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

A. Lion
Institute of Mechanics, Faculty of Aerospace Engineering, University of Federal Armed Forces Munich, 
Neubiberg, Germany

ABSTRACT: The influence of the temperature on the Mullins softening effect and its recovery 
behavior (known as the healing phenomena) is experimentally investigated using a rubber blend. To study 
the influence of low temperatures and large deformations on the Mullins effect, cyclic strain-c ontrolled 
processes are applied under different temperatures. Experimental results show that low temperature 
increases both the hysteresis properties and the Mullins effect. The softened specimens are then sub-
jected to a sequence of heating, cooling and conditioning processes in order to study the influence of 
the temperature on healing phenomena. The results indicate the existence of a threshold temperature: if  
the specimen temperature is larger than this threshold, a nearly complete recovery of the material occurs 
within finite time, while any temperature below this limit will be too small for healing. In order to take 
the temperature dependences of softening-healing effects and their reversibility into account, the paper 
attempts to outline a thermodynamically consistent theoretical framework to describe these experimen-
tally observed phenomena. In order to preserve the reversible character of the softening effect, fraction of 
free energy that is dissipated during softening process are described as a function of both temperature and 
an internal variable. Subsequent derivations lead to the constitutive relations in integral form.

energy dissipation during monotonic and cyclic 
deformations. Therefore, the stress response of this 
material depends strongly on the applied deforma-
tion history (Treloar 1973). Lion (1996, 1997a,b) 
provided experiments and a constitutive model 
which also consider the temperature. On the other 
hand, macromolecular networks can change their 
microstructure at temperatures much higher than 
cryogenic temperatures (200 K). Such processes 
are possible in two different ways: 1) the healing 
of Mullins effect (c.f. Bueche 1961 and Figure 1) 
and 2) the crystallization process (c.f. Wood and 
Roth 1944; Wood and Bekkedahl 1946; Gent 1954; 
Stevenson 1983; Gent and Zhang 2001; Fuller et al. 
2004). Both the temperature and the deformation 
history are the determining factors for the dura-
tion needed to complete these changes. The time-, 
temperature- and deformation-dependent changes 
in the macromolecular network, however, influ-
ence the mechanical material behavior of rubber. 
Thus, there exists an obvious necessity to extend 
the experimental knowledgebase of the material 
over the practical deformation and temperature 
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ranges such that motivations for founding more 
general constitutive models can be obtained. This 
paper examines temperature history dependence 
of Mullins softening-healing phenomena through 
experiments and outlines a theory to narrate the 
experimental facts.

2 EXPERIMENTS

2.1 Experimental scheme

We study the thermomechanical behavior of a 
NR/BR blend. The specimens are tested under 

tension to understand the effect of the temperature 
on the mechanical behavior of the blend. In this 
course, we apply a specified deformation history 
(Figure 2) on a virgin specimen at a reference tem-
perature and reapply the same deformation history 
at that reference temperature for a few more times, 
but also after subjecting the specimens to various 
temperature histories. By this sequence of events, 
an insight into the thermorheological processes 
which occur in the material can be obtained. In this 
way, the temperature history dependences of the 
Mullins effect and its healing are investigated under 
five reference temperatures (Table 1).

2.2 Temperature dependence of Mullins effect

Figure 4a shows the effect of the specimen tem-
perature on the first loading cycles (Cycle 1, 3, 
5, 7; Fig. 3), while Fig. 4b shows the same effect 
observed in the second loading cycles (Cycle 2, 
4, 6, 8; Fig. 3). The stress amplitudes recorded in 
the second loading cycles (Fig. 4b) are lesser than 
those in the first cycles (Fig. 4a). These reductions 
can be interpreted as the Mullins effect. However, 
it should be noted that a specimen at a lower tem-
perature may contain a larger crystallinity and a 
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Figure 1. Mullins effect. When a virgin specimen is 
subjected to a cyclic process with different maximum 
stretches λ1,  λ2,  λ3  and λ4,  respectively. The soften-
ing, occurring between cycles 10 and 11 in a virgin rubber 
at the stretch level λ4,  is illustrated in Figs. 1b and 1c. 
It increases progressively when the material experiences 
larger stretch amplitudes e.g. λ λ λ λ1 2 3 4< < < .  At any 
amplitude lower than the past maximum amplitude, the 
material exhibits a repeatable stress-strain response with 
a very little softening in the successive cycles (Lion 1996, 
Gentot et al. 2004).

Table 1. Reference temperatures (Figure 2) for mechanical 
tests.

Sl. no. Reference temperatures T K

1 253 K
2 263 K
3 293 K
4 313 K
5 333 K

Note: The table is to be read in conjunction with 
Figs 2 and 3.

Figure 2. Temperature histories applied to specimens. 
The figure is to be read in conjunction with Figure 3 and 
Table 1.
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lower amorphicity. In addition, it should have a 
lower molecular mobility and a larger rate depend-
ence. By taking these points as background, we 
note that the energy absorption, represented by the 
areas of the stress-stretch curves of a cycle, is much 

larger at low temperatures and it decreases with the 
increase of temperature.

In Figure 5, the maximum stresses recorded in 
cycles 1, 3, 5, 7 (Figs. 2–3) are compared with those 
belonging to the cycles 2, 4, 6, 8 (Figs. 2–3) and are 
plotted as a function of temperature (T K). The 
plot shows that the softening increases with increas-
ing stretch amplitude and decreasing temperature. 
A change is observed at temperature levels below 
263 K: in comparison with the softening observed 
at 253 K, the softening is quite small at 333 K. The 
stress responses of virgin specimens recorded in the 
tests at 263 K are presented in Figure 6 as functions 
of time. A diminishing trend of the softening at each 
stretch amplitude is noted after the second cycles 
(cycles 2, 4, 6, 8). In addition, the peaks of the stress 
response clearly depict the deformation dependence 
of the Mullins effect: the higher the applied stretch 
the higher is the softening effect. At the end of each 
cycle, the applied stretch was set to zero (Fig. 2–3). 
This causes that the stress changes its sign due to 
viscosity-induced strain rate effects. The stress 
responses belonging to the other temperatures lead 
to the same conclusions and are skipped for brevity. 
These observations (Figure 6) are consistent with 
the earlier work at room temperature (Lion 1996).

2.3 Effect of heat treatment temperature 
on the healing behavior

The consequences of successive temperature in-
creases during the heat treatment (from 333 K 
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(Figs. 2–3).



500

to 393 K; Figure 2, Steps III, VI, IX) on the 
heal ing behavior of the Mullins effect are also 
presented in Figure 6. They show different seg-
ments of the stress responses corresponding to the 
different stretch amplitudes. The parameter in these 
tests is the temperature during the heat treatment 
which was 24 hours in duration. In performing the 
mechanical tests, the specimen temperature was 
held constant at 263 K and the stretch rate was set 
to 0.05/s. Due to the same stretch rate in all tests, 
strain-rate effects are not considered. The virgin 
specimen and tempered specimens were deformed 
with the stretch history as shown in Fig. 3. Dur-
ing the first 600 seconds both histories are equal. 
In order to point out the relevant effects in Fig. 6, 

the stress histories of the tempered specimens have 
been shifted by 6, 12 and 18 seconds relative to the 
response of the virgin specimen.

The comparison of the stress peaks of the vir-
gin specimen at 263 K and that tempered at 333 K 
(Fig. 2, Segment III) and tested at 263 K shows an 
interesting trend: even the fifth peak (marked X5) 
of the virgin specimen lies at a higher value than the 
first peak (Y1) produced by the specimen after tem-
pering at 333 K (Fig. 2, Segment III). This ampli-
tude reduction is the result of the application of the 
further deformation process which the specimen 
observed before experiencing the heat treatment 
(Gentot et al. 2004). The effect of the temperature 
treatment at 333 K is small. But after tempering the 
specimen at 363 K for 24 hours, the stress peaks 
become comparable to those of the virgin speci-
men. The heat treatment at a higher temperature 
facilitates molecular motions and increases the rate 
of reconstruction of ruptured bonds between the 
filler aggregates and the rubber molecules. How-
ever, from the current measurements it is not clear 
whether the bonds reconstructed upon applying 
temperature are physical or chemical in nature. The 
experimental data and its interpretation obtained 
from mechanical tests call for the necessity of meas-
uring the amount of heat which is absorbed or dis-
sipated by the specimens during the heat treatment. 
Precise measurement of the heat exchange in a DSC 
device provides more information in this context. 
After the heat treatment, the specimen was cooled 
down to room temperature and then to 263 K for 
performing the mechanical tests. During this cool-
ing process, it was perhaps possible to completely or 
partially regenerate the crystalline structure. Finally, 
the stress-stretch responses of the virgin specimen 
and those of the specimen tempered at 363 K for 
24 hours are compared (Segments II and VIII, 
Figure 2) in Figure 7: the match is nearly perfect.
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A tempering of the specimen at a higher level 
of 393 K (Figure 2, Segment IX and Figure 10) 
was not found to cause an appreciable increase in 
the stress amplitude. This observation also dem-
onstrates the existence of a threshold temperature 
for attaining the virgin material behavior through 
thermally-activated healing processes. The com-
parison of the stress responses obtained after tem-
pering the specimen at 333 K, 363 K and 393 K 
does not suggest any stretch history effect. The sig-
nificant role of the temperature on the appearance 
of healing within a specific time interval can thus 
be recognized.

3 THEORETICAL CONSIDERATIONS

In order to formulate a constitutive theory for the 
softening-healing phenomena that we observed in 
experiments, we start with the fundamental laws of 
thermodynamics in their one-dimensional version. 
The first law of thermodynamics reads as

ρ σ ε ρe q
z

r⋅ = ⋅ − ∂
∂

+  (1)

The constant ρ  is the mass density of the mate-
rial, e  is the specific internal energy density per 
unit mass, σ  is the stress, ε  is the strain, q z t( , )  is 
the heat flux in z-direction and r  is the heat supply 
per unit mass. The second law of thermodynamics 
reads as

ρθγ ρψ σ ε ρ θ
θ

θ= − + ⋅ − ⋅ − ∂
∂

� s q
z

1  (2)

where ψ  is the free energy density, s  is the spe-
cific entropy, θ  the thermodynamic temperature 
and γ  the internal entropy production which is 
caused by irreversible processes. The principle of 
irreversibility states that

γ ≥ 0  (3)

for arbitrary thermomechanical changes. To com-
bine both thermodynamical laws, the relation 
between the internal energy, the free energy and 
the entropy is needed:

e s= +ψ θ  (4)

The mechanical part of the free energy function 
of an unsoftened or virgin nonlinear viscoelastic 
elastomer can be written as

ρψ ε εmech eq ovk ek
k

n
w w= +

=
∑( ) ( )

1
. (5)

Its equilibrium part weq ( )ε  depends on the total 
deformation ε  and its non-equilibrium part

wovk ek( )ε∑  on the elastic strains of a series of
Maxwell elements in parallel. The variables εek 
are the elastic strains of the springs and the εink 
are the inelastic strains belonging to the damping 
elements:

ε ε ε= +ek ink  (6)

To represent the Mullins effect, we introduce an 
additional internal variable 0 1≤ ≤D  describing 
the softening behaviour and assume that the loss 
in the mechanical free energy is not completely dis-
sipated into heat but stored in a different manner 
in the material:

ρψ ε ε δ θ= − +
⎛

⎝⎜
⎞

⎠⎟
+

=
∑( ) ( ) ( ) ( , )1

1
D w w Deq ovk ek

k

n

 (7)

The function δ θ( , )D  is that part of the free 
energy that is released during softening but not dis-
sipated into heat. It has the properties δ θ( , )0 0=  
and ∂ ∂ ≥δ D 0. In order to evaluate the second 
law of thermodynamics, we differentiate the free 
energy (7) with respect to time

ρψ
ε ε

ε
ε

� = −
∂
∂

+ ∂
∂

⎧
⎨
⎪
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⎫
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⋅ − − ∂
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1
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w w
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n
ovk
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∑ ⋅

1

n

inkε
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∂
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− + −
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⎬
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and insert it into (2):

ρθγ σ
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∂
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In order to satisfy the non-negativity of the 
specific dissipation ρθγ ≥ 0  for arbitrary ther-
momechanical processes, i.e. numerical values of 
the temperature- and strain rates, we obtain the 
following potential relations for the stress and the 
entropy:

σ
ε ε

= −( ) ∂
∂

+
∂
∂

⎛

⎝⎜
⎞

⎠⎟=
∑1

1
D

w weq ovk

ekk

n
 (9)

ρ δ
θ

s = −
∂
∂

 (10)
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The evolution laws for the inelastic deformations 
and the heat flux are assumed to be

ε
η ε

⋅ = − ∂
∂ink

k

ovk

ek

D w( )1 , (11)

q
z

= −
∂
∂

λ θ , (12)

which are sufficient conditions for the non-
n egativity of the corresponding terms in (9). The 
heat conductivity λ  and the viscosities ηk  are 
non-negative constants or functions which have to 
be determined experimentally. A similar argumen-
tation leads the differential equation

D D w w
Deq ovk ek

k

n⋅
= − + −

∂
∂

⎛

⎝⎜
⎞

⎠⎟=
∑μ ε ε δ( ) ( ) ( )1

1
 (13)

modelling the evolution of the internal variable D. 
The material function μ  is non-negative as well and 
has to be determined on the basis of experimental 
data. The factor ( )1− D  has been introduced in (14) 
in order to constrain D ≤ 1  The driving force for 
the evolution of the variable D  is the mechanically-
stored free energy and the limiting term in (14) is the 
partial derivative of the function δ θ( , ).D  The sim-
plest constitutive assumption for this derivative is

∂
∂

=
δ α θ
D

D( ) ,  (14)

where the function α θ( )  describes the tem-
perature dependence of the limiting term. If  
the mechanical part of the free energy is zero, 
i.e. w weq ovk ek( ) ( ) ,ε ε+ =∑ 0  the material is in 
mechanical equilibrium. In this case, the rate of 
the softening variable is negative

D D D
⋅

= − −μ α θ( ) ( )1  (15)

such that the developed constitutive model can 
represent the temperature-dependent healing of 
the Mullins effect. Integration of (15) leads to the 
function

δ α θ θ= +
1
2

2( ) ( )D h  (16)

and with (11) to the expression

ρ α θ θs D h= − ′ + ′⎛
⎝⎜

⎞
⎠⎟

1
2

2( ) ( )  (17)

for the entropy. Differentiating (4) with respect to 
time leads to

ρ ρψ ρ θ ρ θ� � �e s s= + ⋅ + .  (18)

Considering (8) in combination with (10)–(14) the 
relation

ρψ σε η ε ρ θ
μ
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n

ink s D
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2
2

 (19)

is obtained for the time rate of the free energy. 
Inserting this into (19), the expression
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 (20)

follows for the rate of the internal energy. To derive 
the equation of heat conduction, we replace ρ �e  
in the first law of thermodynamics (1) by (21) and 
obtain
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after rearranging the terms. The factor of the tem-
perature rate on the left-hand side is the specific 
heat capacity of the material which depends on 
both the temperature and the internal variable D. 
The material function h( )θ  can be determined if the 
specific heat capacity c0( )θ  of the on the virgin or 
unsoftened material is known. Integration of

− ′′ =θ θ θh c( ) ( )0  (23)

leads to the expression

h h h
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00
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for this constitutive function.

4 CONCLUSIONS

Experimental results show that a decrease in the 
specimen temperature leads to more pronounced 
hysteresis properties together with an increased 
softening effect. This observation is rather general 
in nature and may have a relation to the amount 
of crystallinity present in the material. Tempering 
of the softened specimens leads to healing such 
that the Mullins effect can be observed once again. 
A comparison of the results obtained from the vir-
gin and the tempered specimens tested at different 
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temperatures suggests that the  Mullins effect 
shown by the virgin can be healed due heat treat-
ment. However, the tempering of the specimens at 
elevated temperatures for a specific time showed 
the existence of a threshold temperature which is 
necessary to completely heal the specimens.

From our point of view, the experimental data 
provided in this essay appears to be useful for the 
future development of physically-based thermo-
mechanical material models for filler-reinforced 
rubber. We have seen that the material behavior of 
the NR/BR rubber blend does not depend only on 
the deformation history and the current thermody-
namic temperature, but also on the entire tempera-
ture history. In addition, healing does occur. To 
this end, we have presented a thermodynamically 
consistent phenomenological formulation that 
has the potential to describe the softening-healing 
phenomena.
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1 INTRODUCTION

One of the important mechanical characteristics 
of rubber is stress softening after the first loading 
cycle which is referred to as the Mullins effect. It 
was experimentally observed and reported along 
with deformation induced anisotropy and time-
independent residual strains generally known as 
permanent set. According to experimental results, 
stress softening at the same strain level decisively 
depends on the filler concentration in the rubber 
network. In unfilled elastomers softening is neg-
ligible but becomes very pronounced in rubbers 
with high filler concentrations.

Although slight stress softening does occur 
in unfilled rubbers as well, its mechanism differs 
 fundamentally from that one underlying softening 
in filled rubbers. This motivated a class of theo-
ries in which damage was considered as an effect 
of filler contribution. Bueche (1960) developed a 
physically based model considering consequent 
debonding of chains from fillers during the pri-
mary loading. He supposed that chains with dif-
ferent lengths are distributed within the rubber 
network and employed statistical mechanics in 
order to describe the Mullins effect.

Govindjee & Simo (1991) proposed a three-
dimensional model of the chain network evolution 
which included three new features. First, polymer 
chain distribution inside the rubber matrix was 
implemented. Second, consequent debonding as 
a direct result of network elongation was taken 
into account and, finally, the concept of network 
decomposition was applied in which the rubber 
network is decomposed into elastic rubber (CC) 

A micro-mechanical model for the anisotropic Mullins effect 
in filled rubber-like elastomers

Roozbeh Dargazany, Mikhail Itskov & Georg Weinhold
Department of Continuum Mechanics, RWTH Aachen University, Germany

ABSTRACT: In this contribution, a micro-mechanical model for the anisotropic Mullins effect is 
proposed for carbon black filled rubbers. The model describe both the deformation induced anisotropy 
and permanent set. Damage of the polymer-filler network is considered as a consequence of chain slid-
ing on or debonding from aggregates. In contrast to previous works on anisotropy of the Mullins effect, 
no phenomenological damage function is introduced. Damage in different directions is governed by a 
network evolution concept which describes changes in the inter-aggregate distribution of polymer chains. 
The model includes a few number of physically motivated material constants and demonstrates good 
agreement with own experimental data on subsequent uniaxial tensions in two orthogonal directions.

and polymer-filler (PP) networks. Although the 
resulting three-dimensional model was obtained 
by summation over principal strain directions, its 
numerical implementation was solely applied to 
the one-dimensional case. In order to improve the 
model, the same authors (Govindjee & Simo, 1992) 
further proposed a phenomenological concept 
based on the previous assumptions. This concept 
was easily implemented into a finite element code 
and showed good agreement with experimental 
data. Like the previous formulations this model 
was isotropic and did not describe permanent set.

Quite recently, Göktepe & Miehe (2005) pro-
posed an anisotropic extension of the theory by 
Govindjee & Simo (1992). The CC network was 
considered to be purely elastic and its strain energy 
is formulated by applying a concept of non-affine 
micro-macro transition to the tube model. Damage 
was attributed to the PP-network and described 
by an approach proposed by Govindjee & Simo 
(1992). The model was able to take into account 
permanent set and deformation induced anisotropy 
which represents a clear advantage in comparison 
to previous models. However, the model was not 
compared to experimental data on anisotropy of 
the Mullins effect while softening was simulated by 
means of a phenomenological damage function.

Another model by Diani et al. (2006) was 
obtained as an extension of the network alteration 
theory. In order to predict induced anisotropy and 
permanent set the model utilizes a phenomenolog-
ical damage function. It demonstrates good agree-
ment with experiments for the unloading in the 
first direction but suffers from an unrealistic stress 
upturn in the prediction of the loading branches.
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In the present paper, we pursue the concept 
of network decomposition by Govindjee & Simo 
(1991) and propose a new micro-mechanical model 
for the polymer-filler network where softening of 
the equilibrium stress-stretch behavior is based an 
evolution of the polymer chain network suspended 
between carbon black aggregates. Finally, the model 
is compared with own experimental data on subse-
quent uniaxial tensions in two orthogonal directions 
in order to validate its behavior both with respect to 
the anisotropic Mullins effect and permanent set.

2 STATISTICAL MECHANICS 
OF POLYMERS

Due to energy barriers, adjacent monomers in a 
polymer chain keep a certain angle between each 
other generally referred to as valence angle. Con-
sidering the valence angle as a material parameter, 
we apply the freely rotating chain (FRC) concept in 
order to model polymer molecules. Within this con-
cept, a chain is defined as the whole or a part of a 
polymer molecule limited between two constrained 
segments, each of them might be either bonded to 
the aggregate surface or cross-linked with other 
chains. Now, consider a FRC with n segments each 
of length l. Let R be a vector connecting two ends 
of this chain. The length of this vector r is referred 
to as end-to-end distance. Using the abbreviation

α θ
θ

= −
+

⎛
⎝⎜

⎞
⎠⎟

1
1

2cos
cos

,  (1)

where θ denotes the supplement of the valence 
angle and following the lead of Govindjee & Simo 
(1991), the probability density function for a FRC 
is obtained as

p r dr
nl

e dr
r

nl( ) .=
−3

2 2

3
2

2

2α
π

α

 (2)

The above function shows a better agreement 
with the exact chain distribution than a non-
 Gaussian one (see, e.g., Treloar, 1975), although 
the latter one is still advantageous in application 
to the calculation of the entropy and the resulting 
free energy. For this reason, the non-Gaussian dis-
tribution will be used in the next section for the 
derivation of the free energy of the FRC.

Let A be the total area of active adsorption sites 
inside the rubber matrix and N be the number of 
bonded segments of polymer chains per unit vol-
ume. Then, one defines the average area of active 
adsorption sites available for the formation of a 
bond with one structural segment of a polymer 
chain as κ = A/N.

We consider further a set of chains in a particular 
direction d = R/r both ends of which are connected 
to two aggregate surfaces. Moreover, we consider r 
as the average interaggregate distance (Fig. 1).

We assume that none of segments between the 
number 1 and n is joined to aggregate surfaces. 
Considering r r l= /  as relative distance, the prob-
ability of this state is expressed as (cf. Govindjee & 
Simo, 1991)

P n r
n

eB( , ) ,− = 3
2

2ακ
π

 (3)

where B depends on α, κ, n, r– (see Dargazany & 
Itskov, 2009).

The number n and length l of  segments of a 
FRC are related to those of the so-called freely 
jointed chain, ni and li, respectively by

l al n bni i= =, ,  (4)

where the coefficients a and b are calculated by 
(Treloar, 1975)
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In order to estimate the entropic energy of a 
single chain one assumes that all chains are initially 
in the unperturbed state. Thus, one can write

r nl r n= =λ
α

λ
α

2
, ,  (6)
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Figure 1. Hierarchical structure of filler reinforcement 
with polymer chain bonds to aggregate surfaces.
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where λ is the chain stretch. Thus, the entropic 
energy of single chain can be written as

ψ λ λ β β
β

( , ) ,n KT bn= +
⎛
⎝⎜

⎞
⎠⎟

1n
sinh

 (7)

where β = –1(λ/ bn) and  −1 denotes the inverse-
Langevin function. Finally, T stands for the tem-
perature (isothermal condition is assumed) and K is 
Boltzmann’s constant. The free energy function (7) 
resulting from the FRC concept will further be imple-
mented for all polymeric chains in the rubber matrix.

3 NETWORK DECOMPOSITION

The rubber matrix is decomposed into a pure rub-
ber network and a polymer-filler network which 
act parallel to each other. In line with this assump-
tion, the free energy of the rubber matrix ΨM can 
be represented by

Ψ Ψ ΨM cc pp= + ,  (8)

where Ψcc and Ψpp denote the free energies of 
chains in pure rubber network and chains distrib-
uted between filler aggregates, respectively. By this 
means, one assumes that there is no interaction 
between both networks. The network decomposi-
tion concept is illustrated in Figure 2.

3.1 Pure rubber network

Although stress softening has also been observed 
in unfilled rubbers, its magnitude can be neglected 
in comparison to that one occurring in filled elas-
tomers. For this reason, in the present study, the 
pure rubber network will be considered as a per-
fectly elastic component. In addition, the cross-
link motion in the direction d is affine with the 
macro-stretch in that direction.

In order to obtain the free energy of this network 
one then substitutes n by the average number of seg-
ments in one chain nc, multiplies (7) by the average 
number of chains Nc in the direction d and finally 
integrates over the unit sphere (see Sect. 5.2).

3.2 Polymer-filler network

The evolution of the polymer-filler network is 
assumed to be responsible for the already men-
tioned stress softening. Let N n r( , )be the number 
of chains with the number of segments (relative 
length) n, the relative end-to-end distance r and 
the end-to-end direction d. Integration over the 
whole set DA of  relative chain lengths n available 
in the direction d further yields the free energy of 
chains in this direction as

Ψ
d d

D

N n r dn
A

= ⎛
⎝⎜

⎞
⎠⎟∫ ( , ) .ψ λ  (9)

In the following, the network evolution is 
understood to be an interaction of two simulta-
neous processes referred to as aggregate-polymer 
debonding and network rearrangement.

4 NETWORK EVOLUTION

4.1 Aggregate-polymer debonding

In the course of deformation, the polymer chains 
begin to slide on or debond from the aggregates. 
This debonding starts with the shortest chain and 
gradually involves longer and longer chains.

The strength of monomer bonds within poly-
mer chains is far higher than that of polymer-
filler bonds. Thus, polymer chains do not break 
but rather slide from their bonding sites on the 
aggregate surface. During consequent unloadings, 
the debonded chains do not reattach back to the 
aggregates active sites.

The debonding or the sliding takes place if  the 
force magnitude exceeds the effective interac-
tion strength of polymer-filler bonds. Thus, the 
parameter υ is introduced such that the chains 
with the contour length L < υλmr0 are assumed to 
be debonded. Here, r0 denotes the initial interag-
gregate distance. Then, by means of (5), the set 
of available relative lengths of chains bounded to 
aggregates in the direction d can be expressed by
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where λm
d

 denotes the maximal micro-stretch 
reached in this direction. By means of this value 

M
Ψ
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Ψ

pp
Ψ

Figure 2. Network decomposition concept.
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the loading history influences the material behav-
ior in the direction d.

Note that the set (10) is defined for freely rotat-
ing chains and is direction dependent. Thus, it 
can be considered as a three-dimensional exten-
sion of the one-dimensional domain proposed by 
 Govindjee & Simo (1991) for freely jointed chains. 
Besides, eq. (10) includes the upperbound param-
eter nmax which restricts the number of active seg-
ments to a finite number.

4.2 Network rearrangement

The concept of chain rearrangement in rubber net-
work as a result of deformation has recently been 
explored (see, e.g., Diani et al., 2006). It is usually 
assumed that after debonding chains do not con-
tribute to the network entropic energy any more 
and their energy is thus lost. This concept consid-
ers molecular chains bonded to aggregates only at 
two points which might be, indeed, well justified 
for relatively short chains. However, longer molec-
ular chains are usually bonded at different places to 
aggregates and have numerous cross-linkages with 
each other. Thus, the actual status of a polymer 
molecule with many linkages to aggregates should 
be taken into account in the network modeling.

Detachment of chains from the aggregate sur-
face does not necessarily result in the complete loss 
of their role in the network entropic energy. Vice 
versa, the debonding can even lead to the recruiting 
of some new active segments. Indeed, we can imag-
ine three simultaneously happening competitive 
processes accompanying debonding (see Fig. 3):
1. Deactivation of some segments
2. Activation of some segments
3. No effect on number of active segments

Note also that with increasing interaggregate 
distance one of  these processes triggers another 
one and so on. All in all, one can assume that 
the total number of  active segments remains 
constant.

Since the integration will be carried out only 
over the set available chains DA, a normalization 
function g m

d( )λ  is introduced such that

g P n r dnm

d

DA m

d
λ

λ
( ) =

( )
∫ ( , ) .0 1  (11)

The amplification of the probability distribution 
caused by the function g is illustrated in Figure 4.

Multiplying then the term P n r g m
d( , ) ( )0 λ  by the 

total number of active chains N rc ( ), and tak-
ing further into account that this distribution 
may change only during primary loading, where 
λ λ= m

d
, yields
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are used. The earlier assumption of a constant 
number of active segments leads to the condition
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The variable N0 represents the number of active 
chains per unit undeformed volume. It depends on 
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Figure 3. Effect of chain detachment on the number of 
active segments.
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the molecular mass of segments and density of the 
polymer network. For this reason, N0 can and will be 
considered in the following as a material parameter.

Finally, inserting (14) into (9), we obtain
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D
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5 TRANSITION TO MACRO-MODEL

5.1 3D generalization

It is generally assumed that the virgin rubber net-
work is initially homogeneous and isotropic and 
the macroscopic free energy is regarded as the sum 
of microscopic strain energies of all active chains 
available within the network which can be calcu-
lated by integration over the unit sphere. Applying 
the isotropic space distribution (chains are spread 
equally in all directions), we can write

Ψ Ψ Ψcc c
s

d d
pp

d d
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4

1
4π

ψ
π

, , ,χ  (17)

where S denotes the unit sphere. The integration is 
carried out numerically by

Ψ Ψ Ψcc c
i

k d
i pp

d
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iN n w wi
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≅ ( ) ≅
= =
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1 1
, , ,  (18)

where wi are weight factors corresponding to the 
collocation directions di (see, Bažant & Oh, 1986).

5.2 Strain amplification

The strain amplification concept is based on 
the fact that the filler aggregates are consider-
ably stiffer than polymer chains connecting them. 
This inhomogeneity of the material motivates the 
assumption of non-affine deformation. Accord-
ingly, the amplification function X establishing 
arelationship between the microstretch λ

d
 and the 

macrostretch χd  in the direction d is defined by

λ χ χd d
d

x

x
X C

C
= ⎛

⎝⎜
⎞
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= −
−1

,  (19)

where C ∈ (0,1) represents the volume fraction 
of filler (C < 0.3 in most studies). The exponent x 
depends on the structure of the filler network. For 
example, Bueche (1961) showed that x = 1/3 in the 
case of statistically homogeneous distribution of 
spherical particles.

5.3 Final formulation

Now, the total strain energy of the network can 
be obtained by inserting (18) into (8). Taking the 
incompressibility condition

det F = 1  (20)

into account the constitutive equation for the first-
Piola Kirchhoff stress tensor T can be written by

T
F

F
F F

F= ∂
∂

− = ∂
∂

+
∂

∂
−− −Ψ Ψ ΨM cc ppp pT T , (21)

where F denotes the deformation gradient and p 
stands for an arbitrary scalar parameter which 
can be defined according to a particular boundary 
value problem.

6 COMPARISON WITH OWN 
EXPERIMENTAL DATA

In this experimental study, a cross-shaped speci-
men made from 50 phr carbon black filled (C = 0.2) 
polychloroprene rubber (CR) was used. In order to 
obtain a nearly homogenous state of uniaxial ten-
sion, the four arms of cruciform specimens were 
multiply slitted parallel to the side.

The experimental procedure was as follows. 
First, the virgin specimen was subject to loading-
unloading cycles of uniaxial tension (x-direction) 
with the increasing stretch amplitudes. After 
unloading to the stress-free state, the sample was 
unclamped and clamped again for the consequent 
loading in the orthogonal direction (y-direction). 
Thus, residual strains accumulated in the specimen 
are included in the new reference configuration. 
Then, the above described loading procedure was 
repeated in y-direction.

In the case of elongation in x-direction, the clas-
sical Mullins effect and permanent set are observed 
after the first loading cycle. In y-direction, stress-
stretch diagrams reveal the Mullins effect as a 
strongly anisotropic phenomenon and also show 
considerable permanent set (see Fig. 5).

By means of the seven material parameters 
(Table 1) the model was fitted to the above presented 
experimental data. For the fitting, only the loading 
cycle corresponding to the stretch amplitude 1.6 
in x-direction is used. Thus, good agreement with 
other unloading curves in x- direction and all load-
ing-unloading curves in y-direction is obtained 
automatically (Fig. 5).

7 CONCLUSION

The motivating key for this work was the absence 
of micro-mechanical models that can describe 
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experimental data on the anisotropic Mullins effect 
of filled rubber-like materials without using empir-
ical damage functions. Thus, we have proposed in 
the present paper a purely micro-mechanical net-
work evolution theory granting a new insight into 
the damage mechanism which takes place inside 
the rubber network. Without using a damage func-
tion, the constitutive formulation is obtained based 
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on partial energy dissipation of debonded chains 
and orientational changes in inter-aggregate chain 
distribution.

A simple structure combined with the low 
number of material parameters makes the model 
suitable for a finite element implementation. The 
excellent performance of the model was illustrated 
by comparing to a new set of own experimental 
data particularly designed to reveal the aniso-
tropic Mullins effect and permanent set. To this 
end, the material parameters were evaluated by 
fitting only to one loading cycle. Good agreement 
with the all other experimental curves is obtained 
automatically.
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1 INTRODUCTION

Like many filled rubber-like materials, as well 
as soft biological tissues and other biomaterials, 
filled silicones exhibit highly non-linear mechani-
cal behavior. This non-linearity is commonly 
characterized by large strain levels under static 
conditions, a non-linear stress-strain response 
and strain rate dependence. Finally, under cyclic 
loading conditions, hysteresis and stress-softening 
behaviors are observed on both filled and unfilled 
elastomers. For the last half  century all these 
cyclic phenomena were evidenced and modeled to 
support the most widely engineering applications. 
However, their microscopic mechanisms (breaking 
of weak chains, breaking of links, desabsorption of 
chains, etc.) explanation remains non-unanimous.

Hysteresis is rather related to the dissipative 
nature of material, i.e., related with viscoelasticity 
Bergstrom (2000) and viscoplasticity Miehe (2000) 
behaviors. It is characterized as the difference 
between loading and unloading paths during a 
stabilized cycle. On the other hand the stress-
 softening phenomenon, also called the Mullins 
effect (see Mullins (1969)), can be described as a 
softer behavior of the second loading after a first 
loading. It can be idealized as an instantaneous 
and irreversible softening of the stress-strain curve, 
due to rearrangements in the microstructure of the 
material that occurs whenever the load increases 
beyond its prior all-time maximum stretch 
value. At times when the load is less than a prior 

Experimental observation of induced anisotropy of the Mullins 
effect in particle-reinforced silicone rubber

G. Machado, G. Chagnon & D. Favier
Université de Grenoble/CNRS, Laboratoire 3S-R, Grenoble, France

ABSTRACT: This study is concerned with the experimental observation of anisotropy induced by the 
Mullins effect in a particle-reinforced silicone rubber. Like many filled rubber-like materials, filled silicone 
exhibits highly nonlinear mechanical behavior. This nonlinearity is characterized by large strain levels 
under static conditions, a non-linear stress-strain response and strain rate dependence. However, experi-
mental data concerning the influence of tensile loading cycles in one direction on the stress-softening in 
other tension directions is quite scarce. In this scope several tension cyclic tests were carried, using a filled 
silicone rubber material, in order to evidence the anisotropy of the stress-softening phenomenon. The 
results lead to the conclusion that tensile cycles in one direction practically do not cause the Mullins effect 
in tension in the perpendicular direction. Nevertheless, the level of influence of the Mullins effect devel-
oped in one tension direction on tension behavior for intermediate directions could be measured with 
respect the different angles in plane. Thus, the anisotropy of the Mullins effect becomes clearly evident.

maximum, nonlinear elastic behavior prevails. One 
time the previous maximum stretch is reached the 
loading path turns up and follows the primary 
curve again up to a new maximum.

Through the years, the Mullins effect has exper-
imentally been observed in different deformation 
states and numerous models have been proposed, 
but experimental data concerning the influence 
of loading cycles in one direction on the stress-
 softening in other directions are quite scarce.

Mullins (1947) has alluded that the degree of 
softening was not the same in all directions for natural 
rubber samples cut both along and perpendicular 
to the direction of the previous preconditioning 
stretch; and thus some anisotropic stress-strain prop-
erties were developed. This evidence, for example, 
can be found in a homogeneous plane-strain 
compression experiment by Pawelski (2001) and in a 
simple shear experiment performed by Muhr (1999) 
where simple shear loadings in different directions 
produce different responses. Other experimental 
results can be seen in Laraba (2003) using a 
carbon-black filled natural rubber, Diani (2006) 
for the commercial elastomer filled black (EPDM) 
and Itskov (2006) for carbon-black filled acrylate 
rubber (ACM). All these experimental results point 
out the strain-induced anisotropy in orthogonal 
directions due to some in-plane preconditioning 
test procedure.

Within that context, the aims of this work are 
to characterize and understand the mechanical 
behavior of a filled silicone. The objective is to 
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focus on the strain-induced anisotropy by studying 
the influence of loading direction on the Mullins 
effect.

2 EXPERIMENTAL SETUP

2.1 Preparation of the silicone specimens

The samples used in the experiments were made of 
a filled silicone rubber called Rhodorsil®RTV3428 
supplied as two liquid components: the uncured 
silicone and the curing agent. The final material 
is produced by a polyaddition, curing at room 
temperature. The liquid mixture is injected in a 
mold to obtain a sheet with constant thickness.

Specimens used for each of the experiments 
were made using the same protocol of elabora-
tion, in order to obtain specimens with reproduc-
ible mechanical properties, as follow: (i) mixing 
the components with a 10/1 mass ratio, (ii) putting 
the mixture under vacuum for 20 minutes in order 
to eliminate undesirable entrapped air bubbles, 
(iii) sheet molding injection, (iv) putting mold inside 
an oven at 70ºC for 4 hours in order to accelerate 
the curing process and assure a sufficient cross-
linking density; (v) sheet demolding after 1 hour 
exposed at ambient temperature.

Finally, the external surface of the molded plate 
was coated with a stochastic silicone paint pat-
tern. Made of small speckles, the pattern is neces-
sary for the digital image correlation (DIC) field 
measurement. Note that the quality of the coated 
pattern (size, density and gray contrast level) is 
a critical point to obtain an accurate strain field 
measurement.

2.2 Testing procedures

All the quasi-static experiments were conducted 
on a MTS 4M universal testing machine with an 
Entran ELPM-T2 ± 250 N load cell. The images 
were recorded at 0.5 Hz with a Jai TM-4200GE 
CCD camera using a reduced scan of 2048 × 1000 
pixels. Figure 1 presents the experimental setup. 
Simple tensile tests were performed on rectangular 
samples having an initial gauge length lo = 40 mm, 
width wo = 13 mm and a thickness eo = 2 mm. Since 
the experiment was not intended to fail the speci-
men, there was no need to use a dumbbell shaped 
specimen commonly used to prevent specimen fail-
ure nearby the clamps. But knowing that the effects 
of clamps create an indeterminate state of stress 
and strain in the region surrounding the clamps, 
due to the process of gripping, the initial gauge 
length was adopted as being less than the real phys-
ical size of the samples. Figure 2 presents the ten-
sile test specimen together with the grid used by the 

DIC software to estimate strain fields in the gauge 
region. For all tests, homogeneity of strain fields in 
the gauge region has been verified and elongations 
are averaged values.

2.3 Strain field measurement

The DIC technique like a non-contact method is 
often used to characterize rubber-like materials, 
see for example Meunier (2008) and Sasso (2008). 
At each testing time step, one image of the sample 
deformation was recorded using a CCD camera. 
The DIC technique allows surface reconstruction 
of the deformed samples and determination of the 
full-field surface displacements. For the in-plane 

Figure 1. Testing machine with tensile test specimen, 
load cell and CCD camera.

Figure 2. Uniaxial test specimen dimensions and the 
homogeneous gauge zone.
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displacement an accuracy of 10−2 pixels or better 
can be reached. For point-to-point strain, the 
accuracy value lies around 10−4. The DIC method 
is preferred because there is no change in sample 
stiffness resulting from the presence of an attached 
sensor (classical extensiometry) and for being 
insensitive to ambient vibrations and rigid body 
motions (speckle pattern interferometry). Moreover 
the method is able to deal with high strain levels, 
what is a very desirable feature given the high 
strain level experienced by the tested material. 
Also the DIC allows demonstrating and measuring 
a heterogeneous deformation field. See Sutton 
(2008) for further explanation about digital image 
correlation method.

3 RESULTS

3.1 Simple tensile strain state

During the test, using an elongation rate of 
λ′ = 1.60 × 10−2 s−1, the nominal stress tensor P 
(First Piola-Kirchhoff stress tensor) is assumed to 
be homogeneous within the gauge region as well as 
the deformation gradient tensor F.

Since the actual thickness is not measured, the 
material is assumed to be incompressible, i.e., 
det(F) = 1 for convenience. In the central zone, the 
deformation gradient, considering that the direc-
tion 1 is the tensile loading one, is given by

F e E e E e E= ⊗( ) + ⊗ ⊗( )−λ λ1
1 2

1 2 2 3 3
/ +  (1)

and the nominal stress tensor

P = ⊗( )P11 e E1 1  (2)

where (E1, E2, E3) and (e1, e2, e3) are the orthonormal 
basis used for the initial and current configurations, 
respectively.

In a second time, a tensile specimen has been 
subjected to a load/unload sequence at different 
elongation rates λ′ = 25 × 10−4 s−1 to λ′ = 125 × 10−2 s−1 
in order to verify the rate-dependence influence. 
No noticeable difference between stress-strain 
responses was observed at the considered strain 
rate range. Consequently the RTV3428 behavior 
can be assumed  indepen dent of  the rate of  defor-
mation for the observed ranges.

A cyclic tensile loading test was realized, the 
results are presented in Figure 3. Different phe-
nomena are highlighted, first a large Mullins effect 
appears by comparing the two first loadings at each 
strain level, but with very little residual elongation. 
Moreover, a little hysteresis (difference between 
second and subsequent loadings and unloadings) 
is observed.

3.2 Directional influence

In order to study the anisotropy induced by the Mullins 
effect, two identical large specimens lo = 100 mm,
width wo = 70 mm and eo = 2 mm of thickness 
were submitted to one cycle of stretch, at λ = 2.45 
in uniaxial tension along a principal direction 
referred to 0º. Then, a set of smaller specimens was 
cut from each of these preconditioned large sam-
ples along four different directions 0º (first loading 
direction), 30º, 45º and 90º (orthogonal direction). 
An illustration is presented in Figure 4. All the 
cut specimens have been submitted to the same 
initial strain state (this has been verified thanks to 
the DIC measures). Figure 5 presents the second 
loading and unloading curves for the different cut 
specimens.

It clearly appears that all these second load-
ing curves come back on the first loading curve 
at the same maximum elongation. Moreover, the 
subsequent unloading curves are almost inde-
pendent of the history. The main difference is the 
shape of the second loading curve, the amount of 
stress- softening can be relied to the angle between 
the two loading directions.

As represented by Shariff  (2006) and Diani 
(2006b), Figure 6 shows the stress ratio between the 
first virgin load curve and the set of  sub- samples 
orientated at 0º, 30º, 45º and 90º directions. The 
curves highlight that there is no proportionality 
between the different curves, moreover there 
is no easy link between the second loading 
curves.

Figure 7 presents the evolution of the loss energy 
by Mullins effect according to the loading angle. 

Figure 3. Cyclic loading-unloading tensile test with 
increasing maximum stress: 0.2, 0.4. 0.6 and 0.8 MPa at 
λ′ = 1.60 × 10−2 s−1.
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Experimental points are fitted using the periodic 
function given by

Wr = + +a a ao 1 2cos( ) cos( )αω αω2  (3)

where ao = 0.460, a1 = 0.440, a2 = 0.093 and 
ω = 2.0.

It appears that the function evolves from a 
maximum of stress-softening, when the two 
loadings are in the same direction and a minimum, 
close to zero, when the directions are orthogonal. 
That means that, at least, two parameters are 
necessary to describe the Mullins effect: the 

maximum stretch criteria and the angle between 
the first and second loading.

4 CONCLUSION

In the present work we have conducted an experi-
mental campaign to build evidence showing that 
the Mullins effect in filled silicone rubbers is, in 
general, non-isotropic. The reproducibility and 
accuracy of measurements were evaluated through 
several successive tests. Results have shown that our 
protocol to manufacture the silicone specimens 
without any pre-existent anisotropy and our 
experimental methodology work well and provide a 
precise experimental characterization of softening 
phenomena.

Figure 5. Anisotropy induced by Mullins effect of a 
filled silicone RTV3428, superposed uniaxial stress-strain 
responses (load-unload).

Figure 6. Stress ratio between the first virgin load curve 
and the set of sub-samples, for sub-samples orientated at 
0º, 30º, 45º and 90º (perpendicular) directions.

Figure 7. Ratio of energy loss according to the difference 
of angle loading.

Figure 4. The large preconditioned sample and the 
different observed orientations.
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Using the DIC method as a non-contact 
full-field optical measurement, a large strain level 
was achieved. The results have shown that tensile 
cycles in one direction hardly cause any softening 
in the perpendicular direction. In addition, the 
results with respect to the influence of Mullins 
effect in the intermediate directions provide 
valuable information for testing and calibrating 
numerical models.

Finally, the anisotropy of the Mullins effect 
becomes clearly evident and should be taken into 
account in the constitutive modeling of filled 
elastomers.
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